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Abstract
Liver diseases affect millions of people worldwide, especially in developing countries. According to the American 

Liver Foundation, nearly 1 in every 10 Americans suffers from some form of liver disease. Even though, the liver 
has great ability to self-repair, in end-stage liver diseases including fibrosis, cirrhosis, and liver cancer induced by 
viral hepatitis and drugs, the liver regenerative capacity is exhausted. The only successful treatment for chronic 
liver failure is the whole liver transplantation. More recently, some clinical trials using hepatocyte transplantation 
have shown some clinical improvement for metabolic liver diseases and acute liver failure. However, the shortage 
of donor livers remains a life-threatening challenge in liver disease patients. To overcome the scarcity of donor 
livers, hepatocytes generated from embryonic stem cell or induced pluripotent stem cell differentiation cultures could 
provide an unlimited supply of such cells for transplantation. This review provides an updated summary of hepatic 
differentiation protocols published so far, with a characterization of the hepatic cells generated in vitro and their ability 
to regenerate damaged livers in vivo following transplantation in pre-clinical liver deficient mouse models.

Keywords: Hepatic cells; Pluripotent stem cells; Embryonic stem
cells

Introduction
The liver is a remarkable regenerative organ that can restore 

normal mass and function after an injury or partial hepatectomy. After 
mild injury, this ability is supported by the proliferation of fully mature 
hepatocytes, biliary epithelial cells [1] as well as the proliferation and 
help of surrounding cells including stellate cells, endothelial sinusoidal 
cells [2] and macrophages [3]. After severe injury or chronic disorder, 
hepatic progenitors or “oval cells-ductular hepatocytes” are recruited 
to ensure regeneration of the hepatocytic and biliary cell mass [1]. 
However, in end-stage liver diseases, such as fibrosis, cirrhosis, or liver 
cancer induced by viral hepatitis or drugs, the regenerative capacity 
of the liver is exhausted. Consequently, liver diseases are becoming 
one of the most common causes of mortality all over the world, 
especially in developing countries. Until now, liver transplantation 
is the most successful treatment for patient with chronic liver failure 
[4,5]. Alternatively to the whole organ transplantation, hepatocyte 
transplantation has been recently used in clinical trials for the treatment 
of acute failure and life-threatening metabolic liver diseases [6-9]. 
Unfortunately, these two options face the major concern of shortage of 
human donor livers [10].

To overcome the scarcity of donor livers, hepatocytes generated 
from pluripotent stem cell (PSC) differentiation cultures could provide 
an unlimited supply of such cells for transplantation in liver diseases. 
Embryonic Stem Cells (ESC) established from the inner cell mass 
of the blastocyst from early embryos or induced pluripotent stem 
cells (iPSC) from somatic adult cells are pluripotent, and proliferate 
indefinitely in an undifferentiated state in vitro [11,12]. Since the first 
establishment of mouse iPSC from embryonic fibroblasts by Takahashi 
and Yamanaka using viral vectors of Oct3/4, Sox2, Klf4 and c-Myc 
transcription factors, this technology has been widely and successfully 
applied to different species including human, established from different 
terminally differentiated adult cell types using various gene delivery 
systems (Recently discussed by Yamanaka, [13]).

Numerous studies summarized in this manuscript have shown 
that functional hepatocyte-like cells could be derived from ESCs (ESC-
Hep) or induced pluripotent stem cells (iPSC-Hep), which express 

transcription factors and markers for mature hepatocytes as well as 
possess the metabolism and secretion functions both in vitro and in 
vivo (Table 1 and Table 2). Therefore, with their pluripotency and 
self-renewal abilities, ESCs and iPSCs have been proposed as a very 
valuable and unlimited transplantable hepatic cell source for patients 
with end-stage liver diseases [14]. The patient-specific iPSC-Hep have 
the advantage over the ESC-Hep to be immunologically compatible 
with the host for cell therapy approaches, and also to provide in vitro 
liver disease models [15]. As a proof of principle that iPSC can be a 
valuable source of functional hepatic cells, Espejel et al. [16] have 
injected iPSC into the blastocysts of the liver deficient Fah-/- mice, and 
found that by 70 days after birth, 100% of the hepatocytes in adult livers 
derived from the iPSC. These liver-chimeric mice display very healthy 
liver functions, demonstrating the definite ability of iPSC to generate 
functional hepatocytes in vivo avoiding the limitations of current in 
vitro differentiation protocols. Similar experiments were performed by 
Duncan’s group by producing embryos by tetraploid complementation 
from mouse iPSC [17]. All embryos including their livers were derived 
from the iPSC except the extra embryonic tissues that were derived 
from the donor tetraploid embryos. The authors demonstrated that 
fetal mouse livers derived from iPSCs were indistinguishable from wild-
type livers based on histological and gene expression assays, thereby 
supporting the ability of iPSCs to generate functional hepatocytes as 
ESCs do.

This review summarizes the results of various protocols using 
pluripotent stem cells published so far, and compares their efficiency 
in generating functional hepatic cells and their therapeutic relevance 
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References Species Protocol 
specificity

EB
monolayer

Endoderm 
induction

Hepatic 
specification 

and maturation 

In vitro functional 
assays

In vivo 
assay

Inducers Efficiency & 
marker Inducers Efficiency & 

marker

Cytokines only 

Gouon-Evans et 
al. [50] mESC EB Act 55% Foxa2/ckit/

Cxcr4

BMP4, bFGF, 
HGF, Dex, TGFa, 

EGF, VEGF

70% Afp, 60% 
Alb Alb, Glycogen yes

Cai et al. [25] hESC monolayer Act, ITS 80% Foxa2/Sox17 FGF4 BMP2, 
HGF, OSM, Dex 70% Alb Alb, Glycogen, ICG, LDL, 

p450 yes

Hay et al. [26] hESC monolayer Act, Wnt3a Serum, Insulin, 
HGF, OSM up to 90% alb Urea, Gluconeogenesis, 

Afp yes

Agarwal et al. 
[40] hESC monolayer Act, low 

serum 72% Cxcr4 FGF4, HGF 70% yes

Basma et al. 
[115] hESC EB 

monolayer Act, bFGF FGF, DMSO, Dex 26% Asgr-1 Alb, Urea, AAT, p450 yes

Si-Tayeb et al. 
[17] hiPSC monolayer Act 80% BMP4, FGF2, 

HGF 80% Glycogen, LDL, Oil red O 
storage, ICG, Urea yes

Touboul et al. 
[27] hESC monolayer

Act, FGF2, 
BMP4, 

LY294002 
80% CXCR4

FGF10, RA, 
SB431542, 

FGF4, HGF, EGF

50-60% Hnf4α, 
Afp or Ck19, 
35% Asgr-1

Glycogen, p450, ICG, 
LDL yes

Ghodsizadeh et 
al. [127] hiPSC EB Act DMSO, HGF, 

Dex

p450, Alb, Afp, Urea, 
LDL. ICG, Glycogen, Oil 

red O storage 

Mfopou et al. 
[35] hESC monolayer Act, Wnt3a, 

low serum
60-80% Cxcr4/

Foxa2

FGF10, BMP, 
Cyclo, DAPT, 

Exendin-4, IGF1, 
HGF

40-60% Afp Urea, Glycogen

Sullivan et al. 
[34] hiPSC monolayer Act, Wnt3a β-ME, DMSO, 

Insuli, HGF, OSM 70-90% Alb

p450,Fibrinogen, 
Fibronectin, 

Transthyretin, Afp 
secretion

Rashid et al. [31] hiPSC monolayer
Act, FGF2, 

BMP4, 
LY294002 

Act, HGF, OSM 83% Alb Alb, p450, Glycogen, 
LDL

Liu et al. [41] hiPSC monolayer Act, low 
serum 90% Cxcr4 FGF4, HGF, 

OSM, Dex 90% Afp Alb, p450 yes

Li et al. [119] miPSC monolayer Act, ITS FGF4, HGF, 
OSM, Dex

~ 90% Afp, ~ 
90% Alb LDL, Glycogen, p450 yes

Woo et al. [39] hESC/ 
hiPSC EB

LiCL, GSK-
3 inhibitor 

(BIO), 
Wnt3a

35% Foxa2/Sox17 HGF, OSM, Dex ~69% Alb/Ck18 Urea, Alb, Glycogen yes

Pauwelyn et al. 
[37] mESC monolayer Act, Wnt3a, 

low serum 

FGF2, 
BMP4,FGF8b, 
FGF1, FGF4, 

Follistatin

Alb, Urea, Glycogen, 
p450

Sancho-Bru et 
al. [36] miPSC monolayer Act, Wnt3a, 

low serum 70% Foxa2

BMP4,FGF2, 
FGF1, FGF4, 
FGF8, HGF, 

Follistatin

30% Hnf4α Alb, Glycogen, Urea, 
p450

He et al. [113] mESC EB 
monolayer Act 75% Cxcr4/ckit 

(monolayer)

BMP4, bFGF, 
EGF, TGFα, 

VEGF, HGF, Dex

31% Alb 
(monolayer)

Alb, Ammonia, Glycogen, 
LDL, ICG yes

Chen et al. [38] hiPSC monolayer Act, Wnt3a, 
HGF 61-64% OSM, Dex, ITS p450, Urea, LDL, 

Glycogen yes

Genetic modification

Kubo et al. [71] mESC Hex expression EB Act Hex, BMP4 Alb, Transferrin

Inamura et al. 
[69]

hESC / 
hiPSC Hex expression monolayer

Act, bFGF, 
Hex 

expression
46% BMP4, FGF4, 

HGF, OSM, Dex p450

Takayama et 
al. [70]

hESC / 
hiPSC

Sox17 and Hex 
expression monolayer

Act, Sox17 
and Hex 

expression

67% Cxcr4/ckit, 
57% Hex

BMP4, FGF4, 
HGF, OSM, Dex 50% p450 LDL, p450
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Promoter Marks

Enhancer Marks

Active

Active

Inactive

Poised

Insulator

TSS TSS

CBP CBP

CTCF

H3K4me3 H3K27me3 H3K4me1 H3K27Ac

Takayama et 
al. [56]

hESC / 
hiPSC

Sox17 and Hex 
expression monolayer

Act, Sox17 
and Hex 

expression

BMP4, FGF4, 
HGF, OSM, Dex

80% p450, 80% 
Asgr1, c-met 

or Alb

LDL, p450, ICG, 
Glycogen, Metabolism-

mediated toxicity

Epigenetic modification

Hay et al. [79] hESC NaBu monolayer Act, NaBu 70% Cxcr4
DMSO, HGF, 
OSM, 8.3% 

serum

71% Alb, 65% 
Hepar-1

Glycogen, generation 
and secretion of plasma 

proteins, p450

Li et al. [78] mESC NaBu monolayer Act, NaBu 100% Cxcr4, 65% 
ckit, 63% Epcam

BMP4, FGF2, 
HGF, EGF, 
TGFα, Dex

51% Afp, 62% 
Alb ICG, Glycogen yes

Duan et al. [57] hESC NaBu monolayer Act, NaBu 85% Cxcr4, Sox17 
and Foxa2

HGF, BMP2, 
FGF4, BMP4, 
DMSO, serum, 

OSM, Dex

90% Alb ICG, Drug matabolism

Ren et al. [74] mESC NaBu EB NaBu HGF, Dex 50% Glycogen

Scaffold

Fang et al. [100] mESC scaffold-alginate 
microbeads EB FGFα

HGF, OSM, 
Dex, Insulin, 
Transferrin, 
Selenium

 49% Alb, 50% 
Ck18 Alb, Urea

Li et al. [95] mESC
scaffold-

polyacrylamide 
substrate

monolayer DMSO

NaBu, cells 
placed on

polyacrylamide 
substrate

70% functional 
hepatocyte-like

cells
Alb, Urea

Mizumoto et al. 
[97]

mESC, 
monkey 

ESC

scaffold-hollow 
fibers fibers NaBu Ammonia, Alb

Matsumoto et 
al. [93] mESC 3d scaffold-

Polyurethane Foam EB αFGF, HGF, 
OSM, Dex, ITS Glycogen, Ammonia, Alb

Lee et al. [94] mESC
Fibronectin / 

collagen1, collagen 
4 / laminin

monolayer

Farzaneh et al. 
[99] hESC scaffold-ultraweb 

nanofiber monolayer Act 86% Foxa2, 94% 
Sox17, 92% Cxcr4

FGF4, 
HGF,OSM, Dex 66% Afp

Afp, Alb, Urea, LDL, 
Glycogen, ICG, PROD 

activity

Shiraki et al. 
[128]

miPSC/ 
hESC scaffold monolayer Act, bFGF  40% Cxcr4 / E-cad 

(mouse)

RA, Act, bFGF, 
ITS-DMEM, Dex, 
HGF, DMSO, NA, 
AsP, Akt inhibitor 

treated cells

45% Alb

Miki et al. [59] hESC

scaffold-hydrophilic 
hollow

fiber microfiltration 
membranes

monolayer Act FGF4, BMP2, 
HGF, OSM, Dex 30% Asgpr Alb, Ammonia, Glycogen, 

p450

Haque et al. 
[101] mESC E-cadherin 

substratum monolayer Act, bFGF ~ 55% HGF, OSM, Dex 92% Alb Glycogen

Amimoto et al. 
[96]

mESC / 
miPSC

cellulose triacetate 
hollow fibers fibers NaBu, Dex, 

OSM, ITS Ammonium, Alb

Co-culture or conditional medium

Cho et al. [84] mESC Co-culture with rat 
hepatocytes monolayer Urea

Zhao et al. [82]
hESC, 
primate 

ESC

Co-culture with STO 
feeder cells monolayer Act FGF4, BMP2, 

HGF, OSM, Dex 90% Afp Alb, Glycogen, ICG, LDL, 
PROD activity

Fukumitsu et 
al. [88] mESC

Co-culture with 
murine fetal liver 
stromal cell line

monolayer
Trans 

retinoic 
acid

HGF, bFGF, 
Nicotinamide, 
l-ascorbic acid 

phosphate, ITS, 
Dex, OSM

Glycogen, Ammonia, Alb

Huang et al. [83] primate 
ESC

Co-culture with 
human ESC-derived
fibroblast-like cells

monolayer
Haptoglobin, Urea, Alb, 
EROD, Glycogen, HBV 

infection

Tuleuova et al. 
[89]

mESC, 
hESC

Culture with protein 
microarray matrices monolayer

Ishii et al. [87] mESC, 
hESC

Co-culture with 
murine fetal liver 
stromal cells and 

mesenchymal cells

monolayer Act HGF Glycogen, Ammonia, 
p450
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in pre-clinical animal models of liver disease. The use of PSC-Hep for 
drug screening and liver disease models will not be discussed here.

Hepatic Cell Generation from Pluripotent Stem Cells 
(PSC-Hep): The Embryonic Stem Cell-derived Hepatic 
Cells (ESC-Hep) and the Induced Pluripotent Stem 
Cell-derived Hepatic Cells (iPSC-Hep)

In the last decade, numerous protocols have been established to 
generate ESC-Hep and iPSC-Hep. The most efficient and reproducible 
hepatic differentiation approaches are those that recapitulate in ESC 
and iPSC cultures the appropriate signalling pathways uncovered 
in embryo studies, thereby subsequently mimicking endoderm 
development, endoderm hepatic specification followed by hepatic cell 
maturation.

Cytokine-based hepatic differentiation protocols

The use of a specific cocktail of cytokines in a serum-free media 
became a pre-requisite to control in a timed manner the successive 
steps of liver organogenesis in differentiation cultures. Studies in 
Xenopus have demonstrated that different concentrations of the TGF 
β (Transforming growth factor beta) family member, activin-A used 
as a surrogate for nodal, induce mesodermal and endodermal fates in 
animal cap cells in culture [18-23]. Consequently, since its first use in 
the mouse ESC cultures [24], high doses of Activin-A are now widely 
utilized for endoderm induction in ESC and iPSC cultures from human 
and mouse lines [25-31]. Associated with Activin-A, activation of other 
pathways has also been shown to promote endoderm development 
including FGF (Fibroblast growth factor) and Wnt signalings 
[26,27,29,32-39]. In some protocols, low doses of serum have been 
reported to be necessary for Activin-A to induce an efficient endoderm 
program [30,40,41]. The presence of PI3kinase inhibitor in the serum 
was suspected to be responsible for promoting Activin-A-induced 
endoderm development [42].

Originally, most of the ESC differentiations were performed using 
embryoid bodies (EBs), the three-dimensional structure that was meant 
to mimic the blastocyst and epiblast architecture [43,44]. Few years 
ago, D’Amour et al. [30] demonstrated efficient endoderm induction 
from monolayers of hESC that was subsequently reproduced by many 
groups. The monolayer induction is thought to better synchronize the 
endodermal cell fate by exposing the cells evenly to the endodermal 
inducer, Activin-A.

Regardless of the induction system used (EBs or monolayers), 
heterogeneity of endoderm cultures remains inherent to pluripotent 

stem cell differentiation cultures. To overcome this issue, Activin-A-
induced endoderm generated from pluripotent stem cell differentiation 
cultures have been enriched using the cell surface receptors CXCR4 
[45], cKit [46], ENDM-1 [47], E-cadherin and PDGF receptor-α or 
through the selection of reporter molecules targeted to the Brachyury, 
Foxa2, Foxa3, goosecoid, sox17 and Hex loci [30,32,33,47-50]. 
Interestingly, endoderm induction appears to be always more effective 
in human cultures than in murine cultures, with the human endoderm 
fraction reaching ~90% of the total population versus ~60% at the 
most in murine cultures. The discrepancy of efficiency between both 
species may be due to the quicker endoderm induction in the mouse 
embryo compared to the human embryo, thereby restricting the time 
flexibility to modulate signaling to generate homogenous endoderm 
cell population in mPSC differentiation cultures. Overall, pluripotent 
stem cells have been successfully and reproducibly differentiated in 
serum-free media to endoderm with the help of Activin-A (Table 1).

To recapitulate the liver specification signaling based on 
developmental studies in the mouse and the Xenopus models [51-
55], many groups including ours have used the combination of 
BMPs (BMP2, BMP4) and FGFs (FGF1, FGF2, FGF4, FGF8, FGF10) 
to specify endoderm cells generated in pluripotent stem cell cultures 
[17,25,27,28,35,36,40,50,56-59]. Shh inhibition found in Xenopus to 
be required for hepatic and pancreas fate decision, has been shown to 
improve the generation of mESC-Hep with the use of cyclopamine [35]. 
In the same study, inhibition of Notch by DAPT also helped mESC-
Hep development supposedly by favoring hepatocyte fate over the 
cholangiocyte fate [35]. Hepatocyte growth factor (HGF) is known to 
promote hepatoblast proliferation, migration and survival through its 
tyrosine kinase receptor c-Met [60,61], and is therefore always used in 
PSC hepatic differentiation protocols. Following hepatic specification, 
combination of FGF10, retinoic acid and inhibition of Activin-A in 
the presence of SB431542 has been also reported to improve hepatic 
endoderm maturation [27]. Maturation of hepatoblasts in the mouse 
fetal liver requires Oncostatin M (OSM) secreted by hematopoietic 
cells [62]. Consequently, OSM has been also widely used in PSC hepatic 
cultures (Table 1).

Genetic modification-based hepatic differentiation protocols

The transcriptional machinery of the specified hepatic endoderm 
is very well documented including the homeodomain protein Mixer/
Mix.3 [63], the Sry-related HMG-box transcription factor Sox17 
[64], the zinc-finger transcription factors Gata5, Gata4 and Gata6 
[65,66], Hepatocyte nuclear factors HNF4α [67] and Hex [68]. Some 
studies have used this information to improve efficiency of hPSC-hep 

Table 1: Summary of PSC-Hep differentiation protocols in serum free media. 

PSC: pluripotent stem cell; Act: Activin A; NaBu: sodium butyrate; Afp: afp secretion; Alb: albumin secretion; LDL: low-density lipoprotein uptake; ICG: indocyanine green 
uptake; p450: cytochrome p450 activity; ammonia: ammonia metabolism; Urea: urea secretion and production; glycogen: glycogen storage (PAS staining); ASGPR: 
asiaglycoprotein receptor 1; ITS: Insulin, transferin, selenium.

Yu et al. [81] hESC
Co-culture with 

mitomycin treated 
3T3-J2 feeder cells

EB Act

Nishiofuku et 
al. [90]

mESC, 
ratESC

Co-culture with rat 
hepatic stellate cells EB

Han et al. [86] mESC Co-culture with D4T 
endothelial cells

EB 
monolayer Act ~ 50% Foxa2/

Foxa3

EGF, TGFα, Dex, 
VEGF, bFGF, 
HGF, BMP4

60% Afp, Alb

Pal et al. [80] hESC Conditioned medium 
from HepG2 cells EB bFGF Glycogen, Afp, SGOT, 

SGPT, GGT
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Table 2: Summary of in vivo functions of PSC-Hep in mice. 

PSC: pluripotent stem cell, IV: intra venous injection; IS: intra splenic injection; IH: intra hepatic injection; IP: intra peritoneal injection; hESC-MEC: hESC meso-endodermal 
cells. Detection in serum of Alb (Albumin), AAT (alpha 1 anti-trypsin), ALT (alanine aminotransferase), AST (aspartate aminotransferase), bilirubin, AP (Alkaline phosphatase) 
and CYP2E1 activity.

Reference Animal model Type and number of 
transplanted cells

Percentage of 
repopulation Improved liver functions Mouse survival after 

transplantation

Teratani et al. [118]
129X1/SvJ and 

BALB/c nude mice                                       
(DMN, cirrhosis)

mESC-Hep                                                 
5 e6/mouse (IV) ND

suppression of onset of fibrosis/cirrhosis
plasma fibrinogen

Alb
~40% after 12 weeks

Heo et al. [116] MUP-uPA/SCID + CCL4 mESC-Hep                                                  
1 e6/mouse (IS)

1.94% +/- 5.81 after 82 
days ND ND

Gouon-Evans et al. 
[50]

Dpp4-/-, Rag2-/- (CCl4 
and retrorsine) and   

Fah-/-

mESC-Hep                                                 
0.25 - 1.5 e6/mouse 

(IS)

scattered endothelial and 
hepatocitic clusters  ND ND

Agarwal et al. [40]
NOD/SCID

(CCl4 and retrorsine,
acute liver failure)

hESC-Hep
1 e6/mouse (PV)

sporadic hepatocytic 
clusters ND ND

Hay et al. [26] NOD/SCID hESC-Hep                                                  
1 e6/mouse (IS)

clusters of CK18/CK19 
and

Alb cells after 3 days in 
the spleen

Alb ND

Cai et al. [25] SCID (CCl4 acute liver 
failure)

hESC-Hep                                                  
1 e6/mouse (IS)

scattered AAT human 
cells in livers ND ND

 Duan  et al. [121] NOD/SCID hESC-Hep                                                 
0.5 e6/site (IH) ND Alb ND

Haridass et al. [114] Alb uPA, Rag2-/-, 
IL2Rg-/- 

ES-Hep                                                     
0.5-1 e6/mouse (IS)

few cells scattered                                            
and teratoma formation ND ND

Basma et al. [115]
NOD/SCID (retrorsine 

and 50% hepatectomy)
Alb-uPA SCID

hES-Hep                                                     
0.1-0.2 e6/mouse (IS)                            

ASGPR+ cells

few clusters of albumin+ 
cells after 28 days Alb, AAT ND

Li et al. [78] Fah-/-
mES-Hep                                                    

1 e6/mouse (IS)                                          
ckit-Epcam+ day13 

24%+-15% ND at least 10 weeks

Touboul et al. [27] Alb uPA, Rag2-/-, 
IL2Rg-/- 

hES-Hep                                                    
0.5 e6/mouse  (IH)

small and large clusters 
throughout the liver 8 
weeks after injection.

Alb, AAT ND

Si-Tayeb et al. [17] Fah-/- hiPSC-Hep                                                 
0.3 e6/mouse (IH) ND ND ND

Huang et al. [102] Fah-/-, Rag2-/- m iHep from fibroblasts                            
0.833 e6/mouse (IS) 5%-80% ALT, AST, Tyrosine, Phenylalanine, 

Bilirubin 
5/12 mice survived 

after 8 weeks
Sekiya and Susuki 

[103] Fah-/- m iHep from fibroblasts                              
(IS) large clusters Bilirubin, ALT, ALP, Alb 40% after 10 weeks

 Li et al. [119] BALB/c nude                                     
(TAA, liver fibrosis) 

m iPSC-Hep                                              
~0.25 e6/mouse (IV)

scattered cells in the liver 
after 24 hours

ALT, AST, Bilirubin, Ammonia, 
decreased ROS levels and necrosis ~80% after 14 days 

Chang et al. [117] BALBc nude                                       
(CCl4, acute liver failure)

m iPSC-Hep                                               
0.2-5 e6/mouse (IP)

Necrosis : 70% control, 
20% transplant ALT, AST, Bilirubin 90% after 14 days

 Woo et al. [39] BALBc nude                                        
(CCl4, acute liver failure)

hES-Hep / hiPSC-Hep                                   
2 e6/mouse (IS)                                       

ICG+ cells

~20% at day 3 versus 
~10% after 35 days Alb ND

Chen et al. [38] NOD/SCID
(CCl4, acute liver failure) 

hiPS -Hep                                                   
(IS) ND

rescue of hepatic necrosis; glutamyl 
oxaloacetic aminotransferase; glutamyl 

pyruvic aminotransferase;
Bilirubin; lactate dehydrogenase; 

HepPar1; Alb

5/7 (71%) after 21 days 

Liu et al. [41] NSG ( DMN, cirrhosis) iPSC-Hep                                                   
0.1-2 e6/mouse (IV) 2~17% Alb, CYP2E1 90% after 8 weeks

 He et al. [113] Fah-/- mESC-Hep                                                 
(IS)

0.001%-12.5%                    
after 8-10 weeks

ALT, AST, Bilirubin, Alb, 
succinylacetone, tyrosine and 

phenylalanine  secretion, 
30% of wt FAH activity in recipients

8/20 survived after 2nd 
transplantation

Bandi et al. [120]
CD17.NOD/SCID                                   

(Rif + Phen + MCT, acute 
liver failure)

hESC-hep                                                  
4-6 e6/mouse                                                

(IP with microcarriers)

Detection of transplanted 
cells in the peritoneal 

cavity

Endogeneous hepatocytes proliferation 
Phenobarbital metabolism

Ammonium chloride

11/11 after 14 days 
(MCT 125, mild injury)

38% after 2 weeks 
(MCT 160, strong 

injury)
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generation by overexpression in a timely manner either Sox17, Hex 
and HNF4α [56,69,70]. Sox17 and Hex were transduced into the hESCs 
and hiPSCs differentiation cultures at day 3 and day 6 of differentiation 
respectively to induce hepatic commitment. Adenovirus vector-
mediated overexpression of HNF4α in later cultures could further 
promote the hepatic maturation of the hPSC-Hep. Similarly, using 
a Hex inducible mESC line, Kubo et al. [71], have shown that forced 
expression of Hex in endoderm cells dramatically improved mESC-
Hep hepatic specification and maturation synergistically with BMP-4.

Epigenetic modification-based hepatic differentiation 
protocols

In addition to genetic modulation, epigenetic modifications have 
been shown to improve hepatic differentiation protocols. For instance, 
sodium butyrate, a well-known specific HDACs inhibitor was used 
in ESCs and iPSC differentiation a long time ago [72]. In addition to 
decreasing cell death and promoting viability of ESCs, sodium butyrate 
has been reported to induce ESC differentiation toward different cell 
lineages including the neural cells [73], cardiac cells [29], pancreatic 
cells [73,74], and hepatic cells [74-79]. Ren et al. [74], showed 
specifically that the cell fate induced by sodium butyrate depends 
on the concentration and time of the treatment. For instance, a low 
concentration of sodium butyrate with shorter exposure time induce 
generation of pancreatic progenitors over the hepatic progenitors, 
while higher concentrations with longer exposure favor the hepatic 
lineage fate 

Role of supportive cells and matrices in hepatic differentiation 
protocols

To recapitulate the inductive signals established in liver 
embryogenesis in PSC hepatic differentiation cultures, some studies 
have proposed to combine the use of cytokines or chemicals with co-
cultures with supportive cells or cultures on specific matrices found 
in the developing liver. For instance, Pal et al. used conditioned 
media derived from the HepG2 liver carcinoma cell line during hESC 
differentiation, and obtained a high yield population of mature hESC-
Hep that served as a functional in vitro hepatic cell model to study the 
effects of ethanol toxicity [80]. Fibroblast cells from different sources 
(STO feeder cells, 3T3 cells or ESC-derived fibroblast like cells) were 
utilized in several studies as supportive cells to improve hepatic 
differentiation of hESC as well as primate ESC and iPSC [81-83]. 
Huang et al. identified FGF2 and Activin A, as two factors secreted 
by the ESC-derived fibroblast important for endoderm induction. 
Additional source of hepatocytes harvested from rats in co-culture with 
mESC-derived cell cultures have been reported to improve mESC-Hep 
maturation [84]. Endothelial cells, mesenchymal cells, kupffer cells 
and stellate cells constitute the microenvironment of the developing 
hepatocytes, and were also reported to provide support for PSC-hep 
specification and maturation [85-90]. Our lab used an immortalized 
endothelial cell line derived from mESC cultures to improve mESC-
Hep generation [86]. We demonstrated that endothelial cells are 
not only required for hepatic endoderm outgrowth as demonstrated 
previously by Zaret’s group [91], but are also essential earlier to induce 
hepatic specification of endoderm through dual repression of Wnt and 
Notch signaling in endoderm cells [86]. This was one example of few 
studies showing that PSC differentiation cultures are not only a source 
of hepatic cells for future cell therapy, but also an in vitro culture system 
to understand liver organogenesis as much as embryology studies in 
animal models help improving PSC differentiation protocols.

Another alternative to produce better PSC-Hep in vitro is to use 
specific matrices or scaffold that would mimic the proper architecture 
of the in vivo microenvironment of the developing liver. Using an 
extracellular matrix microarray platform for the differentiation of 
mESC toward an early hepatic fate, Flaim et al. [92] have established 
combinations of extracellular matrices that synergistically impact both 
hepatic ESC differentiation and mESC-Hep hepatic functions. Specific 
studies have identified a wide variety of artificial materials and natural 
matrices to improve both human and mouse PSC-Hep generation 
such as collagen type I, vitrogen, matrigel, polyurethane foam [93], 
fibronectin, laminin [94], polyacrylamide [95], hollow fibers [59,96,97], 
poly-l-lactic acid plus polyglycolic acid [98], ultraweb nanofibers [99], 
alginate microbeads [100] and also recombinant E-cadherin substratum 
[101]. Compared to the 2D culture, the 3D scaffold system provides the 
physical support to enable spontaneous spheroid formation and mass 
cultivation of PSC-derived cells. With the support of the scaffold and 
cytokines, hepatocyte-like cells could be generated with the purity of 
up to 98% without cell isolation [101].

Hepatic cell generation from direct reprogramming of 
fibroblasts

Since the discovery of iPSC by Yamanaka in 2006, many groups 
have successfully reprogramed somatic cells directly to specialized 
cells bypassing the pluripotent stem cell stage. Last year, two studies 
have shown that fibroblasts can be reprogrammed directly to hepatic 
cells with the help of several transcription factors essential for 
liver development. Huang et al. [102] have demonstrated that the 
transduction of mouse fibroblasts from p19arf-/- mice with GATA4, 
FoxA3 and Hnf1 leads to the generation of hepatic cells that express 
hepatic markers, and restore liver functions following transplantation 
in the Fah liver deficient deficient mouse model. The second study 
from Sekiya et al. [103] used a different set of transcription factors, 
HNF4α, FoxA1 and FoxA2 or FoxA3 to reprogram mouse fibroblasts 
into hepatic cells, and demonstrated the in vivo ability of the cells to 
improve 40% of survival 10 weeks after cell transplantation in Fah 
deficient mice [103].

In vitro characterization of the PSC-Hep
To characterize the PSC-Hep in vitro, most of the above studies 

analyzed hepatic markers that are expressed in the early (alpha-
fetoprotein, transthyretin) and later stages of liver maturation 
(albumin, cytokeratin 19 (CK19), CK7, CK18, cytochrome p450 
enzymes (CyP), α1-antitrypsin (ATT), tyrosine aminotransferase 
(TAT), γ-glutamyltranspeptidase (GGT), glutathione S transferase 
(GST), tryptophan 2,3-dioxygenase (TDO), asialoglycoprotein 
receptor 1 (ASGPR), phosphoenolpyruvate carboxykinase (PPC), 
glucose-6-phosphatase (G6P), hepar-1 apolipoprotein F, fibrinogen, 
fibronectin, constitutive androstane receptor (Table 1). In addition 
to marker expression analyses supporting the differentiation stages, 
functional in vitro assays are also performed and usually compared to 
those from primary hepatocytes. Since liver exerts functions related 
to metabolism, protein synthesis, urea production and detoxification, 
the functional assays usually include albumin secretion, glycogen 
storage, low-density lipoprotein uptake, indocyanine green uptake and 
release, cytochrome P450 enzyme metabolism, urea production and 
metabolism-mediated toxicity. Results of these in vitro assays for each 
study are summarized in Table 1.

Pre-clinical In vivo Relevance of PSC-Hep
The definitive functional assay for PSC-Hep is their ability to 
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regenerate diseased livers from animal models and ultimately to 
increase the animal survival rate. Chronologic studies of repopulation 
assays (summarized in Table 2) clearly indicate an improvement over 
the last years of pre-clinical relevance of the PSC-Hep. The differences 
between pre-clinical outcomes are the result of the combination of the 
intrinsic functionality of the PSC-Hep generated in vitro discussed 
above and the liver-deficiency animals used for each study.

To study the liver regenerative ability of the PSC-Hep in vivo, cells 
are transplanted into animal models in which the liver is injured to 
provide space for the transplanted cells and a proliferative stimulus for 
the regeneration to occur. Some of these models provide specific growth 
advantage for the transplanted cells. The liver injury models used in 
these studies include two genetic models, some chemical models and 
partial hepatectomy reviewed recently by Shafritz and Oertel [104].

The first genetic mouse model was established in 1991 by Sandgren 
et al. [105] by overexpressing the transgene urokinase type plasminogen 
activator under the albumin promoter (Alb-uPA mice). In this mouse 
model, uPA is expressed strictly in hepatocytes and appeared to be 
highly cytotoxic for these cells. Most of the uPA is secreted in serum, 
however a small amount remains in the liver resulting to intense liver 
damage. Consequently, most of the newborns die from hemorrhaging 
between 4 and 6 week-of-age, the rest of the newborns survive from 
extensive liver toxicity due to clonal growth of revertant hepatocytes 
that lost the transgene. Rhim et al. have subsequently tested the ability 
of the Alb-uPA mice to host transplanted normal hepatocytes [106]. 
They demonstrated that Alb-uPA mice provide a growth advantage 
to transplanted cells over the dying endogenous uPA expressing 
hepatocytes, and hence offer a permissive environment for survival, 
expansion and function of transplanted hepatocytes. Alternatively, 
Sandgren’s group has developed another transgenic mouse model 
expressing uPA under the major urinary protein (MUP) promoter in 
which uPA expression was initiated in hepatocytes only from 2 to 4 
week-of-age, thereby preventing the uPA-mediated neonatal lethality 
[107].

The second genetic mouse model, the fumarylacetoacetate 
hydrolase deficient mice (Fah-/-mice), was created by Grompe et 
al. [108] in 1995 to recapitulate the hereditary tyrosinemia type 1 
(HT1) in human characterized by mutation in the Fah gene. The 
lack of the Fah enzyme, which is involved in the tyrosine catabolism 
pathway, induces an accumulation in hepatocytes of toxic metabolites 
including fumarylacetoacetate (FAA), leading to chronic liver damage. 
Accumulation of FAA can be prevented by adding in drinking water 
the chemical agent NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-
cyclohexanedione) that is used in clinical settings to treat HT1 patients 
[108]. NTBC stops the tyrosine catabolism pathway upstream of the 
Fah enzyme, blocking the accumulation of FAA, thus preventing liver 
cell toxicity.

Therefore, the liver injury in Fah deficient mice can be easily 
controlled by the NTBC intake and removal. Overturf et al. [109] 
have shown that transplanted wild type hepatocytes have a growth 
advantage, and hence are able to repopulate mutant livers and restore 
liver functions. More recently, both the Fah deficient mice and Alb-
uPA transgenic mice have been crossed to the immunosuppressed 
mouse models Rag2-/-, Il2Rγ-/- mice or the SCID mice (for Alb-
uPA) to allow liver repopulation by human hepatocytes and mouse 
hepatocytes harboring any genetic background [110-112].

These 2 genetic deficient liver mouse models provide not only 
liver injury but also selective growth advantage for transplanted 

human and mouse hepatocytes generated from pluripotent stem cells 
(27,50,78,113-116). Among those studies, Li et al. [78] demonstrated 
extensive liver repopulation capacity (24% +/- 15%) of purified mESC-
Hep based on EpCAM expression (and negative for cKit) 10 weeks 
following transplantation in Fah-/- mice. Percentage of repopulation 
from PSC-Hep varied from 1.94%+/- 5.81 in MUP-uPA treated with 
CCl4 at 82 days [116], or 0.001%-12.5% in Fah-/- mice at 8 weeks [113], 
to detection of few clusters of transplanted cells in either Fah deficient 
mouse model [50] or uPA transgenic mouse model [27,114,115]. 
Two interesting studies describing the direct conversion of mouse 
fibroblasts by transducing a specific set of hepatic transcription factors 
demonstrated a remarkable ability of these cells to repair the damaged 
livers from Fah-/- mice [102,103].

The chemical liver injuries used to test the in vivo functionality 
of PSC-Hep include the carbon tetrachloride (CCl4)-induced hepatic 
centrilobular necrosis (38,39,117), the dimethylnitrosamine (DMN)-
induced chronic cirrhotic injury [41,118] and the thioacetamide 
(TAA)-induced hepatic fibrosis [119]. The acute liver injury induced 
by CCl4 has recently been shown to be a successful mouse model to 
allow high liver repopulation ability of mouse [117] and human [38,39] 
PSC-Hep. Transplantation of miPSC-Hep or hPSC-Hep in the CCl4-
treated BALBc-nude mice reduced hepatic necrotic area, oxidative 
stress, and improved hepatic functions and the survival rate [117], and 
in a different study, regenerate about 10% of the liver mass 35 days 
after transplantation [39]. Similarly, Chen et al. [38] have successfully 
rescued the acute liver injury induced by CCl4 in NOD/SCID mice 
following transplantation of hiPSC-Hep. Another acute liver injury was 
developed by Bandi et al. [120] using a combination of the hepatotoxic 
drugs rifampicin and phenytoin that inhibit host hepatocyte 
proliferation followed by injection of monocrotaline, a pyrrolizidine 
alkaloid agent which induces sinusoidal endothelial cell injury to 
facilitate transplanted cell engraftment. This regiment produced 50-
70% liver necrosis in NOD-SCID mice with 90-100% mortality over 
2 weeks. Transplantation of hESC-derived meso-endodermal cells 
(hESC-MEC) intraperitoneally in this acute liver failure mouse model 
rescued the survival rate 2 weeks following surgery although further 
hepatic maturation of hESC-MEC was not successful [120].

Another variable parameter to consider when investigating the 
regenerative ability of PSC-Hep is the mode of cell delivery. Most of 
the published studies use the intra-splenic (IS) route to deliver PSC-
Hep to the liver through the portal vein. These studies showed variable 
repopulation abilities of the transplanted cells, and in some cases 
partial rescue of the liver damage (38,39,50,78,113-116). Injections of 
cells through the portal vein deliver cells directly to the liver bypassing 
the spleen. Agarwal et al. [40] transplanted hESC-Hep through the 
portal vein of the CCl4 treated NOD/SCID, and showed some human 
cells integrated into the host liver. Cells can also be directly and locally 
targeted to the liver parenchyma or under the liver capsule. This mode 
of delivery is appropriate to newborn injection as the liver is visible 
through the skin. Few studies showed liver function improvement 
using this route [17,27,121]. The least invasive routes of delivery are 
intra-peritoneal (IP) and intra-venous (IV) injections.

Mostly, IP transplanted cells remain in the intra-peritoneal cavity 
[120] where they can still exert hepatic functions, even though one 
study has shown integration of the IP transplanted cells into the liver 
[117]. In the first study, cells were delivered IP with microcarriers that 
eventually revascularized in the peritoneal cavity and secreted proteins 
in blood circulation improving hepatic functions, and rescuing 100% 
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of animal survival 2 weeks after a mild injury and 38% after a stronger 
injury [120]. IV injections of PSC-Hep allowed integration of cells 
into the host livers and have shown some liver function improvement 
[41,118,119].

Conclusions
In summary, the liver field of pluripotent stem cells has 

tremendously advanced the last decade with the generation in vitro of 
cells harboring hepatocytic functions and capable of improving some 
liver functions in vivo of mouse models with liver deficiency. Even 
though the hepatic differentiation protocols are presently very efficient 
and reproducible among different groups, the variability of hepatic 
differentiation efficiency between PSC lines remains unclear.

A recent publication from Yamanaka’s group has shown that the 
variation in hepatic differentiation efficiency of hiPSCs was mostly 
due to donor differences [122] rather than the tissue from which the 
iPSCs were derived as indicated by other studies using mouse [123-
125] or human [126] tissues, or the iPSC derivation methods. This 
finding may impact our current vision of personalized medicine using 
hiPSC-Hep for liver functions rescue. In addition to differences in the 
propensity for hepatic differentiation among PSC lines, the consistency 
of the regenerative ability of PSC-Hep is still a challenge. Before the 
use of the PSC-Hep in clinical settings, many issues need to be resolved 
including namely the purity of the PSC-Hep cultures, the risk of 
teratoma development and the choice of delivery mode based on the 
liver damage. In addition to these technical limitations, there is a need 
to understand the interactions between the transplanted cells and the 
damaged microenvironment to improve PSC-Hep integration into 
the liver and their proliferation. One can suspect that some of these 
crosstalks are universal to all liver injuries, while some are specific to 
particular damages. Consequently, it is conceivable that understanding 
the response of the damaged microenvironment will help the generation 
of customized PSC-Hep to specific liver injuries. 
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