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Abstract
Part 2 of this study illustrates the applications of the frequency domain force model put forth in Part 1 for three 

common helical cutters: the square, taper, and ball end mills. The respective geometric and boundary functions 
required for the evaluation of the force spectra are derived by applying differential geometry to these three types 
of cutters including cutters of constant helix angle and constant helix lead. By virtue of the explict expression of 
Fourier coefficients of milling force, the differences between cutting forces generated by two cutters with constant 
helix angle and constant helix lead can be described quantitatively. In slot (or half slot) milling for the taper end mills 
with a constant helix angle and constant helix lead, the strategy for selecting axial depths of cut to reduce force 
pulsation is presented respectively. Also derived are the specific expressions for the average forces of these three 
helical cutters in common cutting configurations. Moreover, as an inverse application, a linear equation is formulated 
for the identification of six shearing and ploughing cutting constants from the measured average cutting forces for 
a general helical cutter. The frequency domain force model and the identification of the cutting constants are finally 
demonstrated and validated through experiments with all three types of milling cutters.

Keywords: Ball-end milling; Taper-end milling; General helical mill; 
Differential geometry

Introduction
The convolution force model and the force spectra characteristics 

of a general helical milling cutter has been presented and analyzed in 
Part 1 of this paper. It has been shown that the composing structures of 
the milling force in the angular and the frequency domain are the same 
for different types of helical cutters. Also the frequency spectra of the 
milling forces are shown to be characterized by the geometric functions 
of the helical cutting edge and by the cutting boundary functions which 
are determined by the axial and radial cutting depths. Therefore, the 
task of establishing the specific milling force models for any type of 
helical cutter is reduced to finding the analytic expressions for the line 
geometry of its helical cutting edge, as well as the expressions for the 
cutting boundaries including the entry and exit angle and the limits of 
the radial angle immersion. Although this generalized analytical model 
is applicable for any cutter with an analytically definable cutting edge, 
the second part of this paper will only illustrate its application for three 
common industrial helical end mills: the square, taper, and ball end 
mills.

Kinematics and cutting forces for the square end mill dates back 
to Martellotti [1,2]. However, force models for cutters other than 
the face milling cutter and square end mill only began in the 1990’s. 
Yang and Park [3] could have been the first to present a force model 
for the ball-end mill. In their work, the force model is based on the 
fundamental mechanics of orthogonal cutting and explicitly considers 
the effects of the shear angle, shear stress and friction angle. Other 
researchers [4-7] have studied the force model for the ball end mill 
with a mechanistic local force model, in which cutting constants are 
assumed to be proportional to the uncut chip area and are obtained 
through milling experiments. Unlike the mechanistic local force 
model, Sonawane and Joshi [8] presented a analytical force model for 
the ball-end milling of superalloy Inconel 718 considering strain, strain 
rate, and temperature dependence of work material shear strength by 
applying Johnson–Cook material mode. The model analysis shows that 

there is a significant compression in the chip along its length. The 
taper end mill is not as common as the square or ball end mills in 
its industrial uses and has received less attention in the study of 
its force model. Ramaraj and Eleftheriou [9] used oblique cutting 
theory in establishing the force model for a taper end mill. Based 
on the mechanistic local force model, Huang and Whitehouse 
[10] obtained the total forces through numerical integration for a
taper end mill. Instead of dealing with a helical cutter of specific
geometry, Altintas et al. [11,12] presented force and process models
for a general helical cutter through numerical integration and
simulation. With emphasis on the composing structure of the milling 
forces, the present frequency domain force model is established
using a systematic bottom-up approach through the principles of
differential geometry, and can be de-generalized to accommodate
any helical cutter of definite geometry. In the following, the required 
geometric and cutting boundary functions will be derived for the
cylindrical, taper and ball end mill to complete the force model for
each respective cutter. Expressions for their average forces are also
derived and subsequently used for the identification of shearing and 
ploughing constants for each cutter. The dual-mechanism frequency
domain force model and the cutting constant identification formula are 
finally validated through milling experiments with all three types of cutters.
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Geometric Functions and Cutting Boundary Functions 
for Common Helical Cutters

The evaluation of the Fourier coefficients for a specific cutter 
requires its geometric functions in ψ(β) and h′(β), as well as the cutting 
boundary functions in β1, β2, θ1(β) and θ2(β). Although the geometric 
functions can be completely determined for any mathematically 
definable cutter, the boundary functions depend not only on the cutter 
geometry but also on the axial and radial depths of cut and the relative 
position of the work with respect to the cutter. As illustrative examples, 
the boundary conditions are derived based on the typical cutting 
configurations shown in Figure 1.

Square end mills

For the square end mill shown in Figure 1a, it is clear that the cutter 
radius is a constant R and the axial elevation angle is also a constant 
with ψ=90o. It is assumed that the helix angle is constant and so is the 
helix lead,

( )
tan

Rh' β
α

=  and ( )
tan

Rh β β
α

=                           (1)

 From (1), the end points of the radial cutting range are found to be 
β1=0 and β2=da tanα/R. With a constant radial depth of cut and radius, 
the entry/exit angles are also constants, which are

θ1 =0 and 1cos (1 )2
dr
R

θ −= −  in up milling and 

1
1cos (1 )dr

R
θ −= −  and θ2 =180 in down milling 

Thus, for square end mill, the geometric and boundary functions 
all have constant values. Substituting these constants, the expression 
for the Fourier coefficients in Part 1 of this paper is de- generalized to a 
closed form expression similar to that presented in ref. [13]:

θ1 =0 and 1cos (1 )2
dr
R

θ −= −  in up milling and 

1
1cos (1 )dr

R
θ −= −  and θ2 =180 in down milling 

Thus, for square end mill, the geometric and boundary functions 
all have constant values. Substituting these constants, the expression 
for the Fourier coefficients in Part 1 of this paper is de- generalized to a 
closed form expression similar to that presented in ref. [13]:
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∑ ∑∫ q P q P

P P

         (2)

where H(Nk) is the Fourier transform of the windowed chip width 
density function, H′(ω), evaluated at ω =Nk. The frequency spectra 
are explicitly determined by the product of Piw(Nk) and H′(Nk). The 
values of Piw(Nk)’s are related to the radial depth of cut and have been 
discussed in Part 1 of this paper. Spectra characteristics of H′(ω) are 
similar to those of the radial cutting window function, Wr(ω), discussed 
in Part 1 with periodic zeros at ω=2kπ/β2. β2 is in turn determined by 
the axial depth of cut through Eq. (1); therefore, the value of H′(Nk) can 
be shown to vanish at axial depths of cut with 

2 1,2...
. tan
m Rda m

N
π
α

= =   (3)

Under these axial depths of cut, the dynamic forces will vanish 
completely regardless of the values of Piw(Nk)’s and only the average 
forces remain in the X, Y and Z directions.

Taper end mills

For a taper end mill shown in Figure 1b, the axial elevation angle ψ0 

is a constant and the radius of the cutter is a linear function of h: 

R(h) = Ro + h cotψ o  (4)

The radial depth of cut for the configuration shown becomes

dr(h) = dro + h cotψ o (5)
 The entry and exit angles are therefore no longer constant as in 

the case of the cylindrical end mill and can be determined from Eq. 
(2) as a function of h. The curvilinear geometry of the cutting edge is
generally defined by two types of helical functions: constant helix angle 
or a constant helical lead.

i) For a taper end mill with a constant helix angle, α0, the helix lead 
is

( ) ( )
tan
Rdhh'

d ο

β
β

β α
= =                                                              (6)

Substituting Eq. (4) into (6) and considering the boundary 
condition of β=0 at h=0, h(β) can be shown to be:

( ) cot
(exp ( ) 1)

cot tan
ψο οβ β

ψ αο ο
= −

Rh                              (7)

Substituting Eq. (6) into Eqs. (3), (4) and (5) results in

( ) cot
R = R exp ( )

tan
ο

ο
ο

ψ
β β

α
  (8)

Figure 1: Cutting geometry for (a): a cylindrical end mill, (b) & (c): a taper end 
mill, and (d) & (e): a ball end mill.
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0 0
cot

( ) (exp ( ) 1)
tan

dr dr R ο

ο

ψ
β β

α
= + −  and 0 cot

( ) exp ( )
tan tan

R
h' ο

ο ο

ψ
β β

α α
=             (9)

From Eqs. (1) and (8), the entry/exit angles along the cutting edge, 
θ1(β) and θ2(β), can be obtained. The radial range of immersion starts 
at β1=0 with h1=0 and ends at β2, which can be found from Eq. (7) to be

 a
2

0

d costan ln(1 )
cos R

ο

ο

ψαβ
ψ

= +                                                        (10) 

ii) For a taper end mill with a constant helix lead with

 
0

( )
tan

R
h' οβ

α
=                                                          (11) 

where αo is the nominal helix angle at the bottom of the cutter at 
h=0 with β=0, its cutting edge is defined by the following constraint 
equation,

0tan
R

h ο β
α

=                                                           (12) 

The cutter radius as a function of β can be found from Eq. (4) to be
cot

R( ) cot
tan
o

o o
R

R h R ο
ο

ο

ψ
β ψ β

α
= + = +                                                (13)

For the cutting configuration shown in Figure 2b, the radial depth 
of cut as a function of β becomes

cot
( ) ( )

tan
o

o o
R

dr R C ο

ο

ψ
β β

α
= − +                                                     (14)

For a milling process with consecutive passes as shown in Figure 
2c, the radial side step dr0 will be the radial depth of cut for each cutting 
point so that dr(β)= dr0. The entry and exit angles as a function of β and 
can be found from Eq. (2) together with Eqs. (12) and (13). The two end 
points of the radial engagement are

1 0β =  and 0
2

tana

o

d
R

α
β =                                                           (15)

The required boundary functions and the helix lead for two 
types of taper end mills has been derived in the above so that Fourier 
coefficients of the milling forces can be calculated. Although these two 
types of taper end mills have different mathematical representations, β 
as function of h for both cutters are found to be practically the same for 
a typical α0=30° cutter with h/R0<1 as shown in Figure 2 for cutters of 
four different taper angles. Therefore, the helix lead and the boundary 
functions can be treated equally for both types of taper end mills and 
their milling forces can be inferred to be practically the same.

It should be noted that the Fourier coefficients of cutting forces for 
taper end mills in slot milling or half slot milling can be expressed in a 
closed form like Eq. (3):

1 1w 2 2w
. '( )[N ] ( ( ) ( ) ( ) ( ))

2
N H Nkk Nk Nkψ ψ

π
= +A q P q P                                        (16)

Since H′(ω)have periodic zeros at ω=2kπ/β2, H′(Nk) can be shown 
to vanish at axial depths of cut with

2
1,2...

. tan
π
α

= =0
t1

0

m R
da m

N
(for mill with a constant 

helix lead)                               (17a) 

2 cot
(exp( ) 1) 1,2...

cot . tan
ο ο

ο ο

ψ
ψ α

= − =t2
R m

da m
N

 (for mill with a constant 

helix angle)                          (17b)

which indicates that selecting the axial depths of cut as in (17a) or 
(17b) in slot milling and half slot milling can only get average, or DC, 
force component, in which dynamic force components due to shearing 
and ploughing mechanism will vanish completely regardless of the 
flute number of taper end mill. However, when N < 8 (i.e., β 2> π / 4 ), dat2 

is larger than dat2 under the same R0 for ψ > 40o as shown in Figure 2.

Ball end mills

The axial cross section profile of the ball-end cutter shown in 
Figure 1d is defined by

 dh = R0 sinψdψ                                                                                                                           (18)

As for the taper end mill, two types of curvilinear edges will be used.

i) A ball-end cutter with constant helix lead will have

( )
tan

οβ
α

=
0

R
h'                                                                              (19) 

where Ro is the ball radius and α0 the nominal helix angle at h=R0.

Combining Eqs. (15) and (18) with the boundary condition of ψ=0 
at β=0, ψ can be shown to be

1cos (1 )
tan
βψ
α

−= −
0

                                                                                (20)

The radius and radial depth of cut for a point at β along the helical 
edge thus can be expressed as

R( ) (2 )
tan tanο
β ββ
α α

= −
0 0

R   and 0( ) (2 ) c
tan tan
β ββ
α α

= − − 0
0 0

dr R                        (21)

from which the entry and exit angles as function of β can be found. 
For the configuration shown in Figure 2d for shoulder milling, the end 
points of the radial engagement are determined by

2 0
1 0 2

c tan
tan (1 1 ( ) ),

α
β α β= − − =0 a

0 0

d
R R                                                  (22)

ii) For a ball-end cutter with constant helix angle, α1, its helix lead 
becomes a variable defined by

1 1

sin( )( )
tan tan

RRh' ο ψψβ
α α

= =                                                                   (23)

Combining Eqs. (15) and (22) will have

  
1

1
tan

d
d
ψ
β α
=                                                (24)

Given the boundary condition of ψ=0 at β=0, ψ  can be shown to be

Figure 2: Variation of β with respect to cutter height, h/Ro, for two types of 
taper end mills; ‘+’: constant helix lead and ‘*’: constant helix angle. α0 =  α = 
30° (a) ψ = 85°, (b) ψ = 70°, (c) ψ = 55°, and (d) ψ = 40°.
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1tan
βψ
α

=                                                                       (25)

The radius and radial depth of cut for a point at β along the helical 
edge thus becomes

1
( ) sin( )

tanoR R ββ
α

=  and 0
1

( ) sin( ) c
tanodr R ββ

α
= −                              (26)

The integration limits β1 and β2 are determined by the upper and 
lower limits of the axial depth, da1 and da2 by

1 1
1 1

0
tan cos (1 )

da
R

β α −= −  and 1 2
2 1

0
tan cos (1 )

da
R

β α −= −               (27)

The major difference between cutters of constant helix lead and 
constant helix angle is reflected in their β(ψ ) functions, which can be 
obtained from Eqs. (20) and (25) as

0tan (1 cos )clβ α ψ= −  and 1tancaβ ψ α=                                (28)

where βcl and βca represent the radial angle of the cutter with 
constant lead and constant helix angle respectively. βcl and βca as a 
function of ψ are plotted in Figure 3 with the assumption of α0 = α1 
=30°. It is shown that βcl and βca are almost in parallel to each other at 
ψ>0.57 or equivalently h/R0>0.15. Within this region, βcl and βca can be 
related to each other by the following expression,

 
1( 1) tan

2cl ca
πβ β α≈ − −                                                           (29)

at a given ψ or h position. Furthermore, the helix lead dh/dβ can be 
shown to also be the same.

Assuming the cutting region is not confined to the bottom center, 
as in the case of Figure 2d, the phase difference in Eq. (29) will be 
reflected in the phase shift of the total milling forces based on the 
modified convolution theorem as presented in this study. Given the 
same cutting conditions and cutting constants for both types of cutters, 
the Fourier coefficients of the milling forces for the two types of ball-
end cutters can be shown to have the following relationship:

cl 1 chA [Nk]= ( 1) tan A [Nk]
2

EXP(-jNk π α−                                              (30)

There exists a phase difference of Nk(π/2-1)tanα1for each kth 
harmonic coefficient while the phase difference is a constant in the angle 
domain. Figure 4 shows the results of numerical simulation for the two 

types of cutters with α0=α1=30° in the shoulder milling configuration 
as shown in Figure 1d. The phase difference is shown to be about 18o. 
Figure 1e shows the common step-over milling process for a ball-end 
mill. For the purpose of finding the milling forces, this milling process 
can be treated as the combination of a slot milling process and a regular 
milling process with a constant radial depth of cut. The total milling 
forces are therefore the sum of forces from these two milling processes:

(a) For 0 ≤ h ≤ da1, this is a slot milling process with the axial depth, 
da1, determined by the ball radius R0 and the side step dr0 with

2 2
1 0 0 ( )

2
odr

da R R= − −                                                     (31)

Within this cutting region, the entry and exit angles are θ1=0 and 
θ2=π, and the axial cutting range starts from 0 and ends at β2, which is 
determined by da1 through Eq. (22) or Eq. (27).

(b) For da1 ≤ h ≤ da2, the entry and exit angles are determined 
from Eq. (2) by the step size, dr0, and R(β), which is derived from Eq. 
(21) or (26). The end points of the radial engagement range are β2 and 
β3, which  correspond to the axial depths da1 and da2 according to Eq. 
(22) or Eq. (27). Geometric functions thus have been derived for cutters 
of three external profiles and of five different helical geometries. The 
entry and exit angles of the boundary functions are obtained mostly 
indirectly by showing the cutter radius and radial depth of cut as a 
function of β. Fourier coefficients can be readily evaluated for these 
cutters and the selected cutting configurations.

Except for the case of the cylindrical end mill, a closed form 
expression for the Fourier coefficients of the frequency domain forces 
model cannot be derived owing to the presence of transcendental 
functions, ψ(β )h’(β)Piw(ω, β), in the integrand, and numerical 
integration will be required for their evaluation.

Average Forces for the General and Common Helical 
Cutters

Among the Fourier coefficients for the milling forces, the average 
forces are the easiest to obtain. They have also been known to have a 
strong influence on the stability and dimensional error problems of the 
milling processes. Analytical expressions for the average forces should 

Figure 3: Variation of β with respect to the axial elevation angle ψ for two types 
of ball-end mills; ‘+’: constant helix angle ‘*’: constant helix lead. α0 =  α = 30°.

Figure 4: Simulated cutting forces for two types of ball-end mills; ‘+’: constant 
helix angle and ‘*’: constant helix lead. α0 = α = 30°, R0 = 8 mm, da = 7 mm, co 
= 3 mm, tx = 0.07 mm/tooth, N = 4, down milling.
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facilitate the analysis and understanding of these problems. In this 
section, general expressions for the average forces for the helical end 
mills and specific expressions for three types of cutters will be derived 
and their characteristics discussed.

A general expression for the average forces of a general helical end 
mill can be written by setting ω=0 in the Fourier coefficient expression 
of the milling forces such that:

2

1

2

iw
1

A[0]= ( ) ( ) (0, )
2 i

i

N h' d
β

β

β β β β
π =
∑ ∫ q P                                                (32)

Where
( )2

( )1

1w

1 cos 2
4

1 1(0, ) ( sin 2 )
2 2

cos

θ β

θ θ β

θ

β θ θ

θ
=

 − 
 
 = − 
 −  
 

P and 

( )2

( )1

2w

sin
(0, ) costpk

θ β

θ θ β

θ
β θ

θ =

 
 = − 
 
 

P              (33)

Eq. (32) shows that the average forces are proportional to the 
flute number and are physically the sum of the local average forces 
contributed by all cutting points along the cutting edge. Eqs. (32) 
and (33) are applicable for all types of helical cutters. Eq. (33) can be 
simplified for the common up and down cut configurations. For up 
milling, θ1=0 and Eq. (33) can be reduced to

2

1w 2 2

2

1 (1-cos 2 )
4
1 1(0, ) ( sin 2 )
2 2
1 cos

ts xk t

θ

β θ θ

θ

 
 
 
 = − 
 −  
 

P  and 
2

2w 2

2

sin
(0, ) 1 costs xk t

θ
β θ

θ

 
 = − 
 
 

P              (34)

And for down milling, θ2=π, Eq. (33) becomes

1

1w 1 1

1

1 (cos 2 1)
4
1 1(0, ) ( ) sin
2 4
1 cos

ts xk t

θ

β π θ θ

θ

 − 
 
 = − + 
 +  
 

P  and 
1

2w 1

1

-sin
(0, ) 1 costs xk t

θ
β θ

π θ

 
 = + 
 − 

P                         (35)

With the geometric functions and the boundary functions derived 
in the previous sections, the average forces in Eq. (32) can always be 
obtained by the numerical integration presented in part 1. However, 
simpler forms of expressions for the average forces can be derived 
under some special cutting conditions and their evaluation can be 
simplified.

For a cylindrical end mill as shown in Figure 1a, Eq. 
(32) can be reduced to the following closed form expression: 

1w 2w

1 01 0
A[0] 1 0 (0) 1 0 (0)

2
0 0 0 0

rprs
a

rs rp

rs rp

kk
Nd

k k
k k

π

      = − + −      − −     

P P                         (36)

For the taper end mill with constant helix angle, Eq. (32) is reduced 
to

2

iw
0 01 0

cot
A[0] ( ) exp( (0, )

2 tan .tan

a

i
i

RN ) d
N

β
ο ο

ο
ψ

ψ β β
π α α=

= ∑ ∫q P                         (37)

and for the taper end mill with constant helix lead, Eq. (32) becomes
2

iw
0 1 0

A[0] ( ) (0, )
2 tan

a

i
i

RN d
β

ο
οψ β β

π α =

= ∑ ∫q P                                               (38)

The evaluation of average forces still requires numerical integration 
for most cutting configurations except for the following special cutting 
conditions.

In the special cases of half slot and slot milling conditions a single 
closed form expression for the average forces can be obtained for all 
types of helical cutters. For the slot milling process, θ1=0 and θ2=π, the 
two vector functions in Eq. (33) are reduced to constant values with

For half slot milling, these two vectors also have constant values. 
For up cut configuration, they are

1

1w 2

3

(0) 0.5
(0) (0) 0.25

1(0)
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P
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and for down cut,
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3
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P
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Since these Pi(0)’s are constant, Eq. (32) becomes an analytically 
integrable form for the slot and half slot milling conditions:
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In which
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  (45)

The axial immersion angle, ψa, in Eq. (45) for the ball-end cutter 
can be found directly from Eq. (20) or (25). Values of Qi’s for the 
square, taper, and ball end mills are listed in Table 1.

Eqs. (42-45) for the average forces in the slot or half slot milling 
conditions are applicable not only for the three types of cutters 
discussed here, but also for all helical cutters of different external 
profile and curvilinear geometry. Assuming the cutting constants are 
the same, it is therefore shown through these equation that the average 
forces in slot or half slot milling are independent of their helical lead, 
h’(β), and are only dependent on the external profile of the cutter 
through function h(ψ) in Eq. (45).
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Identification of the Shearing and Ploughing Cutting 
Constants

For all types of milling force models, both in the numerical or 
analytical form and in the angle or frequency domain, the accuracy of 
the force prediction bears on the trueness of the cutting coefficients. 
However, cutting constants are difficult to predict and are mostly taken 
or calculated from a pre-established database through elaborative 
cutting tests. The analytical nature of the presented frequency domain 
milling force model allows the direct identification of the six unknown 
cutting constants from the measured milling forces. With the least 
signal processing and mathematical complexity required as well as 
considering the simplicity for the test set up, the cutting constants 
can be identified using the closed-form expression of Eq. (42) for the 
average cutting forces in the slot or half slot milling operation. Eq. (42) 
can be rearranged as the following linear equation in the unknown 
shearing and ploughing cutting constants:

[0] [0] [0]
[0] [0] [0]

2 2
[0] [0] [0]

x x x
x

y y y s s

z z zshearing ploughing

A A A
NR t NR

A A A

A A A

ο ο

π π

     
     

= + = +     
     
     

p pT k T k                         (46)

where 
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kQ P Q P Q P
Q P Q P Q P k k

Q P Q P k k
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and 
5 4 6 5 4 5
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kQ P Q P Q P
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Q P Q P k k

  
  = − − =   
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p pT k                             (48)

Three equations for the three average force components can be 
obtained from each cutting test. Therefore, two sets of measured 
average cutting forces data with different cutting conditions are 
required to make up the system of equations in solving the six cutting 
constants. By regrouping the matrix equation in (46), a closed form 
formula for the identification of the six cutting constants can be written 
for a general helical end mill as follows:
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and subscripts ‘1’, ‘2’ indicate the two different cutting tests.
Both the cutting tests and the computations can be further 

simplified if the same cutting conditions, except the feed speed are 
chosen for these two slot or half slot milling processes. In that case, the 
T matrix in Eq. (49) becomes

1

2

x s

x s

t

t
 

=  
  

p

p

T T
T

T T
                                                                                           (50)

Eq. (49) or Eq. (50) has provided a convenient formula for the 
identification of six shearing and ploughing cutting constants for all 
types of helical cutters through two cutting tests with the slot or half 
slot milling condition.

Experimental Validation 
Milling experiments were carried out to verify the frequency 

domain force model and the identification formula for the cutting 
constants. The cutting forces were measured with the Kistler 9255B 
dynamometer. Three different work/cutter pairs are used: a tapered end 
mill with AL7075-T6, a ball-end mill with AL2024-T4 and a cylindrical 
end mill with AL2024-T4. Typical yield and tensile strengths are 503 

MPa and 572 MPa respectively for 7075-T6, and 325 MPa and 470 
MPa for AL2024-T4. With average uncut chip thickness ranging from 
0.02 to 0.1 mm, five sets of cutting constants are identified from 10 slot 
milling tests for each type of cutter and are shown with respect to the 

Figure 5: The identified cutting constants vs. average chip thickness. (a), (b), 
and (c) are for the tangential, radial, and axial shearing constants. (d), (e), and 
(f) are for the tangential, radial, and axial ploughing constants. ‘o’: ball end mill, 
‘+’: taper end mill, and ‘*’: square end mill.

Cutter type
Coefficients due to shearing Coefficients due to 

ploughing

Q1 (0) Q2 (0) Q3 (0) Q4 (0) Q5 (0) Q6 (0)

Cylindrical  
end mill ad 0

ad 0
ad ad

Taper end mill ad 0cosad ψ 0sinad ψ 0cotad ψ 0cscad ψ
ad

Ball end mill
ad

2sin
2

aψ sin 21 ( )
2 2

a
a

ψ
ψ − sin aψ ad

ad

Table 1:  Directional coefficients for the average cutting forces in slot milling 

0/a ad d R= .

No. da(mm) tx1(mm/tooth) tx2 (mm/tooth) t (mm)
1 4 0.0563 0.0688 0.0398
2 4 0.0812 0.0928 0.0557
3 4 0.106 0.119 0.0716
4 4 0.131 0.144 0.0875
5 4 0.156 0.169 0.1035
6 6 0.0469 0.0563 0.0327
7 6 0.0656 0.075 0.0446
8 6 0.0844 0.0938 0.0565
9 6 0.103 0.113 0.0684

10 6 0.122 0.131 0.0803
11 3 0.0668 0.0843 0.0315
12 3 0.0938 0.106 0.0421
13 3 0.119 0.131 0.0526
14 3 0.144 0.156 0.0631
15 3 0.169 0.188 0.0749

Table 2: Cutting conditions for the identification of cutting constants. Spindle speed 
= 400 rpm, dry slot cut. No.1-5 are the cylindrical end mill with N = 2, R = 5 mm, α 
= 30°; No.6-10 are for the taper end mil with N = 4, Ro = 5 mm, α = 30°, ψο= 85°; 
No.10-15 are for the ball end mill with N = 2, Ro = 5 mm, αo= 30°.
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average chip thickness in Figure 5. The three shearing related constants 
in Figure 5a-c for each work/material pair are shown to increase slightly 
with decreasing chip thickness, which could be possibly explained by 
the size effect. The power related tangential shearing constant kts is the 
most significant contributor of all to the milling forces. The tangential 
shearing constant of the AL7075-T6 with the taper end mill is almost 
twice that of the AL2024-T4 with the ball and cylindrical end mills. 
The greater difference in the shearing cutting constant seems to reflect 
more than the mechanical strength of the work material and could be 

Cutter / work 
material

Shearing constants Ploughing constants 
kts (MPa) krs kas ktp (N/mm) krp kap

Taper end mill/
AL7075-T6 1285 0.28 0.12 11.3 1.42 0.13

Cylindrical end mill/
AL2024-T4 660 0.18 0.21 16.1 0.76 0.13

Ball end mill/
AL2024-T4 631 0.35 0.03 25 0.8 0.05

Table 3: Averages of identified cutting constants.

 
Figure 6: Predicted and measured forces for a taper end mill. Work material: AL7075-T6. N = 4, R0 = 5 mm, ψο =  85°, α = 30°, da = 8 mm, dr0 = 4 mm, tx = 0.125 
mm/tooth, 400 rpm, dry cut. ‘-’: measured, ‘o’: predicted.
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partly attributed to the worn tool edge of the taper end mill. The ball 
and square end mills are both new cutters while the taper end mill is 
in a used condition. All three ploughing constants for three cutters 
also remain relatively flat, even showing some reverse trend, Figure 
5d-f. This slight decrease of ploughing constants with decreasing chip 
thickness might be explained by the smaller tool edge deformation 
thus less flank contact area due to the smaller chip load. Compared 
with the shearing constant, the tangential ploughing constant has a 
relative small value. However, the ploughing force will be the same as 

the shearing force for chip thickness in the range of 0.01 to 0.03mm, 
which is well within the range encountered in finish milling. As the 
feed per tooth and the radial depth of cut get smaller such as in high 
speed milling, the ploughing force will become more significant and its 
stronger presence should warrant closer examination of its effect on 
the milling process.

From these identified cutting constants, it is reasonable to use 
the average cutting constants for cutting force predictions without 

Figure 7: Predicted and measured forces for a cylindrical end mill. Work material: AL2024-T4. N = 2, Ro = 5 mm, da = 3 mm, dr = 3 mm, tx = 0.075 mm/tooth, 
N = 4 flutes, α = 30°, 400 rpm, dry cut. ‘-’: measured, ‘o’: predicted.
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incurring significant error. The average cutting constants for different 
cutters are listed in Tables 2 and 3 and are used to predict the milling 
forces for additional cutting tests with different cutting conditions 
and configurations. The predicted cutting forces are calculated by first 
finding the Fourier coefficients up to the sixth harmonics by numerical 
integration with QUAD8 function in Matlab. The angle domain forces 
are subsequently obtained through Fourier series expansion using 
inverse Fourier transform function in Matlab. The predicted and 
experimentally measured milling forces are shown to coincide very well 

in both the angular and frequency domain as illustrated in Figure 6-8. 
The Frequency spectra of these milling forces are shown to decrease 
rapidly as predicted and assume significant magnitude only up to the 
third harmonics. Sine the Fourier coefficients A[Nk] and A[-Nk] are 
complex conjugates, only four numerical values for k from 0 to 3 for 
each force component would be adequate in representing the periodic 
milling forces.

The forward application of the force model in predicting forces and 
the inverse application for the identification of cutting constants thus 

Figure 8: Predicted and measured forces for a ball end mill. Work material: AL2024-T4. N = 2, R0 = 5 mm, da = 3 mm, c0 = 1 mm, tx = 0.1 mm/tooth, α0 = 30°, 
400 rpm, dry cut. ‘-’: measured, ‘o’: predicted.
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proves the validity of the presented frequency domain force model for 
a generalized helical end mill. Not only are the composing structures 
and the derived force expressions verified, the basic assumption of 
constant cutting coefficients with the dual cutting mechanisms for the 
local forces are also found to be acceptable for the milling process. The 
fact that these cutting coefficients can be treated as constants within a 
reasonable range of chip thickness is of great significance in validating 
the presented model as a linear force model, thus facilitating its further 
application in the analysis of milling processes.

Conclusions
Specific applications of the frequency domain force model are 

illustrated for three common cutters. Geometric functions for the 
cutter profile, helix lead and entry/exit angles are derived for the 
square, taper and ball end mills so that numerical values of the force 
spectra can be calculated for these cutters. For both taper and ball-end 
cutters, geometric functions for the cutters with a constant helix lead 
and constant helix angle are separately derived. Assuming the cutting 
constants are the same, the forces for these two types of taper end mills 
are shown to have little difference when the axial depth of cut is smaller 
than the bottom radius. The axial depths of cut can be selected to 
reduce the force pulsation for the square end mill in peripheral milling 
and taper end mill in slot and half slot milling. The chosen depth of cut 
for taper end mill with a constant helix angle is larger than that with a 
constant helix lead under the same bottom radius when N < 8 and ψ 
> 40o.

For the ball-end mills, different helical geometry is shown to only
result in a predictable phase difference in the milling forces when the 
range of axial depth of the cut is not constrained within the bottom two 
tenths of the ball radius.

A general expression for the average forces of common cutting 
configurations has been derived for all types of helical cutters. The 
average forces for slot and half slot milling conditions are presented in 
a simple closed-form expression and are shown to only be dependent 
on the external profile of the helical cutter. From this expression for 
the average forces, an inverse application of the analytical force model 
is demonstrated to identify the unknown cutting constants from the 
measured average forces. Milling experiments for each type of cutter 
were carried out to verify the predictive accuracy of the frequency 
domain force model and the effectiveness of the identification formula 
for the six cutting constants.

Based on its analytical nature, this convolution force model can 
be further explored for other potential applications including the 
monitoring and identification of other process parameters and using 
the model as a tool in the design of special helical cutter for the desired 
force characteristics.
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