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Introduction
Fluorination became the more radical approach for modification 

of leading compounds in medicinal chemistry [1,2]. Due to its small 
size and high electronegativity, fluorine forms a strong covalent bond 
with carbon, shows a significant impact on neighboring groups that 
alter the stability and reactivity of the molecules, helps to creates more 
stable protein folds [3,4]. Fluorinated amino acids were synthesized 
a long time back and showed significant physiological activity [5]. 
Nevertheless, some of these analogues have more applications than 
others due to their availability, biological activity and role in protein 
structure and functions. Several newly synthesized analogues over 
the past decade have not yet been pursued far enough to study their 
biological activities (Table 1). 

One of the major applications of these analogues is to study protein 
structure and function. Protein engineering has been restricted to 
naturally-occurring amino acids. However incorporation of un-natural 
amino acids into proteins in living cells has been expanded based on 
the availability and applications in protein engineering and functional 
studies [6,7]. There are two ways of incorporating fluorinated amino 
acids into proteins, residue specific and site specific. Depending on 
the protein and its applications, one of these methods has been used 
for incorporation of amino acid analogues to study structural and 
functional properties of protein. For instance, residue specific labeling 
was used to examine the conformational changes of proteins and for 
detection of protein-ligand interaction by 19FNMR spectroscopy 
[8].  Incorporation of fluorinated aromatic amino acids into proteins 
increased its shelf life compared to the wild type which is one of the 
great benefits, especially in therapeutic proteins and vaccine studies [9]. 

Incorporation of theses un-natural amino acids into peptides 
based vaccines showed an enhanced catabolic stability, since antigenic 
peptides have short bioavailability [6]. Recent studies showed that 
fluorinated aromatic acids were able to distinguish the role of aromatic 
acid in peripheral membrane proteins and integral membrane proteins 
by destabilizing the cation-π interactions which helps to determine 
the role of particular aromatic amino acids in membrane-protein 
interaction [10]. 

Fluoro-Phenylalanine (FPhe)
One of the most studied fluorinated amino acid is phenylalanine; 

it has more analogues than any other amino acids (Table 1). Due 
to its flexibility in the substitution of fluorine in its aromatic ring, 
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Abstract
Fluorinated amino acids play a significant role in peptides and protein studies. These are known to enhance the 

stability of proteins folds and serve as valuable analogues for investigation of enzyme kinetics, protein-protein and 
ligand-receptor interactions. Due to the unique properties of fluorine, fluorinated amino acids are used as a powerful tool 
to study biological process and to develop anti-cancer reagents and vaccines. Previous reviews cover synthesis and 
applications of fluorinated amino acids in broad range; this short review provides the importance of fluorinated aromatic 
amino acids and the impact of fluorine substitution in its aromatic rings that facilitate the study of structure, function and 
stability of therapeutic proteins and peptides which have great potential for future therapeutic applications.
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Fluorinated phenylalanine (FPhe) analogues have been successfully 
incorporated into various proteins and enzymes, both residue specific 
[11,12] and site specific [13].  First 4-Fluoro phenylalanine (4FPhe) 
was site specifically incorporated into E. Coli by Furter et al., using 
PheRS/tRNAphe

amber pair from Saccharomyes cerevisiae [13]. The major 
advantage of this method is to introduce analogues non-selectively in 
any protein irrespective of size which gives better yields [13].  Apart 
from enhanced protein stability, fluorinated aromatic amino acids also 
alter the enzymatic activity and help in understanding the mechanistic 
process. The flexibility of fluorine incorporation has been studied 
using PvuII endonuclease to illustrate the differential effects of FPhe 
analogues on stability and activity of the enzyme [14]. Incorporation of 
3-Fluoro phenylalanine (3FPhe) in PvuII endonuclease shows similar
stability as wild type with two-fold increase in its activity. On the other
hand, 2-Fluoro and 4-Fluoro showed poor incorporation and decreased 
stability with less activity [14,15].  This is a good model that shows how 
fluorinated aromatic amino acid has an impact on enzymes and their
catalytic activity.

Most often, therapeutic vaccination procedures used immunogenic 
peptides that are derived from disease-associated proteins [6].  
Substitution of FPhe into these peptides sheds more light on its 
interactions and helps to develop better vaccines. For instance, 
incorporation of FPhe into immunogenic peptides derived from 
Wilms Tumor protein (WT1), allowed to study the class I major 
histocompatibility complex, MHC-peptide complex. The stability of 
this complex correlates with T-cell response [6]. Overexpression of WT1 
protein is identified in various cancerous cells and the peptides obtained 
from this protein have been used in therapeutic vaccines [6]. Incorporation 
of 2,3-difluoro-L-phenylalanine showed an enhanced affinity due to 
increase in hydrophobicity by fluorine substitution [6,15-17]. 

Likewise FPhe shows significant impact on endomorphin (EM) 
peptides studies. EM have the longest half-lives compared to all 
endogenous opioid ligands, but in order to consider them as a potential 
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therapeutic drugs it is important to increase their ability to enter the 
central nervous system  and their resistance to enzymatic degradation 
[18,19]. Incorporation of 4FPhe and other un-natural amino acids into 
EM increased its affinities for µ-opioid receptor in receptor binding 
assay [18].

Fluro-Tryptophan and Fluro-Tyrosine
Fluorinated tryptophan and tyrosine have not been used directly 

into therapeutic application but enzymatic studies using these analogues 
show substantial impact on its function. Fluorine substitution at 
different positions on indole ring of tryptophan affects its polarities that 
lead to an increased charge separation [15,20]. Out of all single fluorine 
substituted tryptophans, these 3 analogues, 4-Fluoro tryptophan 
(4FTrp), 5-Fluoro tryptophan (5FTrp) and 6-Fluoro tryptophan 
(6FTrp) has been used extensively due to their biological properties. 
4F-Trp was shown to abolish intrinsic tryptophan fluorescence, 
absorbance shifted to blue [21] due to its exceptionally low fluorescence 
quantum yields [22,23]. while the remaining analogues managed the 
changes in absorbance and emission maxima [22,24]. Hence, 4FTrp 
can be used as a non-fluorescent analogue to study the contribution 
of tryptophan fluorescence in the protein [24-26]. FTrp analogues has 

been used extensively to study conformational changes and protein-
ligand binding [27]. however very few studies has been reported in 
the therapeutic area. Cytostatic and cytotoxic effects of these analogue 
on MCF-7 cell line, showed that fluorinated tryptophan, tyrosine, 
and phenylalanine holds cytostatic activities, which can be used as 
a potential chemotherapeutics [28]. In vitro studies of these amino 
derivatives showed IC50 values (3–15 mm) comparable to the known 
anticancer agents [28-30]. 

Fluorinated tyrosines are more hydrophilic due to strong electron 
withdrawing inductive effect that increases the acidity of hydroxyl 
group. The position and number of fluorine atoms change the pKa of 
hydroxyl group of fluorinated tyrosine (Table 2). Since the pKa changes 
upon fluorination, fluorinated tyrosines were used as a biological probe 
to study the role of tyrosine in enzymatic process. 3-Fluoro tyrosine 
(3FTry) showed significant impact on glutathione S-transferase (GST) 
and fluorophore, green fluorescent proteins (GFP). In the case of 
GST, 3FTry helps to identity the location of mechanistic proton of the 
enzyme-glutathione binary complex [31]. 3FTry increased the acidity 
of hydroxyl group in the active site and decreased the catalytic activity 
towards 1-chloro-2,4-dinitrobenzene [32], whereas substitution of 
5FTrp increased the turnover number of 1-chloro-2,4-dinitrobenzene 
compared to the wild type [25,33]. Introducing fluorinated tyrosine 
in the active of GST shifts the proton location and shows protonated 
Glutathione [15,33]. Incorporation of 3FTry into GFP increased its 
stability at higher pH compared to WT-GFP, indicates that 3FTry 
labeled GFP can be used as a pH sensor [34]. These studies clearly 
shows that the impact of fluorinated aromatic amino acids on enzymes 
particularly when they are present in the active site.

Fluoro-Histidine
Histidine is one of most important amino acids in terms of protein 

function and catalytic action of enzymes. It is challenging to study 
the role of histidine in biological processes because of its size, shape 

Amino Acid Number of Fluorinated 
Analogues

*Fluorinated Analogues
Applications (Ref.)

Part I Part II

Phenylalanine 17

2-fluoro-Phenylalanine,
3-fluoro-Phenylalanine,
4-fluoro-Phenylalanine,
3,5-difluoro-Phenylalanine,
3,4-difluoro-Phenylalanine,
2,3-difluoro-Phenylalanine,
3,4,5-trifluoro-Phenylalanine,
2,3,4,5,6-pentafluoro-Phenylalanine

2,3-difluoro-Phenylalanine, 
2,4-difluoro-Phenylalanine, 2,5-difluoro-
Phenylalanine, 2,6-fluoro-Phenylalanine, 
2,4,6-trifluoro-Phenylalanine, 
2,3,6-trifluoro-Phenylalanine, 
2,4,5-trifluoro-Phenylalanine, 
2,3,4-trifluoro-Phenylalanine, 
2,3,4,5-tetrafluoro-Phenylalanine

19F-NMR [44], Protein structure and 
function [5,6],
Enzymatic studies[14], peptides [18]

Tryptophan 9

3-fluoro-Tryptophan,
4-fluoro-Tryptophan, 
5-fluoro-Tryptophan, 
6-fluoro-Tryptophan,
7-fluoro-Tryptophan, 
5,7-difluoro-Tryptophan, 5,6,7-trifluoro-
Tryptophan, 4,5,6,7-tetrafluoro-
Tryptophan,

4,7-difluoro-Tryptophan,

19F-NMR [45], Protein structure and 
function [27],
Enzymatic studies [25,33], Fluorescence 
[21,24]

Tyrosine 10

2-fluoro-Tyrosine, 
3-fluoro-Tyrosine,
2,6-difluoro-Tyrosine,
2,5-difluoro-Tyrosine,
2,3-difluoro-Tyrosine,3,5-difluoro-
Tyrosine,2,5,6-trifluoro-Tyrosine,3,5,6-
trifluoro-Tyrosine,2,3,5,6-tetrafluoro-
Tyrosine

2,3,6-trifluoro-Tyrosine

19F-NMR [45], Protein structure and 
function [15,32],
Enzymatic studies [32], Fluorescence 
[31,34]

Histidine 2 2-Fluoro-Histidine, 4-Fluoro-Histidine Protein structure and function [40-42],
Enzymatic studies [39]

* Fluorinated analogues was divided into two parts, Part I analogues has been used in various applications [15] and Some of Part II analogues are commercially available 
and no significant research studies have been reported.

Table 1: Fluorinated aromatic amino acid analogues.

Fluorinated analogue pKa
2-fluro-Tyrosine 9
3-fluro-Tyrosine 8.4
2,6-difluro-Tyrosine 8.1
2,5-difluro-Tyrosine 7.6
2,3-difluro-Tyrosine 7.6
3,5-difluro-Tyrosine 6.8
2,5,6-trifluro-Tyrosine 6.6
3,5,6-trifluro-Tyrosine 6.1
2,3,5,6-tetrafluro-Tyrosine 5.2

Table 2: The position and number of fluorine atoms change the pKa of hydroxyl 
group of fluorinated tyrosine.
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and tendency to form hydrogen bonds and salt bridges at local pH 
environment [35,36]. Imidazole ring in histidine is mostly protonated 
and is stabilized by a resonance structure (Figure 1). Because of the pKa 
of the imidazole ring in histidine, protonation and de-protonation can 
occur within the physiological pH. Substitution of fluorine atom at C 
[2] position, pulls the shared electrons from both the nitrogen atoms 
in the ring towards the central carbon atom, resulting in the change of 
bond angles and bond lengths which closely resemble the protonated 
form of histidine [37]. Moreover, fluorination of histidine was unable to 
protonate at physiological pH, due to a greatly reduced pKa of the side 
chain from 6 (Histidine) to ~1.2 (2-Fluoro histidine, 2FHis) and ~1.7 
(4-Fluoro histidine, 4FHis) [15,38].

Because of its low pKa value, 2FHis served as a valuable analogue 
to study the structure and function of membrane proteins and enzymes 
[39]. Anthrax toxin protective antigen (PA), membrane protein binds 
to its cellular receptor and forms heptameric or octameric pores, 
which allows the entry of enzymatic moieties (Edema factor, EF or 
Lethal factor, LF) into the cytosol. This whole process depends on 
conformational changes that occur from prepore to pore at low pH.  
Initially it was hypothesized that histidine protonation triggers the pore 
formation; however, later studies with incorporation of 2FHis showed 
that pore formation is independent of histidine protonation and 
also 2FHis increases the stability of PA [40]. Translocation studies in 
planner lipid bilayers showed that 2F-His PA was not able to translocate 
LF through the pores into the cytosol. These studies indicate that 2FHis 
pore is biologically inactive, agrees with the conclusion that histidine 
plays a role in translocation, but does not alter the pore formation in 
the absence of the receptor [40,41]. Many research groups are working 
on PA to develop a better and stable vaccine for anthrax [42]. Recent 
studies on 2FHis PA (structural stability and dynamic properties) by 
using various biophysical techniques suggests that 2FHis PA can be 
used as a potential candidate for anthrax vaccine [43-45]. 

Conclusion
This short review covered the therapeutics applications of most 

studied fluorinated aromatic amino acids analogues which helps to 
understand their role in protein structure and function. Selective 
fluorination of amino acids make the analogues, a unique tool to study 
the stability, structure and function of proteins. These fluorinated 
aromatic amino acids analogues showed cytostatic activities and can be 
used as potential chemotherapeutics as well as in vaccine development.
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Figure 1:  Resonance structure of protonated histidine side chain.
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