

Functional and Blood Outcomes of Exercise in Neck Rehabilitation

Nicholas Verleden*

Department of Rehabilitation and Sports Science, University of Antwerp, Antwerp, Belgium

DESCRIPTION

Chronic non-specific neck pain is a prevalent musculoskeletal condition that affects a significant portion of the adult population. Individuals with this condition often experience persistent discomfort, stiffness, reduced range of motion and functional limitations that can interfere with daily activities and work performance. The multifactorial nature of neck pain, involving muscular, ligamentous and neural components, presents challenges for effective management. Traditional interventions include physical therapy, exercise programs, manual therapy, pharmacologic approaches and ergonomic modifications. In recent years, Blood Flow Restriction Training (BFRT) has gained attention as a potential intervention for musculoskeletal pain and functional improvement.

Blood flow restriction training is a technique that involves the application of external pressure, typically *via* cuffs or bands, to proximal portions of the limbs during low-load resistance exercise. The restricted blood flow creates a hypoxic environment in the working muscles, which enhances metabolic stress and stimulates muscular adaptations. BFRT has been studied in various populations, including athletes, older adults and individuals recovering from injury or surgery. Its appeal lies in the ability to achieve strength and hypertrophy gains similar to high-load resistance exercise while using lower loads, thereby reducing mechanical stress on joints and soft tissues.

Evidence regarding the effect of BFRT on neck pain primarily derives from small-scale clinical trials, case studies and observational studies. These studies have explored outcomes related to pain intensity, functional capacity, range of motion and muscle strength. Pain reduction is often measured using visual analog scales, numeric rating scales, or validated questionnaires that capture the impact of neck pain on daily activities. Improvements in strength and endurance are assessed through isometric or isotonic testing, while range of motion is evaluated using goniometry or motion analysis tools. The consistency of findings across studies provides insight into the potential role of BFRT in managing chronic neck pain.

Central mechanisms may also play a role in the pain-modulating effects of BFRT. Exercise-induced hypoalgesia is a well-documented phenomenon in which physical activity results in reduced pain perception. The metabolic stress, cardiovascular response and activation of endogenous opioid pathways during BFRT may amplify hypoalgesic effects. Furthermore, the low-load nature of BFRT allows patients to engage in resistance exercise without triggering nociceptive responses that might occur during high-load training. The combination of local muscular adaptation and central modulation may explain observed reductions in pain intensity and improvements in functional performance among individuals with chronic non-specific neck pain.

Patient-reported outcomes suggest that BFRT can lead to reductions in pain and improvements in daily function. Some studies report greater decreases in pain intensity compared to low-load resistance exercise without blood flow restriction, while strength gains and endurance improvements are comparable to higher-load protocols. The lower mechanical load reduces the risk of exacerbating cervical discomfort, which may enhance adherence to exercise programs. Additionally, BFRT may support progressive rehabilitation by allowing incremental increases in resistance while maintaining patient comfort and minimizing stress on vulnerable structures.

Safety considerations are an important aspect of BFRT implementation. While generally well tolerated, potential adverse effects include transient discomfort, bruising, numbness, or tingling in the occluded limbs. Rare but serious events, such as thrombosis or vascular complications, have been reported in populations with pre-existing risk factors. Screening for contraindications, including cardiovascular disease, uncontrolled hypertension, or clotting disorders, is recommended before initiating BFRT. Continuous monitoring during exercise and adherence to evidence-based pressure guidelines minimize risk and enhance patient safety.

Integration of BFRT into comprehensive management programs for chronic neck pain involves combining it with other therapeutic strategies. Physical therapy interventions, postural

Correspondence to: Nicholas Verleden, Department of Rehabilitation and Sports Science, University of Antwerp, Antwerp, Belgium, E-mail: n.verleden@utp.be

Received: 29-Jul-2025, Manuscript No. JBDT-25-30349; **Editor assigned:** 31-Jul-2025, PreQC No. JBDT-25-30349 (PQ); **Reviewed:** 14-Aug-2025, QC No. JBDT-25-30349; **Revised:** 21-Aug-2025, Manuscript No. JBDT-25-30349 (R); **Published:** 28-Aug-2025, DOI: 10.4172/2155-9864.25.S15.073

Citation: Verleden N (2025). Functional and Blood Outcomes of Exercise in Neck Rehabilitation. J Blood Disord Transfus. S15:073.

Copyright: © 2025 Verleden N. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

education, ergonomic modifications and pain management techniques can complement BFRT to address multiple contributing factors. Individualized programs consider patient preferences, functional goals and clinical presentation. The low-load nature of BFRT allows patients to progress gradually, increasing exercise intensity while avoiding exacerbation of symptoms and can be incorporated into home exercise routines or supervised rehabilitation sessions.

In conclusion, chronic non-specific neck pain is a prevalent condition with substantial impact on physical function and quality of life. Blood flow restriction training offers a low-load

resistance exercise approach that may reduce pain, improve muscular strength and enhance function while minimizing mechanical stress on the cervical region. Evidence from current studies indicates beneficial effects on pain and performance, although methodological limitations and variability in protocols highlight the need for further research. Incorporating BFRT into comprehensive rehabilitation programs provides an additional option for clinicians aiming to support individuals with chronic neck pain, emphasizing the potential for functional improvement, symptom reduction and enhanced participation in daily activities.