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Abstract
Cardiovascular disease has become the leading cause of death in high income countries worldwide and the 

available treatment is not able to provide a complete recovery. Tissue engineering offers a possibility to construct 
autologous vein replacements for surgery. In this review we summarize approaches leading to artificial vascular graft 
construction. We discuss biomaterials currently in use, various drug delivery systems and the most appropriate cell 
cultures for vein engineering. Despite the progress in biomaterials and drug delivery systems, generating a suitable 
tissue microenvironment and selection of the appropriate cell population for graft seeding remains a major challenge. 
Here we focus on endothelial progenitor stem cells as the most suitable cell type for vascular graft construction. We 
discuss its sources, isolation techniques and differentiation procedures. 
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Introduction
Cardiovascular disease has become one of the most significant 

civilization health problems in the population of high income 
countries [1]. Modern medicine focuses on symptom treatment that 
is financially demanding and does not offer a permanent solution. In 
contrast tissue engineering and regenerative medicine offer a way to 
treat the underlined problem and achieve complete recovery [2-4]. 
New approaches in artificial vessel formation could significantly affect 
the therapy of ischemic injury, treatment of cardiovascular diseases 
and tissue engineering research. Tissue engineering is dependent on 
the ability to supply the tissue with nutrients and being able to dispose 
of the waste products. Vascularization is therefore an essential process 
in construction of any functional organ. In this context endothelial 
differentiation is becoming more and more attractive issue.

Human veins consist of multiple layers, each responsible for multiple 
functions within this complex system. The inner layer of endothelial 
cells forms a dynamic physiological barrier between circulating blood 
and the surrounding tissue. It protects the inner surface of the vein 
and regulates multiple physiological processes involving vessel repair, 
transport, coagulation and immune response [5]. It was believed that 
after embryonic development the repair and formation of new vessels 
occurred mostly through angiogenesis [5,6]. Angiogenesis is a process 
where postnatal vessel formation is perpetuated strictly by proliferation 
and migration of the neighbouring endothelial cells. However, this 
dogma was challenged when Asahara presented a new concept of 
postnatal vessel formation; postnatal vasculogenesis [7,8]. He isolated 
a bone marrow cell population that contributed to new endothelial 
formation and named them Endothelial Progenitor Cells (EPCs). This 
discovery changed the traditional understanding of vessel formation 
and proved that endothelial progenitors present in bone marrow do 
participate in vessel repair, and are able to form new vessels in vivo 
through process similar to embryonic vasculogenesis.

Multipotent stem/progenitor cells exist in nearly every organ of 
the human body [9,10]. They possess high proliferation activity and 
the ability to produce differentiated cell population in order to restore 
tissue homoeostasis. For example bone marrow is a source of various 
progenitor/stem cells including Hematopoietic Stem Cells (HSCs), 
Mesenchymal Stem Cells (MSCs) and EPCs [11,12]. These cells are 

isolated from bone marrow as a mixed cell population obscuring their 
origin and identity [13-16].

The EPCs play a major role in neovascularization [17,18]. The 
delivery of EPCs by injection or bioengineered vascular grafts resulted 
in enhanced angiogenesis in models of ischemia or infarction [19-21]. 
Despite the unresolved issues concerning the origin and differentiation 
mechanism of EPCs, their clinical application has encountered 
significant success in tissue engineering of large-diameter vessels, 
therapy of ischemic limb, and aneurysm and pulmonary arterial 
hypertension [22-26]. EPCs have also been investigated as a potential 
biomarker primarily for cardiovascular, but also several other diseases 
[27,28].

Origin of EPCs
EPCs are present all over the human body including in bone 

marrow, cord blood, spleen, the liver, intestinal and vessel walls, and 
blood stream circulation. They also show stemness and are able to 
differentiate into endothelial cells [29,30]. However, these properties 
were not shown to correspond with a unique surface expression pattern 
or easily detectable function [31,32]. The EPCs are isolated from bone 
marrow as a mixed cell population along with other cell populations 
with stem cell characteristics. Many of the surface characteristics are 
shared among various hematopoietic and endothelial precursor cell 
populations in different stages of differentiation, which obscures the 
origin and identity of EPCs. Furthermore, considering the plasticity 
of the stem cell phenotype, one or another particular marker cannot 
possibly define a  distinct progenitor cell population. Table 1 offers 
an overview of various populations that produce EPCs and their 
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surface markers used for isolation [8,32-46]. According to their 
growth patterns, we can distinguish early and late outgrowth EPCs 
in the in vitro cell culture. All of the mentioned factors account for 
both the lack of standardized criteria and cell surface markers used for 
characterization and isolation [47].

Mobilization of EPCs
One of the major disputed issues in EPC research is the incidence of 

EPCs in various tissues [29,31]. These cells are generally isolated from 
three major sources – umbilical blood, bone marrow and circulating 
blood [33,48,49]. Although several authors reported the isolation of 
CD34+ cells from peripheral blood, the cell population is too small 
for any major applications [41,50]. Tissue engineering approaches 
used mixed populations of endothelial and mesodermal cells for their 
applications. However several studies require relatively large numbers 
of EPCs. Mobilization of EPCs into peripheral blood is a relatively non-
invasive procedure that provides the required quantity of EPCs [48].

In physiological conditions, the EPCs are largely restricted to 
bone marrow. EPCs incidence in peripheral blood remains low and 
relates to the state of the vascular system and lifestyle. Factors able to 
influence the EPC count include smoking, obesity and exercise [51-54]. 
Endogenous mobilization of bone marrow EPCs is a consequence of 
several pathological processes including ischemic injury, tissue trauma, 
wound healing, or tumor growth [55,56]. Induced mobilization of 
bone marrow stem cells into the blood stream increases EPC counts 
in peripheral blood and is a desired effect prior to isolation. Table 2 
summarizes various endo and exogenous factors inducing mobilization 
of EPCs [57-71]. 

Bone marrow stem cell mobilization into peripheral blood is 
dependent on the local microenvironment consisting of fibroblasts, 
osteoblasts and endothelial cells. Mobilization occurs after the 
concentration of cytokines in blood exceeds the levels in bone marrow. 
They activate endothelial nitric oxide synthase and nitric oxide 
production, which leads to activation of metalloproteinases (MMPs) 
[55,72]. MMPs have the ability to release EPCs from bone marrow into 
peripheral blood [65,73]. 

Detection of EPCs 
In several pathological situations EPCs can be used as a potent 

biomarker for determination of the cardiovascular condition of the 
patient [28,74]. Clinical studies focused on the evaluation of disease 
conditions including cardiomyopathy, ischemia, stroke, coronary artery 
disease and diabetes on the mobilization and function of EPCs [75-80]. 
The EPC-based therapy approaches rely on the extent of incorporation 
of the in situ mobilized cells. However, this process shows a high 
variability of 1-50%, which can be attributed to the patients genetic 
variation but also to the lack of standardization in the methodology. 
Modern isolation procedures make the process more effective and 
less time-consuming; however diversify the methodology even further 
[81-83]. Standard techniques for determination of the EPC count 
include isolation and cultivation, flow cytometry and Stromal cell-
Derived Factor 1 (SDF-1) assay. Modern isolation procedures make 
the isolation and cultivation more effective and less time consuming, 
however that makes the methodology even more diverse [81,82]. The 
standardization of detection and cultivation procedures is therefore 
essential. 

Origin Precursor cell population Surface characteristics In vitrocell culture References

Bone marrow 
Post-natal hemangioblast CD14+ Early outgrowth EPCs [8,42]
Myelo/monocytic progenitors CD34+/VECFR-2+/CD133+ Late outgrowth EPCs [8,33,35]

Mobilized peripheral blood
Post-natal hemangioblast CD14+ Early outgrowth EPCs [32,34,41]
Myelo/monocytic progenitors CD34+/VECFR-2+/CD133+ Late outgrowth EPCs [32,34]

Adipose tissue Adipose-derived stem cells
CD34+/CD146+ Early outgrowth EPCs [36,37,38]
CD34+/CD31+/CD133+ Late outgrowth EPCs [44-46]

Umbilical cord blood HSCs/MSCs/EPCs
CD34+/CD133+ Late outgrowth EPCs [43,34]
CD14+/CD133- Early outgrowth EPCs [43,34]

Blood vessel wall EPCs/HSCs CD34+/CD31- Early outgrowth EPCs [39,40]

Table 1: Endothelial Progenitor Cell (EPCs) populations, their sources for isolation, surface characteristic and cell populations obtained by in vitro cultivation.

Table 2: Exogenous and endogenous mobilization factors (Exogenous factors are used for pharmacological induction of mobilization. Endogenous are naturally secreted 
in human body as a result of pathological conditions.)

Exogenous mobilization factors: References

Cytokines                        
Granulocyte colony-stimulating factor (G-CSF) [57]
Granulocyte-macrophage colony-stimulating factor (GM-CSF) [58]

Statins                          
Rosuvastatin [59]
Simvastatin [60]

Growth factors                 
Vascular endothelial growth factor (VEGF) [61,62]
Basic fibroblast growth factor (bFGF) [63]

Pharmacological agents CXCR4 antagonist [71]
Endogenous mobilization factors: References

Growth factors                 
bFGF [61,62]
VEGF [63]
Erythropoietin [64] 

Statins                           [67,69] 
Chemokines SDF-1 [65]

Cytokines                        
G-CSF (mobilizes CD34+ cells) [57]
GM-CSF (mobilizes EPCs) [58]

Hormones Parathyroid hormone [66]
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Three major factors complicate the detection of EPCs (1) the 
heterogeneity of the EPCs (2) low incidence of CD34+/VEGFR-2 
in peripheral blood (3) heterogeneity of the used techniques. The 
EPCs phenotype is shared among various cell types present in bone 
marrow or peripheral blood [84]. Therefore using 2-3 surface antigens 
for identification of a cell population with a complex function is a 
simplistic concept at best. Low incidence of CD34+, VEGFR-2+ cells in 
peripheral blood also complicates the analysis of the EPC count. They 
represent only 0,002% or 0,02% of total mononuclear cells isolated 
from peripheral blood or mobilized peripheral blood respectively 
[41,50]. Evaluation of these extremely rare events presents a problem 
and can lead to false positive results [31]. Finally, the last of the 
complicating factors is the heterogeneity of the techniques used for 
EPC quantification. To determine the EPCs incidence, flow cytometry 
and cultivation methods are commonly used. EPC cultivation methods 
do not take into account the fact that the final number of colonies 
obtained after the process does not correspond to the quantity of 
initially plated EPCs [31,85]. It is dependent on a complex set of 
processes involving adhesion, proliferation and differentiation of 
original cell. This heterogeneity complicates the comparison of the 
obtained data and results in misleading conclusions.

The quickest and most efficient method for determination the 
EPC count is detection by flow cytometry after marking. The greatest 
advantage is the parallel detection of endothelial and stem cell associated 
markers and the possibility to use analyzed cells for further cultivation. 
To define the phenotype of EPCs at least two markers should be used– 
a stemness marker to account for the stem cell potential as well as an 
endothelial marker to identify the endothelial characteristics of the 
progenitor populations. Most commonly used markers are CD34, 
CD133, VEGFR-2 [86,87]. 

An alternative method to determine the EPC count is an indirect 
quantification using Stromal cell-Derived Factor (SDF-1). It is an 
inducer of endothelial progenitor cell migration from the bone marrow. 
The method is based on the inverse correlation of SDF-1 and VEGF 
levels with EPC incidence. This method could potentially eliminate 
the inaccuracies caused by isolation, preparation and techniques of 
detection. It could therefore create a standardized parameter that would 
be comparable among different studies [88]. However the correlation 
of SDF-1 level and EPC count is a complex process involving unknown 
mechanisms that must be further studied before clinical application.

Isolation and Cultivation of EPCs
In vitro cultivation of EPCs provides two distinct cell populations 

[34]. They have been designated as early and late outgrowth EPCs with 
their distinct growth patterns and the ability to secrete angiogenic 
factors [32,43]. Although they have distinct origins and show 
functional differences in vitro, both were shown to contribute to in 
vivo neovascularization in several disease models. Mechanisms of 
action differ between cell populations and have not yet been precisely 
described [89-92]. 

The cultivation on fibronectine coated dishes with pre-plating 
yields early outgrowth endothelial cell population (eEPCs) [28]. Pre-
plating is a procedure designed to avoid the contamination with early-
adherent cells of mesodermal origin. The colonies start to appear 
after 4-7 days after re-plating and their numbers peek at 2-3 weeks. 
They can be maintained up to 4 weeks in vitro. They show a spindle-
shaped phenotype and the expression surface markers CD14 and CD45 
suggests hematopoietic origin. eEPCs do not incorporate into vessel 

walls. However are able to secrete multiple angiogenic, antiangiogenic 
and neuroregulatory cytokines and stimulate the process of endothelial 
formation. Therefore recent studies linked this cell population to 
primitive hematopoietic cells composed of monocytes and T-cells 
[93]. Some authors consider the eEPCs a manifestation of the multiple 
differentiation potential of monocyte/macrophage cell population, 
which allows them to assume an endothelial-like phenotype under 
appropriate cultivation conditions [94,95].

On the basis of eEPC cultivation a commercial assay has 
been developed by Hill and colleagues for the determination of 
cardiovascular risk [28,68,96]. Colonies begin to appear three days 
after re-plating. Positive eEPC colonies are characterized by specific 
morphology – round-shaped cells in the core and elongated cells on the 
periphery. These cells are also characterized by the expression of von 
Willenbrand factor, VEGFR-2 and CD31. Even though the derived cells 
do not incorporate into vasculature, this method showed correlation 
between the frequency of colony formation and cardiovascular risk. 
Low levels of EPCs in peripheral blood are considered a biomarker 
for cumulative cardiovascular risk. Easy execution and the ability to 
accurately characterize endothelial function and predict cardiovascular 
risk makes the eEPC assay a potent biomarker [97,98].

The second endothelial cell population, designated as late 
outgrowth cells, appeared after 2-3 weeks of cultivation and was able 
to be maintained in culture up to 12 weeks [24,34,99]. They showed 
an endothelial like phenotype, cobbelstone shape and apicobasal 
polarity. They expressed a complete endothelial phenotype, CD146, 
CD105 and lacked CD14 surface marker [100]. They have the ability 
to incorporate into cell walls and form junction-like cell-cell contacts 
as well as to form capillary tubes in vitro [32,101,102]. Therefore, these 
cells are considered true endothelial precursors and widely used for 
tissue engineering. 

Blood Vessel Engineering
A promising application of EPC research is the utilization for 

vascular tissue engineering. Several strategies of vessel construction 
are nowadays in clinical trials. Even though large vessel transplants 
achieved encouraging results, clinical trials for small-diameter vessel 
replacements have encountered only limited success [23,103-106]. 
The tissue engineering triad consists of (1) scaffold with appropriate 
mechanical and biological properties (2) time-dependent angiogenenic 
stimulation (3) cells seeded in vitro or mobilized and guided to 
the injury site in vivo. Figure 1 explains the mechanism of in vitro 
engineering of vascular graft. 

Scaffolds for tissue engineering must possess the three basic 
attributes: biodegradability, non-immunogenicity and must structurally 
substitute the function of the replaced tissue until the cell reconstitution 
is completed. Up to date several attempts aimed to construct veins 
and arteries suitable for application in transplantation medicine. 
First study dates to 1970, when Herring and co-workers seeded EC 
on polytetrafluoroethylene scaffolds [107-109]. However the used EP 
isolation method (mechanic scraping of the arterial endothelium) 
caused high impurity of the seeding material. More successful was 
the attempt of Weinberg and Bell in 1986 [110]. They constructed a 
tubular structure formed by collagen, bovine smooth muscle cells and 
non-degradable artificial material. The lumen was seeded with vascular 
fibroblasts and EC cells. The graft closely resembled native blood vessels, 
however did not possess the ability to withstand physiologic pressure 
bursts.Further research led to improvements in the biomaterials for 
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scaffold construction and modification by extracellular matrix coating 
to achieve better cell adhesion properties [111]. Today the vascular 
design of the constructed vein is mechanically sound and satisfactory for 
clinical application. The blood vessels are able to withstand enormous 
pressures (above 2000mmHg) while retaining their contractible quality 
[112]. Materials for vascular replacements can be also modified to 
possess additional qualities to provide the ideal microenvironment for 
processes connected with vessel repair and for all intents and purposes 
to resemble the native tissue [113]. 

Currently, two major approaches are utilized in development 
of scaffolds for tissue engineering – the use of synthetic materials 
and organic tissues (decellularised human or animal blood vessels) 
[114-116]. The most commonly used polymers for construction of 
biopolymere scaffolds include Polycolicacid (PGA), Polylacticacid 
(PLA), Polycaprolactone (PCL) and Polyurethane (PU) [117-120]. They 
differ in their basic characteristics including biodegradability, elasticity 
and strength. In scaffold construction the ratio of the individual polymer 
components can be modulated to insure the desired properties and 
accommodate specific requirements of the transplantation site [121]. 
The most widely used polymere in preclinical studies is PGA. Artificial 
polymere scaffolds have hydrophobic surfaces and are therefore further 
modified with PEG, heparin or albumin to increase hemocompatibility 
[122].

Engineering of large-diameter vessels successfully utilized 
biodegradable scaffolds. The bioengineered graft showed long-term 
patency in mid- and long-term studies [103,123]. The composite 
polymer consisted of a tube composed of 50:50 ratio of PCL and PLA 
copolymer and a  PGA woven fabric. The scaffold was seeded with 
autologous bone-derived cells. Twenty-five grafts were implanted into 
patients born with single ventricle cardiac anomalies [103]. A follow 
up study of long-term patency (7 years after implantation) showed 

promising results, when the implanted conduits were functional and 
none of the patients required additional graft replacement. 40% of 
the patients also did not require any medication related to their heart 
condition. However, 16% of the patients showed graft stenosis that was 
successfully treated. Although this pioneer study showed promising 
results, the mechanisms that lead to failure in small-diameter vascular 
grafts are still not understood. 

In 1998 L’Heureux et al. [124] presented an alternative method of 
scaffold engineering – self-assembly [124-127]. The vascular graft was 
constructed without the use of bio-polymere material. This method 
takes advantage of the natural ability of mesenchymal cells to secrete 
native ECM. Mesenchymal cells are grown in over confluence producing 
self-assembled tissue sheets. They are further processed in vitro using 
a mandrel to form a tubular structure. A prolonged incubation period 
ensures the circumferential cell arrangement and large amount 
production of extracellular matrix [23]. These conduits are able to 
withstand high pressures and are currently under investigation for 
hemodialysis access grafts in human patients [128-130]. This approach 
has been successfully used in clinical trials for patients that do not need 
immediate bypass treatment. 

A similar method was used in 2011 by Dahl et al. [131] in the 
construction of a human vascular graft using SMCs. The decellularized 
grafts were implanted into baboons [131]. The engineered constructs 
maintained patency for up to six months. This successful in vivo study 
was followed by clinical trials in Europe and USA in 2012 and 2013 
respectively and is currently in progress [132]. Two major advantages 
of this approach include (1) acellular human-based grafts do not cause 
a significant immune response in nonhuman hosts (2) small-diameter 
vascular grafts show low rates of thrombosis [133]. This method is also 
currently being investigated for application in the vascularization of 
ischemic myocardium [134]. Its considerable limitation however lies in 
donor variability, the ability of the donor SMCs to form ECM in vitro.

Even though various tissue engineering approaches noted 
promising results in reconstruction of large vessels, they show 
discouraging performance in small-diameter application [110,135-
137]. The main reason for these shortcomings is caused by increased 
thrombocity due to the absence of functional endothelium and the 
development of initial hyperplasia. Especially in low flow situations, 
small-diameter veins demonstrate low patency [138-141]. Although 
multiple efforts are aimed towards the development of new material 
substitutes and surface modification techniques, they are still not 
comparable with the performance of native tissues [142-144]. Table 3 
contains an overview of pre-clinical studies in vascular engineering in 
the past years [70,103,118,131,145-147].

Angiogenesis In vitro
One of the major challenges of tissue engineering lies in the 

establishment of an environment that closely resembles in vivo 
conditions. These conditions can either be simulated artificially, 
where the angiogenic factors, or masterswitch activators are a part 
of a biodegradable scaffold, or the lack of growth factors can be 
compensated for by co-cultures [148,149].

The development of recombinant angiogenic and vasculogenic 
growth factors initiated research into its utilization for bioengineering. 
A number of growth factors have been tested in clinical trials including 
VEGF, PDGF, FGF and HGF (hepatic growth factor) [150-153]. Phase 
I trials reported promising results [154,155]. However, the results 
obtained in phase II did not demonstrate expected benefit to patients 

Figure 1: In vitrovascular engineering. EPC are isolated from patients 
mobilized peripheral blood and  cultivated in vitro. Bioengineered scaffolds are 
seeded with EPCs (or co-cultures of EPCs) and cultivated in bioreactors in 
cotrolled conditions. Bioengineered graft is transplanted back to the patient.

IN VITRO   VASCULAR ENGINEERING

Transplantation of the
artifician vein

Isolation of 
EPCs &HSCs
from bone marrow

Seeding cells on
artifician scaffolds

Propagation
and differentiation
of EPCs and HSCs
(Cell culture)
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[156]. These disappointing clinical results could be attributed to the 
short lived effect or instability of the injected medicament as well as to 
the multiple issues related to viral infection procedures.

Recombinant proteins or direct administration of medicament 
provide burst-release dosing. In contrast, bioengineered transplants 
require a sustained and controlled release of growth factors to facilitate 
a prolonged treatment. Table 4 shows a list of angiogenic stimulants 
and their role in vascularization in chronological order [72,157-163]. In 
contrast to the burst-release dosing, microparticle release mechanisms 
allow for the time-dependent release of the angiogeneic stimulation. 
They are constructed from biodegradable materials for example 
poly (lactic-co-glycolic acid) (PLGA) or acetylated dextran(AcDex) 
[20,164]. Several different combinations of angiogenic signaling 
molecule sand delivery systems were studied [165-169]. These studies 
showed encouraging results, however were not able to achieve the full 
restoration of function due to the complexity of the healing process.

Perspective ‘release-on-demand’ platforms represent yet another 
alternative approach to the delivery systems [170]. They use the 
principles of enzyme-mediated growth factor release. It is able to 
provide a time- and location-restricted release of the growth factors. 
It was shown that regulated delivery of angiogenic and blood vessel 
maturating factors was able to form functionally mature vessels 
composed of ECs and smooth muscle cells (SMCs) in vivo [170,171]. 
Even though it is a complicated system and our knowledge of wound 
healing physiology remains limited, several release systems have 
already been successfully established [172-176].

Research into “master switch” upstream activators such as HIF-
1α (hypoxia inducible transcription factor 1 α) that induces pro-
vascular signaling cascade represents a new research direction in 
the growth factor delivery field [3,5,177]. HIF-1 is a heterodimeric 
transcription factor composed of two subunits, HIF-1α and HIF-1β 
that are constitutively expressed in most cell types [90,178,179]. Under 
standard conditions, HIF-1α protein is rapidly degraded by ubiquitin–
proteasome system. Hypoxic environment on the other hand stabilizes 
HIF-1α and consecutively activates the transcription of multiple pro-
angiogenic proteins such as VEGF, SDF-1 and MCP-1, angiopoietins 
and erythropoietin, which recruit both CD14+ EPCs and CD34+ EPCs 
from the bone marrow into the circulation, towards the site of hypoxia 
[25,64,180-182]. In contrast with the strategy that aims to carefully 
bioengineere an environment with pro-vascularization properties, this 

approach has the potential to induce native regeneration process in 
vivo. 

The Co-cultures of EPCs with Supportive Cells
In spite of several successes, most studies have demonstrated 

that the dynamic multistep cascade of angiogenic stimulation in the 
cellular niche required for vessel regeneration cannot be achieved by 
addition of one, or multiple angiogenic factors [183-185]. Co-cultures 
offer a perspective new tool in tissue engineering that has the potential 
to lead to qualitative and quantitative progress in seeding of the 
artificial scaffolds and construction of vascular grafts [149,186,187]. 
As was recently shown, a co-cultivation of different cellular subtypes 
is able to induce a microenvironment that mimics the cellular niche 
during the vascularization process. The angiogenic potential of several 
hematopoietic, mesenchymal and endothelial cell populations has been 
studied in the context of vessel repair. This mechanism has the potential 
to regulate vessel repair by paracrine signaling in a coordinated 
sequence of signaling events. Different cell populations effect distinct 
phases of vessel regeneration and therefore a diverse population for 
vascularization is imperative. 

The co-culture of early- and late-outgrowth EPCs demonstrated the 
importance of angiogenic stimulation during vascularization process. 
Both cell populations secrete multiple cytokines after proangiogenic 
stimulation, including HGF, insulin-like growth factor 1 (IGF1), FGF 
and VEGF [188-190]. Their interaction synergistically increases the 
secretion of pro-angiogenic mediators and supports the differentiation 
process. Co-cultivation of CD14+ and CD34+ cells isolated from 
peripheral blood was able to create an endothelial layer on 3D scaffold 
more effectively than CD34+ cells alone [188,190,191]. Although this 
mechanism increases the endothelial differentiation in vivo as well as in 
vitro, the effectiveness of the system remains low due to the immature 
structure of the cultured EC networks. Despite this fact CD14+ or 
eEPCs are an important contributing factor in the process of vascular 
regeneration [192]. 

Recently mesenchymal and endothelial cell co-cultures have been 
studied to describe the influence of paracrine signaling between cell 
populations throughout the vasculogenic process. It was shown, that in 
endothelial-mesechymal co-cultures. Mesenchymal stem cells (MSCs) 
acquire pericyte phenotype and promote generation of vasculatory 
network [193-195]. Examination of the MSCs isolated from four 

Table 3: Biomaterials, cell cultures and research models used for preclinical studies in recent years. (Abbreviations: CT - currently ongoing clinical trials, PGA – polyglycolic 
acid, PCLL - a copolymer of polylactic acid and caprolactone, PLA – polylactic acid.)

 Biomaterials Cells Long-term pat. Model Dimensions CT References
2006 Self-assembly ECs 5-8 weeks maccaques large-diameter CT [71]
2010 PGA/PCLL BM-MNCs 5,8 years clinical t. large-diameter CT [103,145]
2010 PLA, fibrin SMCs, ECs, fibroblasts 6 months sheep small-diameter - [118]
2011 Decellularised art. SMC and ECs 4 months sheep small-diameter - [146]
2011 Polyester/collagen SMCs and ECs 8 weeks pig small-diameter - [147]
2011 Self-assembly/PGA ECs 5-8 weeks baboons small-diameter CT [131]

Table 4: Angiogenic growth factors involved in vasculogenesis with a brief description of their essential roles in the process. The signaling factors are arranged in 
chronological order according to their function.

Growth/signaling f. Molecular type Function References
VEGF Cytokine Initiator of vessel remodeling and repair  [72,157,158]
bFGF Heparin-binding protein Initiates proliferation of EC and SMCs  [72,159]
HGF Mitogen Stimulates growth of ECs  [160]
PDGF Mitogen Recruits SMCs, promotes maturation of the blood vessel  [72,161,162]
Angiopoietin-1 Growth factor Promotes blood vessel maturation, regulates homeostasis  [163]
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distinct tissues demonstrated that this ability is shared among MSCs. 
In the native tissues pericytes reside in close proximity to ECs. They 
encompass blood microvessels, and coproduce a basement membrane 
with ECs demonstrating that pericyte-endothelial interaction plays 
a key role in basement membrane formation, remodeling and 
maintenance [196-199]. Furthermore, pericytes have been shown to 
be critical regulators of vascular development, maturation, remodeling 
and maintenance of homeostasis by production of angiogenic 
stimulants including transforming growth factor β (TGFβ), PDGF 
and angiopoietin-1 [200-203]. Moreover several models ofpericyte-
endothelial co-cultures showed best results in direct cell-cell contact 
co-cultures [195,204]. It was shown that pericytes are also present 
around an engineered blood vessel and are essential for de novovessel 
formation [197,205].

A 3D microvascular model of co-culture of endothelial cells and 
various other cell populations including lung fibroblasts, cancer 
cells and pericytes, investigated the effect of cell populations during 
critical phases of vascularization. Interestingly it showed that lung 
fibroblast-produced chemotactic gradient was required for both 
vasculogenesis and angiogenesis [206]. Without fibroblast co-culture 
Human Umbilical Vein Endothelial Cells (HUVECs) were not able to 
form intra-connected networks. Later in the process MSCs co-culture 
created a well intra-connected network. However, in accordance with 
in vivo studies this network was non-perfusable which suggests an 
essential unknown paracrine variable in the process.

Even though, to date, a perfusable 3D vascular system has not 
been created, mounting evidence shows that the synergistic effect 
of paracrine signaling of multiple cell populations has the potential 
to establish a working model. As we indicated stem cell populations 
used for vascularization show significant plasticity, and can undergo 
the differentiation process or Trans-differentiate depending on the 
microenvironment and presence of other cells. 

Conclusion
Several experimental avenues have been taken for the engineering 

of functional blood vessels in vivo. Currently, many of these approaches 
are in the phase of clinical trials. Some have encountered encouraging 
results, mostly in engineering of large-diameter vascular grafts. 
However, modern tissue engineering is still not able to restore the 
function of small diameter arteries. Nonetheless, all of these approaches 
have solidly established proof of the principle that it is possible to 
engineer a transplantable blood vessel, functional and durable in vivo. 
Yet none of the techniques has received any widespread application. 

In this review, we summarized the tissue engineering approaches 
that are currently under investigation. We have focused mainly 
on the various cell populations involved in the process of vascular 
reconstitution. We have documented all the known methodologies for 
the detection and isolation of distinct EPC populations and gathered 
information about their interaction with other cell types in co-cultures 
and in in vitrovessel engineering conditions. It has been shown that 
vascular graft constructs do not require a pure EPC culture. Co-
cultures possess the advantage of reciprocal angiogenic stimulation 
and are able to more closely mimic the physiological conditions in the 
site of injury. The creation of an appropriate microenvironment for 
EPC differentiation and maturation is a priority for the construction 
of a vascular graft.
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