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Abstract Recognition of gait patterns has been studied only
moderately during the last decades. Different gait strategies
have been described by applying different waveform anal-
ysis techniques to biomechanical gait data and it has been
shown that individuals can be identified using joint angles
in the sagittal plane. However, little is known about addi-
tional variables for gait recognition. We examined which
biomechanical variables (joint moments, joint angles, and
segment angles from the lower extremities) obtained in a
gait lab could be used to distinguish between 21 subjects on
two different days. A systematic “dc-offset” between days
was often observed. This could be removed by taking the
first derivative to the displacement data. Especially the joint
angular and segment angular “velocities” ( first derivative)
in the sagittal and frontal planes provided high recognition
rates and 100% subjects could be recognized by combining
three of these variables.

Keywords correlation analysis, intraclass correlation, clin-
ical gait analysis, forensic medicine

1 Introduction

The detailed time course pattern of net joint moments dur-
ing human walking exhibits almost unique “finger prints” of
individual subjects. Even during increasing load carrying,
this pattern is consistent [22]. For most people, it is a com-
mon experience that people known to them can be identified
solely by the sound of their walking. Identification using gait
was already mentioned by Shakespeare in “The Tempest,”
where Ceres identified Juno saying “Great Juno, comes; I
know her by her gait. . . ”, and psychological studies have
shown that man is able to recognize for example, the gender
of a walker [16] as well as friends and colleagues [14].

Most often, scientific studies focus on differences
between groups. Clinically, it would be beneficial if much

more detailed information could be obtained about the
walking characteristics of individual patients [19]. Within
the area of forensic medicine, such analyses could entail that
criminals or terrorists may be identified from surveillance
cameras by their gait pattern [17,24]. Schöllhorn et al. [19]
found that individuals could be discriminated by combining
joint moments, ground reaction forces, and kinematic
variables of the lower extremities. Model-based approaches
within research disciplines of automated image or pattern
recognition (Cyber Vision) have shown that it is possible
to achieve high recognition rates using angular rotations of
the lower extremities in the sagittal plane [5,7]. However,
it would be valuable to examine the contribution of single
variables to the recognition process. This would enhance the
use of gait analysis in forensic medicine, where typically
only a limited number of gait variables are available for
examination [17]. In addition, it will help selecting input
variables in models to analyze gait such as principal
component analysis. Baofeng and Nixon [3] examined the
importance of 73 features for recognition. Among them
were joint angle rotations of the lower extremities in the
sagittal plane together with anthropological measurements
and temporal parameters such as gait frequency. They
found that ankle, knee, and hip rotations could be placed
on a top 15 list among the 73 features. The relevance of
other biomechanical variables in recognition remains to be
established.

The aim of this study was therefore to examine the
ability of recognition of individual joint moments, joint
angles (anatomical), and segment angles (relative to
horizontal) in the sagittal, frontal, and transverse planes
using a well-known laboratory setup including several
video cameras, reflective markers at anatomical landmarks
on the subjects as well as multiple force plates.
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Hip Knee Ankle

Subject FE AA IE FE AA IE FE AA IE

1 3 1 2 9 1 9 1 1 1
2 1 2 2 1 3 9 1 11 6
3 1 1 1 4 1 1 2 2 2
4 1 1 3 1 1 17 1 1 7
5 1 1 1 1 4 1 4 1 3
6 1 1 1 1 1 1 1 1 15
7 11 1 5 5 1 1 13 1 18
8 1 4 7 1 5 1 1 1 2
9 1 1 9 1 7 4 1 1 3
10 2 1 10 1 3 2 3 2 1
11 1 3 1 1 1 1 1 1 1
12 1 1 11 2 7 7 4 5 2
13 4 17 1 4 5 7 5 3 1
14 11 2 18 8 2 2 2 5 14
15 1 7 10 1 17 11 4 5 11
16 1 1 2 1 18 4 9 1 6
17 1 1 1 1 4 2 1 1 1
18 1 1 14 8 2 9 1 2 10
19 1 2 1 2 1 5 13 1 5
20 11 1 3 4 16 1 3 1 6
21 1 6 3 1 1 2 1 5 2

Rate 71% 62% 33% 57% 38% 33% 48% 57% 24%

FE: flexion/extension angle.
AA: abduction/adduction angle.
IE: internal/external rotation angle.
The first value in the Hip FE column shows that the correlation between the right hip flexion/extension angle on the two different test days
for subject 1 was the third best compared to the correlations between subject 1 and the 20 other subjects. The second row (subject 2) shows
a successful match (the correlation between the right hip flexion/extension angle on the two different test days for subject 2 was the best
compared to the correlations between subject 2 and the 20 other subjects). The recognition rate (last row) is calculated as percent of successful
matches.

Table 1: Recognition rate obtained using Pearson’s correlation for the joint angles of the right leg.

2 Materials and methods

Subjects. Six women and 15 men were recruited to the study.
The women mean age, height, and weight were 34 years
(SD: 9, range: 25–46), 170 cm (SD: 6, range: 164–178), and
61 kg (SD: 9, range: 55–76), respectively. The men mean
age, height, and weight were 30 years (SD: 10, range: 20–
58), 182 cm (SD: 7, range: 166–192), and 81 kg (SD: 12,
range: 52–102), respectively. No subjects had record of prior
injuries or pathology related to the lower extremities.

Test protocol. All subjects arrived at the laboratory and
went through the same test protocol on two different days
separated by at least two days. Fifteen spherical markers
(12 mm) were positioned on anatomical landmarks on the
lower extremities according to the marker setup proposed by
Vaughan et al. [26]. The same operator mounted the markers
on the same subjects on both test days. The subjects were
taught to walk at a velocity of 1.25 m/s (±10%) across
two force plates (model OR6-5-1, AMTI, Watertown,
Mass., USA). The duration of one gait cycle across the

two platforms was measured by two sets of photocells and
immediately returned to the subject in terms of velocity.
Fifteen trials were recorded, but only the six trials closest
to the desired walking velocity were selected for further
analysis.

The force plate sampling rate was 1000 Hz. The
subjects were allowed to carry out test trials to become
acquainted with the gait lab and the fixed velocity. Six trials
from each subject were recorded each test day using five
Canon MV 600 digital video cameras operating at 50 Hz.
Photocells were placed before and after the force plates
to record the walking speed. When the first photocell was
passed, an electronic audio signal was sent to each of the
cameras and the sampling of the force plates was triggered
in order to synchronize the cameras with each other and the
force plates.

Data analysis. One right gait cycle (swing phase, then
stance phase) and one left gait cycle (stance phase, then
swing phase) were derived from each trial for each sub-
ject and each test day. Heel strike (HS) and second toe off
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(TO) for the right leg and first HS and TO for the left leg
occurred on the force plates, hence HS was defined as the
time when the vertical ground reaction force exceeded 10 N
and second TO was defined at the instant where the vertical
force fell below 5 N (values of thresholds were adopted
from O’Connor et al. [18]). The first TO for the right leg
and the second HS for the left leg were predicted using the
method proposed by O’Connor et al. [18], where HS and
TO are determined by local peaks of the velocity of a foot
center calculated as the midpoint of a vector formed by the
heel-marker and the marker on the second metatarsal. The
duration of the step cycles varied between 53 and 65 sample
points (time duration: 1.04 s–1.28 s).

For each trial, 3D coordinates of the markers were
obtained with the Ariel Performance Analysis System,
(Ariel Dynamics Inc., Calif., USA) and filtered with a
4th-order Butterworth filter with a cutoff frequency of 6 Hz.
A custom-build calibration frame with eight non-coplanar
points was placed in the middle of the walkway covering
both force plates and digitized to calibrate each of the video
sequences. The filtered time-position data were numerically
differentiated to velocity and acceleration using three data
points at a time to avoid any phase shift.

The 1000 Hz signals from the force plates were down
sampled to 50 Hz to match the video signals. A local
coordinate system was applied to the center of mass of the
pelvis and each segment of the lower extremities based on
the markers and used to calculate anatomical joint angles
of the ankle, knee, and hip joints and segment angles of the
thigh, shank, and foot in relation to the global coordinate
system. Segment angles were calculated separately for the
pelvis, thigh, shank, and foot as the angle between the
longitudinal axis of the segment and the sagittal, frontal,
and transverse planes of the laboratory coordinate system.
Joint angles were defined as the smaller angle between two
adjacent segments, often also termed anatomical angles.The
position of the joint centers was calculated based on the
position of the markers [26], and net internal joint moments
of the ankle, knee, and hip joints were calculated using
a 3D inverse dynamics approach according to Vaughan
et al. [26] using custom-made software. The most important
biomechanical output parameters are listed in Table 2.

Joint moments were normalized to a dimensionless num-
ber as proposed by Hof [11]:

Momentnormalized = Moment/
(
bm∗g∗l0

)
,

where bm is body mass, g is acceleration of gravity and l0 is
leg length (from greater trochanter to floor while standing).

For each subject, each of the six trials recorded each
of the two days were normalized to 100% step cycle and
averaged.

Gait recognition. The time course pattern of each vari-
able for each of the 21 subjects from the first day was used

Hip/thigh Knee/shank Ankle/foot

Joint angles

Flexion/extension 71% 57% 48%

Flex/ext first derivative 76% 67% 76%

Abduction/adduction 62% 38% 57%

Abd/add first derivative 90% 43% 76%

Internal/external rotation 33% 33% 24%

Int/ext first derivative 48% 57% 33%

Segment Angles

Flexion/extension 52% 48% 38%

Flex/ext first derivative 67% 71% 57%

Abduction/adduction 48% 67% 57%

Abd/add first derivative 81% 81% 81%

Internal/external rotation 52% 67% 24%

Int/ext first derivative 43% 76% 43%

Joint moments

Flexion/extension 43% 52% 29%

Flex/ext first derivative 52% 52% 62%

Abduction/adduction 62% 48% 19%

Abd/add first derivative 76% 67% 38%

Internal/external rotation 52% 43% 29%

Int/ext first derivative 52% 52% 29%

Recognition rates higher than 60% are in bold.

Table 2: Recognition rates for the right leg obtained with the Pearson
correlation.

as reference. The matching variables from the second day
for each subject were tested against the 21 references in
order to identify the same subject on the second day. This
is illustrated in Table 1, where matches of joint angles for
the right leg obtained with Pearson’s correlation analysis are
presented with recognition rates.

Statistics. Only data from the right leg are presented.
Four different statistical measures were used to compare the
time course patterns of each variable. The first three were
relative reliability measures: (1) the intraclass correlation
coefficient (ICC 2,1) [20], (2) the lower bound of the
95% confidence interval of the ICC (lb ICC), and (3)
Pearson’s correlation analysis. The fourth measure was the
mean square residual from the repeated measures ANOVA
(resid ICC), which was used as a measure of absolute
reliability [2]. The statistical package SPSS 15.0 was used.

Ethics. The experiments were approved by the local
ethics committee.

3 Results

We compared one subject at a time from day one with all
subjects including himself from day two. Figure 1 displays
hip abduction/adduction angle of subject 1 obtained on
day one plotted against the same angle of all the subjects
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Figure 1: Abduction/adduction hip joint angle displacement in
degrees. The time course pattern for day 1, subject 1 (solid curve)
is plotted against the time pattern for day 2 (dotted curve) for every
subject in each of the graphs.

obtained on day two in order to recognize this particular
subject (subject 1). Although the overall time course pattern
could be identified easily by visual inspection, a kind
of “DC-offset” was observed in many cases. The term
refers to the fact that the same time-course pattern can be
observed but at a different level of numerical values. This is
illustrated in Figure 2, where the same joint angle is plotted
for each subject recorded on day one versus day two. It is
clear that the time-course pattern was very similar between
the days, but it is evident that the average joint angle in
many cases was different between days. We believed that
these differences primarily were due to small differences
in marker placement on the anatomical landmarks of the
subjects, which is known to be a common source of error in
gait analysis. Therefore, we chose to differentiate the time
course pattern of all variables. In this way, we obtained a
first derivative, which excluded any offset due to marker
placement. This is illustrated in Figure 3, where each
subject is plotted against itself between day one and two.
The differentiation allowed the exact time-course pattern of
the variables to be compared numerically.

Figure 2: Abduction/adduction hip joint angle displacement in
degrees. The time course pattern for day 1 (solid curve) for each subject
is plotted against the time pattern for day 2 (dotted curve) for the same
subject in each of the graphs.

The upper part of Table 2 shows the recognition rates
for the joint angles of the right leg for all subjects obtained
with the Pearson correlation. The first derivative provided
a higher recognition rate for all joint angles and the joint
angles in the sagittal plane, and the hip and knee joint angles
in the frontal plane appeared to provide the highest recogni-
tion rates, which were up to 90%, i.e., that 18 subjects out of
21 could be recognized. The angles in the transverse plane
seemed to provide the lowest recognition rates.

The recognition rates for the segment angles are shown
in the middle part of Table 2. Generally, the same pattern
was seen as for joint angles although it is noteworthy that
the shank had high recognition rates in all three planes.

The recognition rates for the joint moments are shown
in the lower part of the table and these appeared to be lower
than for the joint angles and segment angles. Nevertheless,
the recognition rates for the joint moments also appeared to
be highest in the sagittal and frontal planes.

If the first derivative profile of two segment angles and
a joint angle, all from the frontal plane, were combined,
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Figure 3: Abduction/adduction hip joint angular velocity in
degrees/seconds ( first derivative). The time course pattern for day 1
(solid curve) for each subject is plotted against the time pattern for day
2 (dotted curve) for the same subject in each of the graphs.

a recognition rate of 100% was obtained. These angles were
the thigh angle, the shank angle, and the hip joint angle.

Additionally, the second derivative profile of the joint
angles was calculated. This did not provide better recogni-
tion rates than the first derivative profiles.

The recognition rates for the right leg as analyzed by
each of the four statistical methods divided in joint angles,
segment angles, joint moments for all variables are shown in
Table 3. ICC LB seemed to result in the lowest recognition
rates for the displacement patterns, while resid ICC and the
Pearson had a tendency to provide the highest recognition
rates. The lower part of the table shows that all four methods
generally resulted in similar recognition rates when using
the first derivative patterns.

4 Discussion

In this study, we examined recognition rates of individual
3D biomechanical gait variables obtained on two different

days using correlation analysis. It was found that several
variables provided high recognition rates when discrim-
inating between 21 subjects, and by combining three
joint angles and segment angles, we could recognize all
subjects. This is in concordance with other studies [3,7,19],
which found that combining more variables leads to better
discrimination.

The first derivative profiles seemed to produce higher
recognition rates than the displacement profiles due to a
“DC-offset” between days in the displacement patterns.
Kadaba et al. [15] reported similar offsets and found
lower reproducibility between days than within days. The
discrepancy was explained with differences in marker
placement. Several studies [9,12,23] have found that
variability in placement of markers results in kinematic as
well as kinetic errors. Furthermore, Della Croce et al. [8]
found that low reproducibility of placement of markers was
the major source of error compared to instrumental errors
and skin movement artifacts. A markerless 3D approach
might be the optimal solution to overcome this problem.
Such models have for example been developed in Cyber
Vision [10,25] and commercial markerless systems such
as MaMoCa (www.mamoca.com) and Organic Motion
(www.organicmotion.com) have been developed for
biomechanical use. However, these systems remain to
be validated against traditional marker-based approaches.

We used four statistical methods to assess recognition
rates. The “DC-offsets” discovered in the displacement
profiles may explain why the ICC and thereby also lb ICC
seemed to provide lower recognition rates. When data
from two observations are plotted against each other, ICC
assesses the proximity of the data points to a straight
line passing through the origin of a coordinate system
with a gradient of 1, on one hand. Any systematic bias
like the observed “off-sets” will therefore affect the ICC.
Pearson’s correlation analysis, on the other hand, assesses
the proximity to any straight line and is thereby unaffected
by systematic bias [13]. The resid ICC derived from the
repeated measures ANOVA provides a measure of the
amount of variation remains to be explained between the
two variables so a systematic bias should not affect this
measure either. After differentiation, the four statistical
methods provided similar recognition rates when testing
the first derivative profiles of the variables suggesting that
they can be used interchangeably when data contains no
systematic bias.

The variables in the sagittal and frontal planes seemed
to provide higher recognition rates than the variables in the
transverse plane. The relatively high recognition rate for
each variable is encouraging for the use of gait analysis in
forensic medicine, where less optimal setup of surveillance
systems often restricts the number of gait variables that can
be analyzed [17]. By comparing the variables for subject
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Method Joint angles (%) Segment angles (%) Joint moments (%) All (%)

Displacement patterns

ICC 29 (24–41) 38 (27–46) 33 (24–43) 33 (29–43)

Lb ICC 19 (5–24) 19 (14–24) 24 (17–31) 19 (14–24)

Resid ICC 57 (31–62) 52 (48–60) 38 (34–52) 52 (38–57)

Pearson 48 (33–60) 52 (43–62) 43 (29–52) 48 (33–57)

First derivative patterns

ICC 62 (41–79) 67 (60–81) 57 (41–65) 62 (43–76)

Lb ICC 62 (41–79) 67 (60–81) 57 (41–65) 62 (43–76)

Resid ICC 62 (46–79) 67 (65–79) 48 (43–62) 62 (48–71)

Pearson 67 (46–76) 71 (50–81) 52 (45–65) 62 (48–76)

ICC: Intraclass Correlations Coefficient.
lb ICC: 95% lower bound of the ICC.
resid ICC: the within people mean square residual obtained with a repeated ANOVA analysis.
Pearson: Pearson’s correlation analysis.

Table 3: Right leg – median and quartiles for the recognition rates obtained with each of the four methods for joint moments, joint angles, and
segment angles.

1 and subject 5 in Figure 4, it is noticeable that there is a
higher between subject variation in the curve patterns in
the frontal plane than in the sagittal plane. The between
subject variation in the frontal plane was also found by
Borghese et al. [4] and could be an explanation for the
relatively high recognition rates in this plane. This should
be investigated further and the use of variables in the frontal
plane should be considered in models using, e.g., principal
component analysis to examine differences between groups
in biomechanical research.

The recognition rates for joint angles and segment
angles were generally higher than the recognition rates for
joint moments. This could partly be due to the fact that
segment angles and joint angles are only calculated on the
basis of markers mounted on anatomical landmarks of the
subjects while the calculation of joint moments also includes
ground reaction forces obtained from force plates as well as
anthropometric measurements of the lower extremities used
to calculate inertia of the segments [26]. These parameters
could be subject to variations caused by measurement error
or variations in gait pattern between days. This is supported
by Simonsen et al. [21] who concluded that ground reaction
forces by far dominated the calculation of joint moments
compared to segment displacements and anthropometric
measures

Limitations. The recognition rates found in this study
give an indication of which biomechanical variables con-
tribute most to the individual gait pattern. However, it should
be taken into account that the variables are related to each
other. It can be mentioned as an example that the foot seg-
ment angle in the frontal plane has been shown to be related
to stance phase knee adduction and hip joint moments in the
frontal and sagittal planes [1,6].

Figure 4: Right leg displacement patterns for 6 trials for joint moments
(left), joint angles (middle), and segment angles (right) in the sagittal
(FE) and frontal (AA) planes. Hip/thigh: solid curve. Knee/shank:
slash/dotted curve. Ankle/foot: dotted curve. Joint moments are
normalized to bodyweight and leg length. Joint angles and segment
angles are in degrees.

Eventually, it will be more relevant within forensic
biomechanics to try to recognize singular gait cycles. In this
study, we intentionally averaged six gait cycles to reduce
small casual variations from step to step because the main
purpose of the study was to see whether or not a basic
walking pattern could be recognized between days.
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The choice of a fixed walking speed may seem as a lim-
itation, but if we had let the subjects walk at self-selected
speed, we would have run the risk that the individual sub-
jects would be recognized more by his/her particular veloc-
ity than a basic movement pattern, that is of course pro-
vided the subjects could reproduce their self-selected veloc-
ity on two days. If the subjects would have chosen a different
velocity on both days, which could happen, the individual
subject may not be recognized, mostly due to a difference in
walking speed. Finally, it has never been our impression that
we force subjects into something “unnatural” as long as we
use velocities within normal limits.

5 Conclusions

We have found high recognition rates especially for the joint
angles and segment angles in the sagittal and frontal planes
using correlation analysis. We could identify all 21 subjects
in this sample by combining recognition rates of three joint
angular and segment angular velocities. The variables in the
frontal plane showed larger interindividual differences in the
shape of the curve patterns than in the sagittal plane and
should be studied further for use in forensic medicine and
taken into consideration for use in models analyzing differ-
ences between groups and individuals.

Conflicts of interest

None of the authors have any conflicts of interest regarding
this manuscript.

Acknowledgment This project was funded by the Department of
Forensic Medicine, University of Copenhagen.

References

[1] M. Andrews, F. R. Noyes, T. E. Hewett, and T. P. Andriacchi,
Lower limb alignment and foot angle are related to stance phase
knee adduction in normal subjects: a critical analysis of the
reliability of gait analysis data, J Orthop Res, 14 (1996), pp. 289–
295.

[2] G. Atkinson and A. M. Nevill, Statistical methods for assessing
measurement error (reliability) in variables relevant to sports
medicine, Sports Med, 26 (1998), pp. 217–238.

[3] G. Baofeng and M. S. Nixon, Gait feature subset selection
by mutual information, in Proceedings 1st IEEE International
Conference on Biometrics: Theory, Applications, and Systems,
IEEE, Washington, DC, 2007, pp. 1–6.

[4] N. A. Borghese, L. Bianchi, and F. Lacquaniti, Kinematic
determinants of human locomotion, J Physiol, 494 (Pt. 3) (1996),
pp. 863–879.

[5] I. Bouchrika and M. S. Nixon, Model-based feature extraction
for gait analysis and recognition, in Computer Vision/Computer
Graphics Collaboration Techniques, vol. 4418 of Lecture Notes in
Computer Science, Springer, Berlin, 2007, pp. 150–160.

[6] K. A. Bowsher and C. L. Vaughan, Effect of foot-progression angle
on hip joint moments during gait, J Biomech, 28 (1995), pp. 759–
762.

[7] D. Cunado, M. S. Nixon, and J. N. Carter, Automatic extraction
and description of human gait models for recognition purposes,
Comput Vis Image Underst, 90 (2003), pp. 1–41.

[8] U. Della, Croce, A. Cappozzo, D. C. Kerrigan, and L. Lucchetti,
Bone position and orientation errors: pelvis and lower limb
anatomical landmark identification reliability, Gait Posture, 5
(1997), pp. 156–157.

[9] U. Della Croce, A. Cappozzo, and D. C. Kerrigan, Pelvis and
lower limb anatomical landmark calibration precision and its
propagation to bone geometry and joint angles, Med Biol Eng
Comput, 37 (1999), pp. 155–161.

[10] Z. Guoying, L. Guoyi, L. Hua, and M. Pietikainen, 3D gait
recognition using multiple camera, in Proceedings 7th Interna-
tional Conference on Automatic Face and Gesture Recognition,
University of Southampton, Southampton, UK, 2006, pp. 529–534.

[11] A. L. Hof, Scaling gait data to body size, Gait Posture, 4 (1996),
pp. 222–223.

[12] J. P. Holden and S. J. Stanhope, The effect of variation in knee
center location estimates on net knee joint moments, Gait Posture,
7 (1998), pp. 1–6.

[13] A. M. Holmback, M. M. Porter, D. Downham, J. L. Andersen, and
J. Lexell, Structure and function of the ankle dorsiflexor muscles in
young and moderately active men and women, J Appl Physiol, 95
(2003), pp. 2416–2424.

[14] D. Jokisch, I. Daum, and N. F. Troje, Self recognition versus
recognition of others by biological motion: viewpoint-dependent
effects, Perception, 35 (2006), pp. 911–920.

[15] M. P. Kadaba, H. K. Ramakrishnan, M. E. Wootten, J. Gainey,
G. Gorton, and G. V. Cochran, Repeatability of kinematic, kinetic,
and electromyographic data in normal adult gait, J Orthop Res, 7
(1989), pp. 849–860.

[16] L. T. Kozlowski and J. E. Cutting, Recognizing the sex of a
walker from a dynamic point-light display, Percept Psychophys,
21 (1977), pp. 575–580.

[17] P. K. Larsen, E. B. Simonsen, and N. Lynnerup, Gait analysis in
forensic medicine, J Forensic Sci, 53 (2008), pp. 1149–1153.

[18] C. M. O’Connor, S. K. Thorpe, M. J. O’Malley, and C. L. Vaughan,
Automatic detection of gait events using kinematic data, Gait
Posture, 25 (2007), pp. 469–474.
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