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The Black Volta Basin in Ghana has experienced some losses in its productive lands due to mining. This study

assessed the Land use/cover (LULC) changes within the Basin for a period of eighteen years, and mapped current

and potential mining hotspots in the Basin. The study used multispectral Landsat images for the years 2000, 2015

and 2018. Supervised classification method and Spectral Angle Mapper were used to classify and map the LULC

types. Feature-based extraction method was then used to delineate mining sites along the River in the Basin. Six (6)

LULC types were classified. Findings from the study revealed that four of the classified LULC experienced some form

of decline between the years 2000 and 2018, except Bareland and settlements which consistently increased within the

period, with Barelands recording the highest increase of 21% between 2000 and 2015 and 18% between 2015 and

2018, signaling a sharp increase in the three year period. From the feature-based extraction, 312 segments of an

average area of 8.4 km of each segment were found to be mining sites from the 2018 image analysis, which is about

80% of the total Bareland in 2018. Likewise, 146 segments of an average area of 3.9 km of each segment were found

to be potential mining sites. This implies that mining within the basin is threatening other LULC and hence,

reclamation and restoration activities need to be intensified. The outcome of this research could facilitate

technological strategies towards restoration projects within the Basin.
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INTRODUCTION

Mining of natural resources, especially gold is a significant
anthropogenic source of pollution to water bodies and
vegetation cover across the world. This is because through the
activities of mining, at all scales of operation, large quantities of
water and vegetation have been abstracted and discharged from
and to surrounding freshwater and land ecosystems polluting
them [1,2]. The destruction of water bodies and vegetation has
disrupted continuous water supply [3] and food security in many
West African countries, especially Ghana due to the inability to
sustainably manage the activities of mining [4]. This was
confirmed by the World Water Council that reported that the
recent water crisis across the world cannot be attributed to the
fact that there is not enough available water [5], but rather the

ability to manage these water resources in order to assess them.
This situation is no different from mining operations along the
Black Volta River stretch in Ghana which have recently
increased since the influx of small scale miners in the area [6].

Parts of the Black Volta River have been silted and dammed to
obstruct the flow of the river by miners, and vegetation cover
removed in order to search for minerals underground and these
activities raise a concern for environmental protection.
Consequently, the LULC pattern within the catchment has
changed variably, with the majority of the existing LULC being
converted to mine sites. For instance, deforestation, in the
Western part of Ghana, has been reported to be 58%, with 45%
loss in farmlands due to gold mining [7]. Hence this requires
assessment for decision making.
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The mining sector is normally under-resourced, unorganized,
under-regulated, and short-lived and these factors contribute to
the unlawful transitions of other LULC to mining sites [8].
Therefore these miners and policy makers mostly do not assess
the extent of land being used for their activities, and the threats
they pose to other LULC in the catchment of their operation
areas. Meanwhile, reports indicate that about 25 million people
are employed in this sector globally [9,10]. In the Northern
Region of Ghana specifically, where this study is situated, more
than 10,000 miners have emerged by the year 2012 from a
population of a few dozen farmers in 2010 [9], and the reports
across the country about the mining effect on the natural
vegetation are alarming [11-13]. Even though the mining sector
contributes to about 15% of Ghana’s GDP, land use such as
agriculture contributes 41% to the country ’ s GDP while
providing employment to about 60% of the population who are
in active work. Nevertheless, mining is gradually claiming and
destroying the majority of the farmlands, with the farmlands
also spreading into adjacent forests [14].

The application of geospatial technologies in the field of LULC
assessment, whereby Remote sensing and Geographic
Information Systems (GIS) techniques are used to study and
distinguish between features on the earth surface have proven to
be effective in quantifying and monitoring earth resources [15].
In this way, the extent and severity of the small scale mining in
the Black Volta Basin in terms of spatial distribution, temporal
changes and severity of degradation could be assessed [16].
Satellite images of both past and present land uses at the basin
could help characterize land use of interest. In the field of
mining, for instance, satellite images have played important roles
in the assessment and monitoring of the impacts that these
mining activities have on the environment [17,18]. Studies
conducted by Telmer and Stapper [19] in Indonesia and Brazil,
Zoheir and Emam [20] in Egypt and Lobo [21] in the
Amazonian waters all used satellite imageries to assess the
environmental implications of mining. In the study by Basommi
[17], analyses of the satellite imageries indicated that vegetation
indices of the Wa West District of Ghana have decreased from
48% to 11% between 1991 and 2014, and the major driver for
this decrease was mining.

This study aims to use remote sensing and GIS techniques to (i)
assess the LULC changes and patterns within the Black Volta
River Basin as well as to (ii) delineate and map current and
potential small-scale mining sites to assist policy makers on
environmental protection interventions within the Basin.

MATERIALS AND METHODS

Study area description

The Black Volta Basin forms part of the North-Western River
System of Ghana, and is geographically located between
latitudes 7° 21′ 0″ and 11° 0′ 0″ North and longitudes 3°
0′ 0″ and 1° 0′ 0″ West (Figure 1). The basin covers an
area of about 18, 384 km constituting 14% of the basin and six

(6) sub-catchments. Administratively, the basin covers 26
districts (out of the 216 District demarcations) in Ghana. The
host of the basin is the Upper West Region and covers a portion
of about 8,370 km (6%) of the basin in Ghana, out of the total
portion of 42% of the Volta basin in West Africa [21,22]. The
basin is characterized by extreme drought conditions due to
climate change [23], which is driven by vegetation cover losses.
The predominant land use of the Black Volta basin is
Agriculture. However, with the resurfacing and intensification
of small scale surface mining, which was mildly done in the 17th
and 18th centuries [24], lots of the agricultural lands are being
lost to mining.

Figure 1: Map of the Black Volta Basin in the Northern part of
Ghana.

Spatial data collection and source

Satellite imageries were obtained from Landsat archives of the
U.S Geological Survey (USGS) and Earth Observation database.
The spatial dataset considered were four different Landsat scene
images of 30 m resolution for the years 2000, 2015 and 2018.
The study employed ground-truthing procedures to validate the
obtained spatial datasets using ground observations obtained
from Google earth imagery. Table 1 presents a summary of the
source and date of acquisition of the images. These imageries
were selected based on their significance to the study in terms of
year differences and availability to download from the internet
which is relatively cheaper. To avoid bias in the image analysis,
the images of the same season (dry season), free from cloud
cover and having the same identifiable features were selected.
The dry season images were to better distinguish the spectral
signatures of the different LULC types in the basin. The selected
images also provided uniform radiometric and spectral
characteristics which reduced seasonal variation in the spectral
reflectance of the land cover data-sets for the three different
years [25]. The images were georeferenced to the coordinate
system of the study area i.e. WGS 84, projection; UTM Zone
30°N.

Table 1: Landsat Images Used in the Analysis of Land-Cover Change; OLI – Operational Landsat Imager.
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Landsat
imagery

Satellite Sensor WRS Path/Row Date of Acquisition Spatial
Resolution

Spectral
Resolution

Source

1

 

Landsat 7 ETM+ 194/054 01-11-2000 30 m 8 bands Earth explorer

195/055

2

 

195/054 1/18/2000

195/053

3

 

Landsat 8 OLI 195/053 1/18/2015 30 m 11 bands

02-11-2018

4

 

195/054 1/18/2015

02-11-2018

5

 

195/055 1/18/2015

01-10-2018

6

 

194/054 1/27/2015

1/19/2018

Data analysis

The acquired Landsat imageries were analysed using ArcGIS
10.5, ENVI 5.3, MS Excel software and Google earth. Figure 2
provides a summary of the analysis procedures for the images.

Figure 2: Flowchart on Methodology.

Image classification

The different LULC of the Black Volta Basin were classified and
mapped from digital Landsat image through the process of
supervised digital image classification as described by Shalaby
and Tateishi [26]. The overall objective of the image
classification procedure was to categorize all image pixels into
LULC classes. The Spectral Angle Mapper (SAM) supervised
classification algorithm in ENVI 5.3 was then used to classify

the images into different LULC based on the spectral signatures
of the features. A stratified random sample of approximately 372
representative training points were collected from the image
subset for facilitating the implementation of the classification of
the LULC from the imagery. The problem of mixed pixels was
addressed through visual interpretation of the imagery [27].
Each spectrum derived by the SAM was treated as a vector in N-
dimensional space, where N is equal to the number of bands in
the image [28-30]. The resulting angle varied between 0° and
90°. The formula for the Spectral Angle Mapper classification
[31,32] is detailed in Figure 3.

Figure 3: (a) Representation of Spectral Angle Mapper classification;
x=n-dimensional data (where n is the number of bands); mi=mean
vector of a class.

� = cos−1 ∑��∑ � 2∑ � 2
Mathematically, SAM classifies the spectral signatures of features
as:
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α=angle formed between reference spectrum and image
spectrum

X=image spectrum

Y=reference spectrum [33]

Classification of the various LULC at the study area was based
on prior knowledge of the study area. The derived major LULC

classes were six (6) namely: Closed Savannah, Open Savannah,
Agriculture, Water bodies, Settlements and Bareland. These
classes were based on the Ghana LULC classification scheme for
visual classification of remote sensing data as described for the
catchment [18] and presented and described in Table 2.

Table 2: Description of Land Use/Cover Types in Catchment of the Black Volta Basin in Ghana.

LULC
Categories

Description

Closed Savannah These include areas that closely resemble a forest cover and reserved areas; gazette forest reserves/protected areas and natural
growths. It has a tree population density of more than 150 trees per hectare.

Open Savannah Sacred groves/planted woodlots/thick shrubs. This class has less tree cover than the close Savannah. It has a tree population
density between 75 and 150 trees per hectare.

Cropland These include areas with agriculture crops.

Water bodies Rivers, pool of water or dams

Settlements Towns, farm house and huts.

Bareland Areas of land with no forest and vegetation cover including mining surfaces.

Assessment of the validity and accuracy of the classification
ascertained the percentage of correctly classified pixels in the
image. The accuracy assessment was performed using 97 points,
based on ground truth data and visual interpretation. The
comparison of reference data and classification results was
carried out statistically using confusion matrices which evaluated
the user’s and the producer’s accuracy. The accuracy of the 97
ground truth points was tested using a stratified random sample.
Table 3 presents the overall accuracy values and the Kappa
Statistics of the classified image. Kappa coefficient (K), gives a
discrete multivariate technique used in accuracy assessment,
thus K>0.80 gives a strong accuracy or agreement of the class
assessed, 0.40-0.80 is average and <0.40 is poor [33].

Table 3: Area Coverage of Land Use/Cover Classes of the Years 2000,
2015 and 2018.

Classes 2000 2015 2018

  Area

 (km2) (%) (km2) (%) (km2) (%)

Closed
Savannah

11086 34 10198 31 9537.1 29

Open
Savannah

16093 49 11504 35 9707.6 30

Agriculture 4773.1 15 6090.7 19 6285.5 19

Water bodies 202 0.6 397 1.2 361.8 1.1

Settlements 364.2 1.1 3146.6 9.6 3488 11

Barelands 151.5 0.5 1333.9 4.1 3289.5 10

Total 32669 100 32669 100 32669 100

The formulae given below were used to determine the kappa
coefficient (K) and overall accuracy respectively;

� = �∑� = 1� ��� −∑� = 1� (��+��+�)�2−∑� = 1� (��+��+�)
Where; � is the total number of observations in the matrix, r is
the number of rows in the matrix, ���is the number of

observations in row i and column i, �+� is the total for row i and��+is the total for column I [34].������� ��������= ����� ������ �� ���������� ������ ��������� ��������������� ������ �� ���������� ����� × 100
Mining sites extraction with rule-based classification

Rule-based classification process groups segmented images into
similar pixel clusters. This process was used to extract mining
sites into segments and further grouped into mining hotspot
and potential mining sites based on similar spectral signatures
from the satellite image. Spectral characteristics were computed
on each band of the input image. The characteristic value for a
particular pixel cluster was computed from an input data band
where the segmentation label image had the same value
implying that all pixels in the same pixel cluster contributed to
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the attribute calculation. The calculations were based on
minimum, maximum, mean, and standard deviation value of
the pixels comprising the region in bands. Spatial characteristics
of the area were computed from the polygon defining the
boundary of the pixel cluster. The computations were based on
area, compactness, and length. And finally, textural
characteristics were also computed on each band of the input
image. Texture characteristic computation is a two-step process
where the first pass applies a square kernel of pre-defined size to
the input image band. The characteristics were calculated for all
pixels in the kernel window and the result is referenced to the
center kernel pixel. Next, the characteristic results were averaged
across each pixel in the pixel cluster to create the characteristic
value for that band ’ s segmentation label, and were finally
characterized into their respective mining and potential mining
sites based on the identified spatial characteristics.

RESULTS AND DISCUSSION

The proportion of derived major LULC classes which
dominated the catchment of the Black Volta Basin (Figures 4-6)
for the three different years (2000, 2015 and 2018) have been
presented in Table 3. The estimations of the generated maps for
the different LULC categories fall within the lower and upper
bound of the true areas at the 95% confidence level.
Quantitative analysis of areal coverage and extent of the LULC
classes indicated that Open Savannah is the major LULC,
followed by Closed Savannah, Agriculture, Settlements,
Barelands and Water bodies, respectively. This pattern remained
same for all the years selected, except that their coverage
changed over the years. Open Savannah consistently decreased
in all the years from 16,093.1 km in 2000 to 9,707.6 km in 2018
Closed Savannah also followed a similar pattern. The other land
uses however has experienced gains in the area coverage, with the
Barelands obtaining a coverage of 3289.5 km in the year 2018 
from a coverage of 1333.9 km in 2015, representing a 6% gain in
an area extent coverage, which was the highest land use gain in a 
three year intervals (Tables 3 and 4).

Figure 4: Land Use Land Cover map of the Black Volta Basin for
the year 2000.

Table 4: Summary of Overall Accuracy and Kappa coefficient (k) based
on 97 ground truth data points at the 95% confidence level.

Year Classified Image Overall
Accuracy (%)

Kappa
Coefficient (k)

2000 Landsat ETM 88.1 0.79

2015 Landsat 8 OLI 90 0.81

2018 Landsat 8 OLI 76.3 0.68

The spatial distribution of the derived LULC classes of the study
area in the year 2000 with Barelands having less coverage.
Closed and open Savannah dispersed across the landscape with
fewer agricultural lands and settlement.

Figure 5 also shows the dispersal of open Savannah across the
landscape in the year 2015. These were frequently associated
with settlements, which were concentrated in the upper portion
of the Basin. Water bodies and Barelands also expanded in area
extent in the central portion. The expansion of the water bodies
in 2015 (from 202 km in 2000 to 397 km in 2015)has  resulted
mainly from the construction of the Bui dam along the Black
Volta River in the year 2009 [17], as shown in the 2015 and 2018
images. Notwithstanding, the presence of the Bui Dam could
not increase the space occupied by water in the year 2018 as the
water coverage declined to 361 km.

In the year 2018, Closed Savannah was mainly in the South-
Western part of the study area, whiles Open Savannah decreased
across the entire landscape (Figure 6). Settlements and
Barelands increased in their area extent while water bodies
decreased and were mostly in the East and Western portion.
Barelands increased in the central portion within the basin
along the main Black Volta River and the increase in barelands
could be attributed to the activities of small scale mining [35].
The increase in barelands and decrease in vegetation occurred
mostly around the Dam site in the 2015 and 2018 satellite
imageries. This results confirms the study by Akrasi [36] which
reports that illegal mining contributes to deforestation within
basins in Ghana. According to the Water Resources
Commission of Ghana, illegal mining is the major challenge
and threat facing the Black Volta Basin with its associated
challenges such as deforestation, siltation of water bodies, lack
of information data covering the site, among others [37].

Obtained results for the areas and proportions of change from
one thematic class to another between the periods explained the
magnitudes and directions of the LULC transitions from the
year 2000 to 2015 and from 2015 to 2018 (Table 5). From the
fifteen (15) years period, an area of 12065 km  representing 37%
of the total area remained unchanged, while Closed Savannah lost
7301 km (22%) to other land uses. Open Savannah lost 8592 km
(26%)  to other  land use, Agriculture
4150 km (13%), and Water Bodies
land uses. Settlements and
(1%) land cover to other land uses. From the transition, Bareland

km (21%) from other land cover 
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Figure 5: Land Use and Land Cover map of the Black Volta Basin
for the year, 2015.

Figure 6: Land Use and Land Cover Distribution Map of the Black
Volta Basin for the Year, 2018.

Table 5: Thematic Change Analysis of Land Use/Cover Transitions to Other Uses for the Eighteen Years Period from 2000 to 2015 and from 2015
to 2018.

Transition from land use Transition to other land uses Area (2000-2015) Area (2015-2018)

km2 (%) km2 (%)

Areas of no change  12065 36.9 14900 45.6

Closed Savannah Open Savannah 2945.6 9 3122.3 9.6

Agriculture 785.3 2.4 387.1 1.2

Water bodies 243 0.7 2.1 0.01

Settlements 100.1 0.3 2.3 0.01

Bareland 3226.8 9.9 3300 10.1

Open Savannah Closed Savannah 2503.3 7.7 1512.8 4.6

Agriculture 2009.4 6.2 2458.9 7.5

Water bodies 93.9 0.3 0.3 0

Settlements 657.7 2 19.9 0.1

Bareland 3327.5 10.2 2460.9 7.5

Agriculture Closed Savannah 1718.8 5.3 2053.5 6.3

Open Savannah 1897.4 5.8 950.77 2.9

Water bodies 3.4 0.01 0.3 0

Settlements 247.5 0.8 54.2 0.2

Bareland 282.6 0.9 198.1 0.6

Water bodies Closed Savannah 124.3 0.4 8.54 0.03

Open Savannah 14.3 0.04 14.31 0.04

Amproche AA, et al.

J Remote Sens GIS, Vol.9 Iss.1 No:1000269 6



Agriculture 10.3 0.03 1.24 0

Settlements 39 0.1 0.4 0

Bareland 0.1 0 13 0.04

Settlements Closed Savannah 14.8 0.1 2.78 0.01

Open Savannah 67.2 0.2 99.25 0.3

Agriculture 143.2 0.4 356.42 1.09

Water bodies 0 0 0.02 0

Bareland 13.4 0.04 13.45 0.04

Bareland Closed Savannah 35.9 0.1 0 0

Open Savannah 78 0.2 423.2 1.3

Agriculture 12.2 0.04 248.6 0.8

Water bodies 1.5 0 0.04 0

Settlements 8.1 0.02 8.6 0.2

Thematic change analysis from the year 2015 to 2018 showed
that an area of 14900 km  (46%) during the three year period
witnessed no change. Closed Savannah lost 21% of its total area
to other land uses. Bareland gained an area of 18% from other
land uses and lost only 2% to other land uses between 2015 and
2018. Comparatively, the loss of other LULC to Barelands
between 2015 and 2018 was more intense and rapid than
between 2000 and 2015. The loss of 2% Bareland to other land
uses indicate that conversion of the degraded lands to other
land uses was a great challenge during the three years period due
to severe environmental pollution from the mining activities
[38]. This is because pollutants from mining operations as well
as intensification of small scale mining hinder reclamation
efforts [7]. In addition, reclamation and restoration efforts
within the Basin could be considered as marginal as reported by
Ghanash [39] who studied the spatial changes in Lake Volta in
Ghana.

Based on the feature base rule extraction, small scale and
potential mining sites were delineated and mapped to show
areas of mining or where mining is likely to take place. Figure 7
shows a map of mining hotspots and potential mining sites
along the Black Volta River in Ghana. Spectral features provide
information about the spectral response of objects, as captured
by the sensors [40]. Results from the feature-based extraction
presented 312  segments of areas with average of 8.4 km of each
segment to be mining sites from 2018  satellite images. Potential
mining sites were found to be 146 segments of areas
average of 3.9 km for each segment. The Feature base
analysis revealed that the small-scale mining make up about  80%
of the Bareland coverage (3289.5 km ) (Table 5) in the 2018 image
This finding confirms the study by Adanu and his team [41] who
reported that small scale mining is a direct

degradation in the Savannahs of Northern Ghana where this study
is situated. And similarities in spatial characteristics of other LULC
LULC indicate that an area of about
being mined. This requires stringent
destruction of the other in the Black Volta Basin.

Figure 7: Locations of small scale mining and potential mining sites
along the Black Volta River.

CONCLUSION

Remote sensing and GIS techniques were used to analyse and
map the LULC dynamics in the Black Volta River Basin in
Ghana with Landsat imageries. Analysis of the change dynamics
within an 18 years period exposed transitions of one LULC to
another. The dominant LULC change pattern observed in the
basin was the conversion of Closed Savannah to Bareland (10%)
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and Open Savannah to Bareland (10%). Bareland which
occupied  total of 151.5 km (0.5%) of the total basin area in 2000
advanced to 3298.1 km  (10%) in 2018. Even though the  Open
Savannah remained the major LULC within the basin, its
coverage continuously declined from the year 2000 to 2018, with
Bareland benefitting continuously in all these years thereby
increasing its coverage. This observation corresponded to the
remarkable degraded patches that were found in the 2015 and
2018 satellite images when small scale mining became intensive
within the basin.

Generally, the direct drivers of deforestation in the Black Volta
River basin have been identified as Fuel wood, agriculture
expansion, small scale mining and infrastructure development.
However, results from the LULC classification and the feature-
based extraction of mining sites showed that small scale mining
was the dominant driver of deforestation in the Black Volta
Basin between the years 2000 and 2018, responsible for about
80% of the Barelands in 2018. The findings indicated that the
mining activities in the basin sharply increased from 2015 to
2018, when Barelands gained 18% area coverage from other
land uses as compared to the 21% gain between 2000 and 2015,
resulting in vegetation and water coverage decline. The study
recommends that the mining commission and Environmental
Protection Agency of Ghana should reinforce the need to
regulate land concession and mining activities within the Basin.
Reclamation and restoration projects should be intensified in
order to manage degraded mine sites.
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