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Abstract

Objective: Cholangiocytes are injured in many cholestatic diseases that can progress to cirrhosis, liver cancer
and need for liver transplantation. Recent studies demonstrate that the hormone Fibroblast Growth Factor 19
(FGF19) is produced in the ileum and regulates hepatic gene expression. However, the role of FGF19 in
cholangiocytes remains largely unknown. The purpose of this study was to elucidate the effect of FGF19 on
cholangiocyte gene and protein signaling.

Methods: Human cholangiocyte-derived H-69 cells were cultured and treated with varying concentrations of
FGF19 (0–50 ng/ml) for 24 hours. Expression of the mitogen-activated protein kinase MAPK proteins JNK1/2,
ERK1/2, and p38, and several Unfolder Protein Response (UPR) proteins were studied using Western blot analysis.
Gene expression of UPR pathways was analyzed using real-time polymerase chain reaction (RT-PCR).

Results: FGF19 treatment increased BiP and CHOP protein expression in a concentration-dependent manner.
Gene expression of BiP increased from 1.02 ± 0.24 to 2.16 ± 0.62 (vehicle vs. FGF19 25 ng/ml, respectively.
p<0.01) and CHOP expression increased from 1.05 ± 0.36 to 2.42 ± 0.56 (vehicle vs. FGF19 50 ng/ml, respectively,
p ≤ 0.01). The UPR protein phosphorylated-eIF2α displayed a bimodal pattern of protein expression, with
concentrations of 2.5-10 ng/ml of FGF19 maximally reducing expression and 50 ng/ml maximally increasing
expression. Protein expression of phosphorylated JNK1/2, ERK1, and p38 also displayed a similar bimodal pattern
of expression with a reduced expression at 2.5 ng/ml FGF19 and a return to baseline at 25 ng/ml.

Conclusion: These findings indicate that FGF19 treatment of H-69 cells selectively activates the UPR and MAPK
pathways. We believe that FGF19 may have a role in the pathogenesis of human cholangiopathies.
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Introduction
Cholangiocytes, the epithelial cells that line the bile ducts, are

affected in a wide variety of cholangiopathies such as Primary
Sclerosing Cholangitis (PSC) and primary biliary cirrhosis (PBC) [1,2].
The etiologies of these diseases are unknown and their pathogeneses
remain poorly understood. These cholestatic diseases often result in
inflammation, cirrhosis, and the need for liver transplantation [1-4].
There are currently no effective treatments to alter the natural history

of PSC. Ursodeoxycholic acid is the sole treatment for PBC and there
have been no new approved therapies for PBC over the past 3 decades.
In addition, ursodeoxycholic acid slows, but does not halt disease
progression in PBC. Therefore, a greater understanding of the various
processes that regulate cholangiocyte biology may be integral to the
development of new therapies for these chronic liver diseases.

Fibroblast growth factor 19 (FGF19) is secreted in the ileum in
response to stimulation by the nuclear bile acid farsenoid-X receptor
in order to regulate hepatic metabolism and transport functions [5-8].
FGF19 expression has been observed in the small intestine, cholestatic
livers, and gallbladder; and has an important role in both gallbladder
filling and the enterohepatic circulation of bile salts [9-11]. FGF19
binds to a complex of FGF receptor 4 (FGFR4)-βKlotho in the liver,
which results in the activation of mitogen-activated protein kinase
(MAPK) pathways and reduced transcription of cholesterol 7 α-
hydroxylase (CYP7A1), the gene encoding for the rate-limiting step of
the bile acid synthesis pathway [6,7,12-16]. FGF19 has also been
shown to metabolically regulate hepatic protein and glycogen synthesis
in the liver [17,18]. In addition, FGF19 increases metabolic rate and
improves glucose homeostasis in diabetic mice [19-22]. Therefore,
studies indicate that FGF19 has broad metabolic and protective roles
in hepatocytes. In addition, hepatocyte proliferation is also increased
in the presence of FGF19 [23-25]. In contrast to hepatocytes, the effect
of FGF19 signaling on cholangiocytes remains poorly understood.
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Cholangiocytes are routinely exposed to high concentrations of bile
salts. The Apical Sodium-Dependent Bile Salt Transporter (ASBT) is
primarily responsible for regulating the transport of bile acids across
cholangiocytes and its up-regulation in chronic cholestasis may have a
role in causing bile acid-induced liver injury [26]. FGF19, in the
presence of βKlotho, has been shown to inhibit ASBT in human
cholangiocytes [27]. FGF19 is also highly expressed in the livers of
patients with extrahepatic cholestasis, which is an adaptation to
protect the liver from the toxicity of bile salts [11].

The Unfolded Protein Response (UPR) is a protective cellular
response to ER stress, and it is present in all eukaryotic cells. In the
presence of ER stress, there can be an accumulation of cellular
misfolded and unfolded proteins. The UPR acts to reduce the amount
of unfolded cellular proteins, and if excess ER stress still persists, it
induces apoptosis [28,29]. Although much is known about UPR
activation in hepatocytes, little is known about its regulation in
cholangiocytes. In addition, there is cross-talk signaling between the
UPR and MAPK signaling pathways [30-33]. In the present study, we
examined employed H-69 cells, a human-derived cholangiocyte cell
line, to help elucidate the effects of FGF19 on cholangiocyte UPR and
MAPK expression [34-38]. These findings may have important
implications not only for cholangiocyte biology, but also for enhancing
our understanding of the pathogenesis of cholangiopathies.

Materials and Methods

Cell culture
The H-69 biliary cell line [39] was kindly provided by Dr. Cara

Mack (Denver, CO). The cell line was cultured in DMEM and DMEM/
Ham’s F12 (ATCC, Manassas, VA) supplemented with 10% fetal
bovine serum, penicillin/streptomycin, 1.8×10-4 M adenine (Sigma-
Aldrich, St. Louis, MO), 5 μg/ml insulin (Sigma-Aldrich, St. Louis,
MO), 5.5×10-6 M epinephrine (Sigma-Aldrich, St. Louis, MO), 2×10-9

M triiodothyronine (Sigma-Aldrich, St. Louis, MO), 1.64 x 10-6 M
epidermal growth factor (Sigma-Aldrich, St. Louis, MO), and 1.1×10-6

M hydrocortisone (Sigma-Aldrich, St. Louis, MO). Cells were
maintained at 37°C in 10% CO2. HepG2 cells (ATCC, Manassas, VA)
were also cultured in DMEM with 10% fetal bovine serum and
maintained at 37°C in 5% CO2. Preliminary experiments optimized
24-hour treatment duration; therefore, treatments were carried out for
24 hour in serum-free supplemented DMEM. Human FGF19 was
purchased from Sigma-Aldrich (St. Louis, MO) and was used in final
concentrations of 0, 2.5, 5, 10, 25 and 50 ng/ml.

Analysis of gene expression by real-time quantitative PCR
Total RNA was obtained using TRIzol reagent (Invitrogen,

Carlsbad, CA). Two micrograms of total RNA were prepared using a
SuperScript First Strand kit (Invitrogen, Carlsbad, CA) for reverse
transcription-PCR. Real-time quantitative PCR was performed using 2
μl of cDNA from each sample in a 25 μl reaction mixture containing
Quantitect SYBR Green PCR Mastermix (Qiagen, Valencia, CA) and
the primers specific for the gene of interest. Human ubiquitin C was
utilized as a housekeeping gene. The primer sequences are shown in
Supplementary Table 1.

Analysis of protein expression by western blotting
Protein was extracted from H-69 cells using a mixture of T-Per

(Thermo Scientific, Hanover Park, IL), protease mixture inhibitor

(Thermo Scientific, Hanover Park, IL), and Halt phosphatase inhibitor
(Thermo Scientific, Hanover Park, IL). The Bradford assay was
utilized to determine protein concentrations of the homogenates in
Coomassie Blue reagent (Pierce, Rockford, IL). 3.75 μg of sample
protein were separated through electrophoresis using 10% or 12%
SDS-polyacrylamide gels. Protein samples represent either pooled
samples of four separate samples or single samples. Protein detection
was performed using polyclonal rabbit antibodies to total SAPK/JNK
(1:1000, Cell Signaling Technology, Danvers, MA), phospho-
SAPK/JNK (1:1000, Cell Signaling Technology, Danvers, MA), total
p44/p42 MAPK (ERK1/2) (1:1000, Cell Signaling Technology,
Danvers, MA), phospho-p44/p42 MAPK (ERK1/2) (1:1000, Cell
Signaling Technology, Danvers, MA), p38 MAPK (1:1000, Cell
Signaling Technology, Danvers, MA), phospho-p38 MAPK (1:1000,
Cell Signaling Technology, Danvers, MA), BiP (1:1000, Cell Signaling
Technology, Danvers, MA), C/EBP homologous transcription factor
(CHOP) (1:500, Cell Signaling Technology, Danvers, MA), and a
monoclonal mouse antibody to β-actin (1:5000, Sigma-Aldrich, St.
Louis, MO). The bound antibody was detected using goat-anti rabbit
or goat anti-mouse polyclonal HRP antibody (Santa Cruz
Biotechnology, Santa Cruz, CA) and an ECL Western blotting
substrate (Pierce, Rockford, IL) was used. Western blotting of HepG2
ERK1/2 activation was used as a positive control for FGF19 response
to validate our experiments. β-actin was used as a loading control in all
western blots. Digital densitometry was performed using NIH ImageJ
(http://rsb.info.nih.gov/nih-image/) and all data were normalized for β-
actin expression (protein expression/β-actin expression).

Gene 0 ng/ml 2.5 ng/ml 5 ng/ml 10 ng/ml 25 ng/ml 50 ng/ml

hBiP 1.02 ±
0.24

1.46 ±
0.08b

1.30 ±
0.25

1.95 ±
0.21b

2.16 ±
0.62b

2.28 ±
0.92a

hCHOP 1.05 ±
0.36

1.39 ±
0.56

1.58 ±
0.42

1.47 ±
1.16

1.76 ±
1.16

2.42 ±
0.56b

hXbp1s 1.02 ±
0.25

0.75 ±
0.12

0.65 ±
0.19a

0.91 ±
0.23

0.81 ±
0.35

0.85 ±
0.33

hEDEM1 1.01 ±
0.17

0.98 ±
0.43

1.19 ±
0.16

0.99 ±
0.23

1.00 ±
0.12

1.33 ±
0.20a

hATF4 1.05 ±
0.35

1.74 ±
1.33

3.15 ±
1.22a

1.40 ±
1.12

2.61 ±
1.74

4.69 ±
1.37b

hATF6 1.01 ±
0.20

1.07 ±
0.39

1.55 ±
0.37

1.16 ±
0.53

1.59 ±
0.89

2.33 ±
0.34

hGADD34 1.00 ±
0.02

0.93 ±
0.07

0.95 ±
0.08

0.98 ±
0.11

0.87 ±
0.05b

1.13 ±
0.10a

Table 1: Gene expression for other UPR genes Relative expression,
mean ± S.D. of n=4 is shown. aP<0.05 versus control. bP<0.01 versus
control.

Statistical analysis
Data analysis was performed using Student’s t-test to compare data

between 2 groups. Results are stated as mean ± standard deviation.
Data were deemed statistically significant if p ≤ 0.05.
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Results

FGF19 treatment causes an up-regulation of BiP in a dose-
dependent manner

When treated with FGF19, BiP protein and gene expression was
found to increase in a concentration-dependent manner in H-69
cholangiocyte cells (Figure 1A). Figure 1B demonstrates that BiP
mRNA was also significantly increased as a result of FGF19
treatments, with a greater than a two-fold increase at doses greater
than 25 ng/ml of FGF19 (1.02 ± 0.24 vs. 2.16 ± 0.62, for 0 and 25
ng/ml, respectively, p ≤ 0.01) (Table 1).

Figure 1: FGF19 supplementation leads to up-regulation of BiP in a
concentration-dependent manner. H-69 protein expression of BiP
was analyzed via Western blotting (A) and mRNA expression was
analyzed through Real-time qPCR (B) Representative Western blots
of pooled samples (n=4). β-actin was used as a loading control.
Relative mRNA expression, mean ± SD, * p ≤ 0.05 and ** p ≤ 0.01
versus control.

Figure 2: FGF19 supplementation leads to up-regulation of CHOP
in a concentration-dependent manner. H-69 protein expression of
CHOP was analyzed through Western blotting (A) and mRNA
expression was analyzed via Real-time qPCR (B) Representative
Western blots of pooled samples (n=4). β-actin was used as a
loading control. Relative mRNA expression, mean ± SD, ** p ≤ 0.01
versus control

CHOP is up-regulated following FGF19 treatment
CHOP protein and gene expression in H-69 cells is also up-

regulated by FGF19 treatment (Figure 2). CHOP mRNA is
significantly up-regulated only at 50 ng/ml FGF19, with nearly a 2.5-
fold increase over controls (1.05 ± 0.36 vs. 2.42 ± 0.56; for 0 and 50
ng/ml, respectively, p≤0.01) (Table 1). However, lower concentrations
of FGF19 also display a trend towards a concentration-dependent
increase.

P-eIF2α expression is altered in a bimodal manner due to
FGF19 supplementation

The phosphorylated form of eIF2α (P-eIF2α) is the active form of
the protein and treating H-69 with FGF19 altered the expression of
cellular phosphorylated eIF2α. P-eIF2α expression displayed a bimodal
pattern of activation with 2.5-10 ng/ml FGF19 maximally reducing
and 50 ng/ml maximally increasing expression in the H-69 cell line.
Figure 3A shows the effect of varying (0-50 ng/ml) concentrations of
FGF19 in pooled samples (n=4 for each sample). Figure 3B reveals
protein expression of the individual samples for concentrations of
either 0, 2.5, or 25 ng/ml. Densitometry reveals a 37% decrease in
expression by 2.5 ng/ml of FGF19 (1.14 ± 1.20 vs 0.73 ± 0.10; for 0 and
25 ng/ml, respectively, p=0.002) and a return to baseline at 25 ng/ml
(p<0.005 vs 2.5 ng/ml).

Figure 3: P-eIF2α activation in H-69 cells following FGF19
treatment. (A) Western blotting was performed on H-69
homogenate to detect expression of phosphorylated (P-) and total
(T-) eIF2α after a 24 h incubation period with varying
concentrations of FGF19. Data represent pooled samples with n=4.
β-actin was used as a loading control (B) Western blot of the
unpooled samples after treatment with 0, 2.5, or 25 ng/ml of FGF19

FGF19 activates MAPK proteins in a bimodal pattern
Mitogen-activated protein kinases have previously been shown to

be activated by FGF19 in HepG2 cells [13,15,16]. Therefore, we
investigated whether the MAPK pathways are activated in human
cholangiocyte cell lines. Using pooled samples (n=4 for each sample),
Figure 4A demonstrates that H-69 cells treated with FGF19 of varying
concentrations appear to display a bimodal pattern for the expression
of phosphorylated ERK. Figure 4B reveals P-ERK1/2 protein
expression of the individual samples for concentrations of 0, 2.5, or 25
ng/ml. Densitometry reveals that there was not a significant reduction
in P-ERK1/2, although the 44kD P-ERK1 was diminished. Expression
of the 42kD P-ERK2 was not statistically changed.
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Figure 4: ERK expression in H-69 cells following FGF19 treatment.
(A) Western blotting was performed on H-69 homogenate to detect
expression of phosphorylated (P-) and total (T-) ERK after a 24 h
incubation period with varying concentrations of FGF19. Data
represent pooled samples with n=4. β-actin was used as a loading
control (B) Western blot of the unpooled samples after treatment
with 0, 2.5, or 25 ng/ml of FGF19

Figure 5: MAPK protein expression in H-69 cells following FGF19
treatment. (A) Western blotting was performed on H-69
homogenate to detect expression of phosphorylated (P-) and total
(T-) JNK and total p38 after a 24 h incubation period with varying
concentrations of FGF19. Data represent pooled samples with n=4.
β-actin was used as a loading control (B) Western blot of the
unpooled samples after treatment with 0, 2.5, or 25 ng/ml of FGF19

We further observed the expression of P-JNK1/2 and P-p38 in H-69
cholangiocyte cells. Using pooled samples (n=4), treatment with 2.5
ng/ml FGF19 reduced the expression of both phosphorylated P-JNK
and P-p38, with a return to baseline at 25 ng/ml (Figure 5A). Figure 5B
reveals protein expression of the individual samples for concentrations
of either 0, 2.5, or 25 ng/ml. Densitometry reveals a 53% decrease in P-
JNK expression by 2.5 ng/ml of FGF19 (0.78 ± 0.18 vs. 0.37 ± 0.06; for
0 and 25 ng/ml, respectively, p<0.02), and a return to baseline at 25
ng/ml (p<0.001 vs. 2.5 ng/ml). Figure 5B reveals P-p38 protein
expression of the individual samples for concentrations of either 0, 2.5,

or 25 ng/ml. Densitometry reveals a 39% decrease in P-p38 expression
by 2.5 ng/ml of FGF19 (0.73 ± 0.11 vs. 0.45 ± 0.09; for 0 and 25 ng/ml,
respectively p<0.01) and a return to baseline at 25 ng/ml (p<0.01 vs.
2.5 ng/ml).

Discussion
FGF19 is an important regulator of bile salt synthesis through its

regulation of hepatic CYP7A1 expression. It is produced in the ileum
in response to intestinal bile salt stimulation and is then secreted into
the portal circulation, where it can be taken up into the liver and
regulate hepatic genes by binding to FGFR4. FGF19 is also produced
in the human liver in response to extrahepatic cholestasis, but is not
expressed in healthy livers [11]. FGF19 also has important metabolic
roles involving glucose homeostasis and hepatic lipid metabolism.
Little is known, however, about the role of FGF19 signaling in
cholangiocytes. Therefore, our study sought to elucidate the role of
FGF19 signaling in H-69 human cholangiocyte cells. We employed
H-69 cells, which are a human-derived cholangiocyte cell line that has
been widely used to study cholangiocyte biology [34-38].

Our findings indicate that FGF19 activates the UPR pathways in
cholangiocytes as evident by the increased expression of both BiP and
CHOP. We observed that BiP and CHOP were activated by higher
concentrations of FGF19. In addition, phosphorylated eIF2α was also
increased in response to FGF19, but it displayed a bimodal pattern of
activation. BiP (along with unfolded proteins) is a major upstream
regulator of UPR pathways, and our data demonstrates that CHOP is a
major downstream target of FGF19 signaling in H-69 cholangiocyte
cells. Previous studies on FGF19 in the liver have shown that it
stimulates the MAPK/ERK1/2 pathway [16]. However, no prior study
reports its effect on UPR pathways in cholangiocyte cells. UPR
pathways are activated in response to endoplasmic reticulum stress,
which leads to an accumulation of unfolded or misfolded proteins in
the lumen of the endoplasmic reticulum. ER stress and UPR activation
are important in several liver diseases, including viral hepatitis, alpha
1-antitrypsin deficiency, alcohol-induced liver injury, and fatty liver
disease [40]. The activation of this pathway through FGF19 signaling
in H-69 cholangiocyte cells may also serve an important role in the
pathogenesis of, or as a compensatory response to, cholestatic liver
disease.

The FGF19 concentrations used in our study were similar or lower
than FGF19 concentrations that have been used in several cell culture
systems [41-45]. Human serum FGF19 concentrations have been
reported to be in the picomolar range, and sulfated
glycosaminoglycans such as heparin sulfate, heparin, and chondroitin
sulfates, may be required for its signaling via FGFR4 in the presence of
beta-Klotho [46,47]. Thus, the concentrations used in this study may
be higher than in vivo serum levels. Of note, circulating levels of
FGF19 are elevated in response to extrahepatic cholestasis [11]. In
addition, the tissue concentrations near cholangiocytes remain
unknown, and FGF19 concentrations used in this study were typical
for many FGF19 cell culture systems. FGF19 concentrations in
cholestasis may range from 10-fold to 250-fold higher than serum
FGF19 concentrations in humans [48]. Thus, the higher
concentrations of FGF19 in our study may represent tissue levels in
cholestatic liver disease where FGF19 levels are elevated, and the
activation of the UPR pathway through BiP, CHOP, and eIF2α may
serve as a protective measure in response to environmental stress to
cholangiocyte cells.
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In intestinal epithelial cells, the UPR gene ATF4 induces the
production of FGF19 [45]. Intestinal cells secrete FGF19, and FGF19
enters the portal circulation and acts as a hormone in the liver [49,50].
FGF19 acts in hepatocytes to regulate hepatic lipid and glucose
metabolism, as well as transport function [51,52]. In fact, in diseases of
metabolic syndrome (obesity, diabetes, dyslipidemia) and fatty liver,
hepatocytes activate the UPR to in response to the ER stress. However,
little is known about the effects of FGF19 and ER stress on
cholangiocytes. FGF19 acts predominantly as a protective hormone,
and in fact, is necessary for the liver to regenerate normally [53,54].
Thus, it may prove protective for cholangiocyte injury.

MAPK pathways have been extensively studied in multiple tissues
and have been shown to be important for a range of cellular effects
including cellular injury and repair, cell proliferation and malignant
transformation. In addition, there appears to be signaling cross-talk
between the UPR and MAPK pathways [30-33]. We demonstrate that
the three main branches of the MAPK pathway are up-regulated in a
bimodal manner in response to FGF19. The activation of MAPK
proteins in response to FGF19 has previously been reported in other
tissues, and our study confirms that this pathway is also activated in
H-69 cholangiocyte cells. However, the bimodal pattern of activation
is a novel finding. We hypothesize that low levels of FGF19 may be
necessary for the normal functioning of cholangiocytes. Furthermore,
elevated levels of FGF19 may be a marker for cholestasis, and the up-
regulation of the MAPK in this case could also serve as a protective
measure. The combined activation of both MAPK and UPR pathways
could be a response to inflammation, a pro-apoptotic effect in the
setting of cholestasis or may represent aberrant signaling during
pathologic cholestatic states.

These data indicates that FGF19 can regulate UPR and MAPK
signaling pathways. Additional research on the impact of FGF19
signaling in vivo would further elucidate its protective effects and its
therapeutic potential. These findings may have important implications
not only for cholangiocyte biology, but also for enhancing our
understanding of the pathogenesis of cholangiopathies.
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