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As a popular measure of association, the Pearson’s correlation 
coefficient has been frequently used in omics data analysis e.g. in 
feature selection process during prediction model building using 
high dimensional gene expression data [1] and proteomics data 
[2]. However, Pearson’s correlation coefficient captures only linear 
relationships which greatly limit its use in situations of nonlinear 
association. Statistical modeling for dealing with nonlinear patterns 
can be complicated [3] and requires intensive computation in case of 
high dimensional data such as microarray data or genome sequence 
data. In the analysis of omics data, high dimension means that there 
can be diverse patterns of dependence not limited to linearity. In this 
situation, the generalized measures of association more adequate than 
the Pearson’s correlation and capable of capturing both linear and 
nonlinear correlations are needed. Recently, generalized correlation 
coefficients have been frequently discussed [4] and their application to 
large scale genomic data illustrated through microarray gene expression 
time-course analysis [5].     

Currently, the generalized measures of dependency mainly refer 
to the concepts of rank correlation and information theory based 
measures. The rank based correlation is well represented by Hoeffding’s 
D [6] which measures the difference between the joint ranks of two 
random variables (X, Y) and the product of their marginal ranks. The 
information theory based approaches include mutual information (MI) 
[7] and maximal information coefficient (MIC) [5,8]. By providing the
amount of information one variable reveals about another, MI measures 
the dependency between two variables of any type.  In the middle of last 
century, Linfoot [9] proposed the information coefficient of correlation 
which is a monotone increasing function of mutual information with
attractive properties for measuring dependency. Using binning as a
means to apply MI on continuous random variables, the MIC [5] can
be seen as a continuous variable counterpart to MI. MIC searches over
various possible grids through binning to achieve maximal mutual
information between two variables. A general overview of the main
methods used to identify dependency between random variables has
been provided and applications illustrated using microarray gene
expression data [4].

In a very recent paper published in Scientific Reports [2], we 
reported a signature of 82 plasma proteins that predicted the increase 
of inflammation marker C-reactive protein from index day to next-day 
using proteome analysis in 91 incident kidney transplant recipients.  
C-reactive protein is an acute-phase-reactant and is an early nonspecific 
indicator of infectious or inflammatory situations. Although important, 
current methods cannot determine the day-to-day development of
C-reactive protein at the time of its measurement in plasma. The paper 
showed that it is possible to define a plasma protein signature to predict 
the increase of next-day C-reactive protein. The predictive proteins
were selected from 359 quantified plasma proteins by correlating
plasma protein concentrations of each protein with changes of next-
day C-reactive protein using the Pearson’s correlation coefficient.
Feature selection was done by recursively shrinking correlation smaller 
than a predefined threshold to zero and using the remaining subset of
proteins for prediction model building using support vector machines.
Leave-one-out cross validation estimated a sensitivity of 81%, and a
specificity of 69%, and an overall accuracy of 77%.

Taking the same dataset, we explored prognostic protein 
signature selection using Hoeffding’s measure of dependence, which 
is a nonparametric measure of association that detects more general 
departures from independence [6]. Following the same procedure as in 
Tepel et al. [2] but replacing Pearson’s correlation in the feature selection 
step with Hoeffding’s D measure, a 62-protein signature was selected 
for prediction model building. Our new list of proteins performed 
about equally well as the 82-protein signature with a sensitivity of 79%, 
a specificity of 70% and a mean accuracy of 76%. Noticeably, among the 
62 proteins selected, 48 overlapped with the published 82-plex signature 
with 14 new proteins. Our novel application of generalized association 
measure in feature selection in prediction analysis of high dimensional 
data shows that, by relaxing the linear relationship assumption, the 
non-traditional method of association could help with more efficient 
feature selection while maintaining high prediction accuracy. 

The capability of handling both linear and nonlinear associations 
promotes the use of the generalized correlation measures in analysing 
massive and complex omics data with aim at ultimately disentangling 
and interpreting the complex patterns of relationships between omics 
data concepts in an integrative manner. Taking the relationship 
between gene expression and DNA methylation for example, multiple 
studies have been conducted in analysis their correlation using 
Spearman’s correlation coefficient and reported predominantly low or 
even poor correlation patterns [10,11]. Here, we think that the more 
adequate generalized correlation methods should help to characterize 
the biological relationship more adequately and precisely. Moreover, 
the generalized correlation can also be a useful tool for investigating the 
functional dependency between sets of attributes in omics data.         

Recently, De Siqueira Santos et al. [4] reviewed and evaluated the 
main methods for identifying dependency between random variables 
and provided a suggestive list of methods for use in different types 
of datasets. The main methods can be easily implemented using free 
R packages such as matie (https://cran.r-project.org/web/packages/
matie/), FNN (https://cran.r-project.org/web/packages/FNN/), 
minerva (https://cran.r-project.org/web/packages/minerva), and 
Hmisc (https://cran.r-project.org/web/packages/Hmisc/). 
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