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One can argue that KCl-treated DWM synthesizes ATP via 
oxidative phosphorylation at too low ΔΨ (about 70-100 mV in 
different experiments) [25], but this in vitro result fits well with some 
measurements of ΔΨ of mitochondria in vivo. Zhang et al. [27], 
who applied a new method using the combination of conventional 
fluorescence microscopy and three-dimensional deconvolution by 
exhaustive photon reassignment, measured a mitochondrial ΔΨ of 
about 105 mV in fibroblasts and 81 mV in neuroblastoma cells; in 
perfused hearts [28] and single hepatocytes [29] about 100-140 mV 
were measured under different metabolic conditions. As for plant cells, 
mitochondrial ΔΨ estimated from the subcellular ATP/ADP ratios by 
means of rapid subcellular fractionation of barley leaf protoplasts was 
calculated to be 70-95 mV under different physiological conditions 
[30]. So, it is clear that mitochondria show low or very low ΔΨ in 
living cells and that ATP can be synthesized at suboptimal ΔΨ. But the 
question arises about how ATP synthase may work under low force 
condition. ΔΨ and ΔpH are not kinetically equivalent driving forces 
for ATP synthase. ΔΨ represents the essential driving force for rotation 
of the “rotor” γεcn of the synthase; one turn of rotation of the γεcn 
part yields three ATP driven by the translocation of protons through 
c subunits [31,32]. The extent of ΔΨ required may vary as a function 
of H+/ATP stoichiometry that, in turn, depends on the number of the 
c subunits in F0 rotating ring. So, in mammalian mitochondria 100-
120 mV are assumed to be necessary for maximal ATP synthesis (about 
70-80 mV midpoint potential) by the ATP synthase having probably
9-10 c subunits, so giving calculated H+/ATP equal to 3-3.3 [33]. Even,
only 50-60 mV are sufficient for the chloroplast enzyme having 14 c
subunits, so giving calculated H+/ATP equal to 4.7 [33]. Unfortunately,
so far in DWM no information is available about the number of c
subunits of ATP synthase. Moreover, calculation of thermodynamic

possible localized energy transfer in intact mitochondria, very recently 
it has been reported that KCl-treated Durum Wheat Mitochondria 
(DWM) lack a measurable ΔΨ and ΔpH, but are fully coupled and are 
able to regularly accomplish ATP synthesis [25]. This is of particular 
interest since mitochondria live in an ionic cytoplasm containing 
about 100 mM K+ and contain potassium transport systems that may 
potentially influence components of Δp in vivo. Consistently, the 
paradoxical behaviour of DWM has been connected with the ATP 
sensitivity of the potassium channel present in these mitochondria, that 
might induce a controlled collapse of Δp [25,26]. Interestingly, at my 
best knowledge, this is the first description of an intact mitochondrion 
showing simultaneously high coupling and complete collapse of the 
protonmotive force.

In the grasp of life sciences the significance of bioenergetics is 
central and, in this framework, the chemiosmotic theory of Peter 
Mitchell represents the core of bioenergetics, since it highlights how 
the bulk of ATP synthesis occurs in living cells. According to the 
Mitchell’s chemiosmotic theory, in mitochondria, chloroplasts and in 
many bacteria, the energy-rich intermediate driving ATP synthesis 
is the proton gradient across an energy-transducing membrane. The 
driving force was defined by Mitchell [1,2] as the protonmotive force, 
Δp, consisting of an electrical, ΔΨ, and a chemical component, ΔpH 
[3]. This sparkling intuition of Peter Mitchell passed over a lot of 
experimental confirmations and brought him the great honour of the 
Nobel Prize in chemistry in 1978. The chemiosmotic theory is by now 
50 years old (in 2011) and really contributed to explain the major part 
of the pertinent experimental observations described in the literature, 
but a substantial set of data still occurs that escapes chemiosmosis 
explanations. 

Should the theory be recasted in some way?

A major prediction of the chemiosmotic model is that the 
phosphorylation potential and the rate of ATP synthesis by oxidative 
phosphorylation should depend on the magnitude of the bulk Δp.

Indeed, some energy-transducing membranes were shown to 
trouble this statement. In Halobacterium halobium [4] and thylakoid 
vesicles [5] light-induced ATP synthesis occurs in the absence of an 
apparent ΔΨ or ΔpH. In extreme alkaliphilic bacteria ATP synthesis 
was detected even in the presence of an inverted ΔpH, alkaline outside 
[6]. In bovine heart submitochondrial particles the attenuation of the 
rate of succinate oxidation results in a parallel decrease in the rate of 
ATP synthesis with little or no change in Δp [7]. These findings initiated 
speculation as to whether the delocalized, transmembrane Δp was 
the principal driving force for ATP synthesis [8]. As a consequence, 
the idea of localized rather than delocalized energy transfer between 
the electron transfer complexes and the ATP synthase gained some 
support [9-12]. One possibility to explain these findings is that proton 
transfer may occur through direct protein-protein interaction [13,14]. 
Another possibility is that protons generated at the surface of the 
bilayer membrane diffuse laterally (through the polar groups at the 
surface of phospholipids or the organized water at the surface) [15-
17]; this suggests that localized protons could be directly coupled to 
the phosphorylation of ADP when the protons are channelled through 
the ATP synthase or alternatively exchange with ions at symports or 
antiports [18]. Consistently, theoretical considerations [19,20] and 
experimental results [21] indicate that a coupling between proton 
donor and acceptor sites in a bilayer can be direct without involving 
the bulk phase with a limiting distance between the two estimated to 
be considerable, nanometers or micrometers depending on buffer [18]. 
This point is of great interest, so that one of the first papers published in 
this journal deals with a proton-electrostatics hypothesis for localized 
proton coupling bioenergetics [22].

As for intact fully functional mitochondria, the idea of a localized 
energy transfer between the electron transfer complexes and the 
ATP synthase was proposed by Tedeschi [18], who contends that in 
mitochondria there is no metabolically dependent ΔΨ. At this regard 
see the controversy Tedeschi vs Nicholls [18,23,24]. According to a 
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H+/ATP stoichiometry as ΔGp/Δp in isolated mitochondria is unlikely 
due to an unspecific proton leak of the inner membrane, preventing a 
thermodynamic equilibrium [33]. However, the above data shows that 
ATP synthases are able to synthesize ATP at unexpected low membrane 
potential.

In conclusion, these “shades” do not completely oppose the “full 
light” of chemiosmosis, since in all described situations a proton motive 
force should be invoked, but it appears necessary to recast the classical 
model in some cases. 
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