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Introduction
Cell-to-cell communication is the fundamental mechanism that 

enables multicellular organisms to maintain tissue homeostasis and 
normal cellular functions. Recent studies have demonstrated that 
extracellular vesicles (EVs), including exosomes and microvesicles, 
may act as a crucial mediator of intercellular communication. It is 
well-established that EVs are small membrane vesicles secreted from 
numerous cell types, including immune cells, tumor cells, and stem cells 
[1-3]. In addition, EVs have been found in various body fluids, such as 
blood, saliva, and urine [4,5]. EVs are secreted either in a constitutive 
or regulated manner. For instance, a number of tumor cells release EVs 
constitutively [6], whereas primary B cells secrete EVs when stimulated 
with potent activation signals, such as cytokine [7].

Initially, EVs became of interest because they are implicated in 
antigen presentation [8]. Thus, many studies have focused on the 
potential therapeutic effect of EVs as a cell-free vaccine for human 
malignancies [9]. More recently, the findings that EVs harbor bioactive 
molecules, such as proteins, lipids, and nucleic acids have shed 
new light on the role of EVs as a paracrine mediator of cell-to-cell 
communication. In particular, EVs contain genetic materials, such as 
mRNAs and microRNAs (miRNAs), enabling exchange of information 
between cells [10]. It has been documented that a number of cell types 
can epigenetically modulate their neighboring cells by transferring 
genetic information via EVs [11]. The message delivered by EVs varies, 
depending on the pathophysiological state of the cell of origin [12]. A 
recent study showed that hepatocellular carcinoma cell (HCC)-derived 
EVs contained a selected group of miRNAs, altering the behavior of 
recipient HCC cells [13]. In stem cell biology, the discovery of EV-
mediated intercellular communication has spurred research on the 
therapeutic opportunities of stem cell-derived EVs in regenerative 
medicine.

Properties of EVs
Biogenesis of EVs

There is accumulating evidence that vesicles released from cells 
are heterogeneous in terms of biogenesis and size [14]. The first 

type of vesicles, known as exosomes, originates from multivesicular 
bodies and fuse with the plasma membrane, which leads to secretion 
to the extracellular space. Exosomes range from 40 nm to 100 nm in 
size and can be characterized by the expression of tetraspanins such 
as CD9, CD63, and CD81 [15]. Another class of vesicles is referred 
to as microvesicles which are distinguished from exosomes by the 
mechanisms of biogenesis. Microvesicles are produced by direct 
budding of the plasma membrane and this relies on dynamic interplay 
between phospholipid redistribution and cytoskeleton activation. 
These shedding vesicles are known to range from 100 nm to 1 μm 
in size [12]. However, the exact biogenesis and characterization of 
two different types of EVs remain to be explored. The traditional 
method employed to purify EVs is ultracentrifugation combined with 
sucrose density gradients. In addition, EVs isolation kits using EVs 
precipitation solutions have been developed. More detailed review has 
recently been published [16].

Molecular contents of EVs

Both types of EVs contain cellular molecules, including cell surface 
receptors, proteins, lipids, and nucleic acids. Recent advancements 
in mass spectrometry-based proteomic analysis revealed that EVs 
contain proteins that are characteristic of the cell of origin [17]. 
Moreover, disease-specific vesicular proteins may provide a better 
understanding of pathophysiological functions of EVs and help us to 
discover diagnostic and therapeutic target proteins [18]. For example, 
epidermal growth factor  receptor  (EGFR) expressed on exosomal 
membranes was investigated for a potential lung cancer biomarker [19]. 
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Exosomes  secreted by the prostate was used as reservoirs of tumor-
associated proteins for prostate cancer detection and progression [20]. 
Moreover, it has been documented that  EVs  harbor  lipids,  such as 
eicosanoids, fatty acids, cholesterol, and lipid-related enzymes [21]. 
Recent studies reported that EVs also contain DNA. Glioblastoma and 
astrocyte  cells secreted  microvesicles carrying mitochondrial DNA 
[22]. In addition, a set of mRNAs and miRNAs have been identified 
in EVs derived from numerous cell types, such as human renal cancer 
stem cells [23], tumor-associated macrophages [24], and adipocytes 
[25]. Based on these findings, it has been suggested that circulating 
miRNAs probably transported by EVs in cancer patients can serve 
as novel diagnostic markers. EV-encapsulated miRNAs are relatively 
stable since they are protected from extracellular degrading enzymes 
[26,27].

Cell-to-cell communication through EVs

The discoveries that EVs harbor bioactive contents, such as 
proteins and nucleic acids raise the possibility that EVs might play a 
significant role in cell-to-cell communication. Recent works indicated 
that EVs are able to convey proteins to the recipient cells. Active Wnt 
proteins secreted on exosomes activated the Wnt signaling pathway 
in target cells [28]. EGFR-bound exosomes induced tumor antigen-
specific regulatory T cells [29]. More intriguingly, one elegant study 
elucidated the role of exosomes as a vehicle for exchange of genetic 
information [30]. The author’s isolated exosomes from a mouse mast 
cell line MC/9 and a human mast cell line HMC-1, and primary bone 
marrow-derived mouse mast cells. Using microarray assessments, they 
identified 1,300 mRNAs and 120 miRNAs in these mast cell-derived 
exosomes. Surprisingly, many of them were exosome-specific as they 
were not detectable in the cytoplasm of the donor cell. The results 
proved that mRNAs in exosomes were intact and functional and 
they were transferable to other mouse and human mast cells. More 
importantly, their data showed that once mouse exosomal mRNAs 
were transferred to human mast cells, new mouse protein could be 
synthesized in human mast cells, suggesting that genetic materials 
shuttled by vesicles modify the behavior of the surrounding cells. 
Subsequently, a number of studies investigated the role of EVs in 
the context of immune responses, tumor development, and stem cell 
biology. Indeed, significant evidence has demonstrated that tumor-
derived EVs have detrimental effects on the immune response, thus 
promoting the immunosuppressive microenvironment for their 
survival [31].

Stem-Derived EVs as a Paracrine Mediator
Embryonic stem cell-derived EVs

Ratajczak et al. [3] were the first to suggest that EVs derived 
from stem cells exert profound effects on the microenvironment by 
transferring stem cell-specific proteins and mRNAs. In their study, the 
authors demonstrated that microvesicles derived from embryonic stem 
cells (ESCs) contained Wnt-3 and mRNAs implicated in pluripotent 
transcription factors. These molecular components were transferred to 
the neighboring cells, thus reprogramming hematopoietic progenitors. 
In another study, ESC-derived microvesicles were engineered to carry 
green fluorescent protein (GFP) and these modified microvesicles 
fused with other ESCs, shuttling their GFP [32]. In addition, it was 
found that miRNAs were enriched in ESC-derived microvesicles and 
a subset of miRNAs was transferred to mouse embryonic fibroblasts. 
Recently, Katsman et al. [33] reported that microvesicles derived from 
ESCs induced de-differentiation and alterations in gene expression of 
Müller cells of the retina. They performed microarrays of Müller cells 

treated with ESC-derived microvesicles compared to untreated Müller 
cells. Müller cells incubated with ESC-derived microvesicles showed 
the up-regulation of genes and miRNAs associated with cellular 
proliferation and induction of pluripotency and the down-regulation 
of genes important to differentiation and cell cycle arrest.

Mesenchymal stem cell-derived EVs

Collino et al. [34] found that microvesicles generated by human 
mesenchymal stem cells (MSCs) and human liver stem cells harbored 
unique patterns of miRNAs associated with ribonucleoproteins known 
to be responsible for the intracellular trafficking of RNAs. They also 
contained proteins involved in the transport and stability of mRNAs 
such as Staufen1, Staufen2. In another study, it was found that specific 
miRNAs, such as hsa-let-7b and hsa-let-7g were present as their 
precursor forms in MSC-derived microvesicles [35]. These studies 
suggest that a dynamic regulation of RNA compartmentalization 
occurs during the biogenesis of stem cell-derived EVs and stem cells 
may modulate their neighboring cells by delivering RNA contents.

Endothelial progenitor cell-derived EVs

It has been suggested that the molecular contents present in 
EVs are specific to the donor cells. Deregibus et al. [36] reported 
that microvesicles secreted from endothelial progenitor cells (EPCs) 
enhanced angiogenesis. The data indicated that EPC-derived 
microvesicles were taken up by endothelial cells, which resulted in 
enhancement of endothelial cell survival, proliferation and tube 
formation. Microarray analysis and quantitative reverse transcription-
polymerase chain reaction (RT-PCR) showed that EPC-derived 
microvesicles conveyed mRNAs involved in the PI3K/AKT signaling 
pathway, triggering an angiogenic program in endothelial cells. More 
recently, the same group demonstrated that miR-126 and miR-296, 
known as pro-angiogenic miRNAs, were enriched in EPC-derived 
microvesicles and these might contribute to the up-regulation of pro-
angiogenic pathways in the recipient cells [37,38].

Cancer stem cell-derived EVs

A recent work showed that microvesicles derived from cancer stem 
cells (CSCs) act as a transporter for exchange of information between 

Figure 1: Reciprocal exchange of information between stem and target 
cells via EVs. Stem cell-derived EVs can deliver stem-cell specific bioactive 
molecules, including proteins, mRNAs, and miRNAs, to target cells. Thus, 
they may trigger a regenerative program in injured cells in a paracrine 
manner. Conversely, target cells may stimulate stem cells by secreting 
vesicle-encapsulated genetic materials.
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tumors and their surrounding cells, thus engendering a favorable 
microenvironment for cancer progression [23]. In this study, the 
authors found that only CD105-positive CSC-derived microvesicles 
activated an angiogenic program in normal human endothelial cells, 
stimulating their growth and vessel formation. Moreover, treating 
SCID mice with CSC-derived microvesicles significantly enhanced 
lung metastases. The molecular characterization of CSC-derived 
microvesicles displayed a set of pro-angiogenic mRNAs and miRNAs 
implicated in tumor development and metastases.

Application of Stem Cell-Derived EVs
Stem cell-derived EVs and tissue repair

There is increasing evidence that stem cell-derived EVs contribute 
to tissue remodeling and have profound effects on the recipient cells 
in a paracrine manner (Figure 1). In this context, it has been suggested 
that EVs released from stem cells play a critical role in exchange of 
information between stem cells and tissue-injured cells [12]. Thus, the 
potential application of stem cell-derived EVs in regenerative medicine 
has been tested in a variety of experimental models. EVs secreted from 
tissue resident stem cells alter the behavior of the target cells. Herrera 
et al. [39] demonstrated that microvesicles derived from human 
liver  stem  cells facilitated hepatic regeneration after hepatectomy in 
rats by activating proliferation and apoptosis resistance of hepatocytes. 
In this study, the authors indicated that human liver stem cell-derived 
microvesicles shuttled a subset of mRNAs implicated in the control of 
proliferation and apoptosis. Over the past decade, the role of MSCs 
in regenerative medicine and their potential use as vehicles for gene 
delivery have been intensely investigated since it is well-established 
that MSCs migrate to injured tissues and participate in wound healing 
and tissue repair [40,41]. Accumulating evidence supports the notion 
that MSC-derived EVs help to repair tissue damage. For instance, 
purified  exosomes from MSCs reduced infarct size in a  myocardial 
ischemia/reperfusion injury mouse model [42]. Furthermore, using an 
acute myocardial infarction rat model, Bian et al. [43] demonstrated that 
EVs secreted from human bone marrow MSCs enhanced proliferation, 
migration, and tube formation of endothelial cells in a dose-dependent 
manner. Several studies reported that administration of MSC-derived 
microvesicles improved the recovery from acute kidney injury by 
stimulating proliferation of tubular cells in different renal injury 
models [44-46]. In addition, it has been suggested that MSC-derived 
EVs exert therapeutic effects on neurological diseases [47]. A recent 
study indicated that microvesicles produced by MSCs promoted sciatic 
nerve regeneration in rats, suggesting MSC-derived microvesicles 
as a novel approach to peripheral nerve cell therapy [48]. Also, 
MSC-derived exosomes delivered miR-133b to neural cells, which 
resulted in enhancement of neurite outgrowth [49]. In another 
study, systemic injection of MSC-derived exosomes improved 
neurovascular  remodeling and  neurogenesis  after  stroke  in  rats, 
implying that MSC-derived EVs may provide a potential therapeutic 
benefit for the treatment of neurological diseases [50]. 

MSC-derived EVs as a vehicle for gene delivery

Recently, several studies evaluated MSC-derived EVs as a potential 
vehicle for gene delivery. Katakowski et al. [51] isolated exosomes 
released by the MSCs transfected with a miR-146b, known as an anti-
tumor miRNA, expressing vector. The authors showed that injection 
of miR-146b-expressing exosomes derived from the transfected MSCs 
significantly inhibited glioma growth in a rat model. Furthermore, 
Munoz et al. [52] reported that the delivery of synthetic anti-
miR-9 by MSC-derived  exosomes  to the Glioblastoma Multiforme 

(GBM)  cells  reversed the chemoresistance of GBM  cells. The data 
showed that anti-miR-9 shuttled by MSC-derived exosomes  down-
regulated the expression of the multidrug transporter, thus sensitizing 
the GBM  cells  to temozolomide. Since EVs are bi-lipid and non-
synthetic structure that protects molecules from degradation, they are 
regarded as an ideal gene delivery vector. However, it is challenging to 
purify uniform EVs because EVs are heterogeneous population and a 
subset of molecular contents transported by EVs may vary in a context-
dependent manner.

Stem cell-derived EVs and tumor

More recently, the effect of stem cell-derived EVs on 
tumor growth has been explored. Human  liver stem cell-
derived  microvesicles  suppressed hepatoma growth in SCID mice 
by transferring tumor suppressor miRNAs [53]. In addition, we 
demonstrated that MSC-derived exosomes significantly down-
regulated the expression of vascular endothelial growth factor (VEGF) 
in breast cancer cells, thus suppressing angiogenesis in vitro and in 
vivo [54]. The results indicated that MSC-derived exosomes delivered 
miR-16, a miRNA known to target VEGF, and miR-16 was involved 
in the anti-tumor effect of MSC-derived exosomes. Furthermore, 
Bruno et al. [55] reported that MSC-derived microvesicles suppressed 
different types of tumor progression in vitro and in vivo. The authors 
treated MSC-derived microvesicles with HepG2 hepatoma, Kaposi’s 
sarcoma, and Skov-3 ovarian tumor cell lines. The data demonstrated 
that MSC-derived microvesicles promoted cell cycle arrest in all cell 
lines and induced apoptosis in HepG2 and Kaposi’s cells and necrosis 
in Skov-3. In contrast, a recent study found that exosomes from human 
bone marrow MSCs promoted angiogenesis in tumors by activating the 
extracellular signal-regulated kinase1/2 (ERK1/2) pathway in vivo [56]. 
Thus, whether stem cell-derived EVs are pro- or anti-tumorigenic has 
been a matter of debate. Nevertheless, these observations suggest that 
stem cell-derived EVs serve as an important mediator of intercellular 
communication in the tumor microenvironment.

Conclusions
Based on the accumulating evidence that EVs secreted from stem cells 

convey bioactive components to the recipient cells, EVs have emerged 
as a key player of cell-to-cell communication in stem cell biology. The 
molecular contents delivered by EVs may differ, depending on the state 
of the cells in the microenvironment. Since stem cell-derived EVs can 
transport stem-cell specific genetic materials, including mRNAs and 
miRNAs, they may trigger a regenerative program in injured cells in 
a paracrine manner. Conversely, EVs released from injured cells may 
induce stem cell differentiation. However, the exact characteristics and 
biological functions of stem cell-derived EVs are not fully elucidated. 
In addition, the effect of stem cell-derived EVs on tumor development 
is currently controversial. Thus, in order to harness stem cell-derived 
EVs as a therapeutic option, further studies are required.
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