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Abstract
Cancer cells create their own microenvironment via dynamically interacting with the surrounding non-malignant 

stromal cells and various Extracellular Matrix (ECM) macromolecules as well as with a large number of other proteins 
within the ECM.

The term desmoplastic reaction is used to describe a phenomenon in which ECM macromolecules including 
specific species of proteoglycans and hyaluronan variously accumulate around the tumour mass. The precise role of 
the desmoplastic reaction is not known. However, it has been proposed to represent either a defense mechanism by 
non-malignant host cells against invading cancer cells or to be a tumourigenesis promoting phenomenon induced by 
cancer cells to assist their propagation. Even an idea that desmoplastic reaction precedes the development of cancer 
has been introduced, further emphasizing the importance of ECM macromolecules in tumourigenesis. Here, we will 
discuss ECM macromolecules in tumour microenvironment focusing particularly on desmoplastic reaction and ECM 
proteoglycans and hyaluronan. We will also present examples of strategies how ECM macromolecules involved in 
desmoplastic reaction could be considered in the development of innovative oncological pharmacotherapies in the 
future.
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Transition [Met] Receptor / Receptor for Hepatocyte Growth Factor; 
MMP: Matrix Metalloproteinase; MT1-MMP: Membrane-Type 
1 Matrix Metalloproteinase; PDCD4: Programmed Cell Death 4; 
PG: Proteoglycan; RHAMM: Receptor for Hyaluronan-Mediated 
Motility; SCC: Squamous Cell Carcinoma; SLPRs: Small Leucine-
Rich Proteoglycans; TGF β: Transforming Growth Factor Beta; TIMP: 
Tissue Inhibitors of Metalloproteinase; TLRs: Toll-Like Receptors; 
TNC: Tenascin-C; TSP: 1, -2, Thrombospondin-1 And - 2

The Extracellular Matrix of Tumour Microenvironment
In general, there is probably no disease without changes in the 

composition of the ECM. The macromolecules of the ECM form a 
complex 3D network composed of collagens, elastin, glycoproteins, 
Proteoglycans (PGs) and Hyaluronan (HA) [1]. Furthermore, in 
the ECM there are versatile groups of additional molecules such as 
ECM -modifying enzymes, ECM-binding growth factors and other 
ECM-associated proteins [2]. The overall composition and structure 
of the ECM are unique and highly dynamic in each organ and tissue. 
Molecules of the ECM provide not only structural support but 
they also crucially regulate cell adhesion, migration, proliferation, 
differentiation, and survival [1-3]. In normal situation, molecules 
of the ECM control the behaviour of cells through feedback loops 

maintaining tissue homeostasis [1,2]. In tumours, on the other hand, 
there is their own microenvironment where ECM molecules variously 
promote tumour cell survival, growth, migration and metastasis [4]. 
Within the ECM there is also a rich cellular component consisting 
of normal fibroblasts, activated fibroblasts called myofibroblasts or 
cancer-associated fibroblasts, inflammatory cells and tumourigenesis 
promoting stem cells or their derivatives [5,6]. The complex interplay 
between the cancer cells, non-malignant host cells and various ECM 
molecules leads to vast activation process resulting in desmoplastic 
reaction which means the accumulation of ECM macromolecules such 
as collagens, matricellular proteins, proteinases and their inhibitors 
and also specific species of PGs and HA.

Desmoplastic Reaction in Cancer
The composition of tumour associated desmoplastic reaction 

is very similar to that of the granulation tissue [7,8]. The term 
desmoplastic reaction describes a phenomenon in which a dense 
fibrotic tissue rich in collagen and other ECM macromolecules 
including specific species of PGs and HA surrounding the tumour 
mass is observed [9,10]. This reactive stromal response is thought to 
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be produced primarily by specified myofibroblasts which form a highly 
heterogeneous cell population with different phenotypes and modulate 
the behaviour of both tumour cells and host cells [6,8]. The exact role 
of the desmoplasmic reaction associated with cancer development 
is not known. However, it has been proposed to represent either a 
defense mechanism by normal host cells against invading cancer cells 
[11,12] or to be a tumourigenesis promoting phenomenon induced 
by cancer cells to assist their propagation [7,13]. Furthermore, an 
idea that desmoplastic reaction precedes the development of cancer 
has been introduced [8,14]. Nevertheless, the desmoplastic reaction is 
clearly detectable in many primary and metastatic tumours including 
colorectal [12], liver [15], pancreatic [10,16] and prostate cancers [12] 
and even in some rare tumour types such as syringomatous carcinoma 
[17]. However, further studies are needed to better clarify the exact 
role of desmoplastic reaction in tumourigenesis before it is possible to 
fully assess whether desmoplastic reaction associated molecules might 
provide a target in the treatment of cancers.

Extracellular Matrix Macromolecules Associated with 
Desmoplastic Reaction

In the ECM, there are several individual macromolecules that 
have been shown to be associated with desmoplastic reaction. 
These molecules have various effects on cancer cells depending on 
both the molecule and the cancer type in which they are expressed. 
Overexpression of collagen types I, III, IV, V and XII create a sclerotic 
stroma around the cancer cell population comprising a dense fibrotic 
deposition typical of desmoplastic reaction [12,18]. In addition to this 
restrictive fibrotic formation, different collagen types can also have 
distinct functional roles. For example, the accumulation of collagen 
type I in pancreatic cancer has been shown to increase the malignancy 
of the cancer cells via increasing their proliferation, migration and 
survival [19,20]. More precisely, in pancreatic cancer is has been shown 
that cancer cells can increase the expression of collagen synthesis by 
normal pancreatic stellate cells thus providing a functional interaction 
between the malignant and normal cells [19]. The collagen-rich tumour 
environment has also been demonstrated to have a biochemical role 
affecting the cancer progression through the interplay between type I 
collagen, membrane-type 1 matrix metalloproteinase (MT1-MMP) and 
Transforming Growth Factor Beta (TGF- β) [20]. In the case of type IV 
collagen, its upregulation has been demonstrated to be associated with 
enhanced metastasis power of colorectal cancer cells to the liver [21]. 
Besides collagens, matricellular proteins such as thrombospondin-1 
(TSP-1), -2 (TSP-2) and tenascin-C (TNC) can have altered expression 
patterns in different cancers [22,23]. Contrary to type I collagen, 
overexpression of TSP-1 has been suggested to have a protective effect 
on tumour progression, particularly in papillary thyroid carcinoma 
where the interaction of TSP-1 with one of its receptor, alpha root 
of beta 3 is of central importance [24]. On the other hand, tumour-
derived pancreatic stellate cells can promote the release of growth 
factors such as TSP-2 which has been shown to stimulate pancreatic 
cancer cell invasion [25]. Regarding TNC, its increased expression has 
been shown to be associated with tumour aggressiveness in medullary 
thyroid carcinoma [26]. In addition to collagen and matricellular 
proteins, also proteinases as well as their inhibitors can contribute to 
desmoplastic reaction.

Especially, the presence of Matrix Metalloproteinases (MMPs) 
and their inhibitors, namely Tissue Inhibitors Of Metalloproteinases 
(TIMPs) are of central importance when predicting the invasion and 
metastasis of cancer cells [20,27]. In breast cancer, it has been shown 

that the expression of both MMPs and TIMPs is significantly associated 
with the capability of tumour cells to metastasize [28,29].

Although TIMPs are usually considered to act as inhibitors and 
regulators of MMPs, they have also been demonstrated to possess 
distinct tumourigenesis promoting functions, thus further emphasizing 
their multifunctionality [29,30]. All the aforementioned molecules 
associated with desmoplastic reaction emphasize the vital interaction 
between the stroma and the cancer cells. This is also true for ECM PGs 
and HA introduced and discussed next.

Extracellular Matrix Proteoglycans and their 
Classification

Proteoglycans are essential macromolecules composed of a specific 
core protein substituted with covalently linked Glycosaminoglycan 
(GAGs) side chains, the hallmark of the PGs. HA is an exception; it is 
the only GAG synthesized in a free form lacking a protein core. GAGs 
are linear, negatively charged polysaccharides which exist as sulfated 
(Chondroitin Sulfate (CS), Dermatan Sulfate (DS), Keratan Sulfate 
(KS), heparin, Heparan Sulfate (HS)) and non-sulfated forms and 
together with the core protein create the physiological properties of 
each individual PG [31].

PGs such as decorin and biglycan are found in almost all 
extracellular matrices of tissues but some PGs seem to be highly tissue 
and cell specific [32]. Together with various combinations of core 
proteins and different GAGs, PGs have a vast diversity of biological 
functions.

Extracellular PGs can be classified in several ways. On the basis 
of their localization, three main groups of ECM PGs exist, namely 
matrix-accumulated PGs, Small Leucine-Rich PGs (SLRPs) and 
basement membrane PGs [33]. When taking into account also the size 
and modular composition of ECM PGs, in addition to the localization 
and the type of GAG carried by the PG´s core protein, division to the 
following families can be made; SLRPs, modular PGs, and cell-surface 
PGs [31,32]. As the knowledge of the physiological functions and the 
pathological roles of PGs expand in time, PG classification will modify 
itself further.

The expression of PGs and HA is known to be significantly different 
in tumour tissues compared to normal ones [12,34]. In tumour tissues, 
the unique expression of these ECM molecules can variously modulate 
tumourigenesis, for example by regulating growth factor activity 
and thereby tumour cell proliferation and invasion [35]. Next, we 
will discuss the ECM PGs and HA in cancer associated desmoplastic 
reaction (Table 1) and review their potential roles in tumourigenesis.

SLRPs in tumour microenvironment

Small  Leucine-Rich  Proteoglycans  (SLRPs)  such  as  Decorin  
(DCN)  and  biglycan (BGN)  are  secreted  PGs  composed  of  a  protein  
core  with  Leucine-Rich  Repeats (LRRs) and at least one GAG side 
chain [32,36]. Both DCN and BGN contain 10 LRRs and comprise the 
first sub-family of SLRPs. Altogether there are five sub-families (Class 
I-V) with 18 known members [31,36]. The structure of SLRPs enables 
them to modulate cellular functions through interactions with other 
ECM proteins, various cytokines, cell surface receptors and different 
growth factors [37]. In addition to general effects such as modulation 
of adhesion, proliferation and migration, SLRPs possess also molecule-
specific functions which are achieved in a cell-specific manner [31].

Although the role of SLRPs in desmoplastic reaction is not exactly 
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known, several of them are associated with cancer development. 
Regarding decorin, its expression has been shown to vary in cancers. 
For example, in Kaposi´s sarcoma DCN expression is markedly 
upregulated around the tumour mass (Figure 1) [38]. In contrast, in 
colon carcinoma the expression of DCN is reduced [39]. However, 
the current view is that DCN possesses antitumourigenic and 
antimetastatic functions via various mechanisms of action [40-43]. 
DCN has a recognized role in the reduction of cancer cell invasion 
and migration even as an aberrantly expressed nuclear localized 
form [44]. Specifically, DCN inhibits tumour growth by antagonizing 
various receptor tyrosine kinases such as Epidermal Growth Factor 
Receptor (EGFR) and other ErbB family members resulting in cell 
cycle arrest through increase in endogenous p21 [45-48]. Furthermore, 
analogously to EGFR signaling, DCN´s interaction with mesenchymal-
epithelial transition (Met) receptor, i.e., receptor for hepatocyte growth 
factor has been shown to block signaling pathways leading to e.g. the 
inhibition of angiogenesis [48-51]. Decorin also sequesters multiple 
other growth factors 51 , particularly Transforming Growth Factor 1 
(TGF– 1), and thereby promotes tumour progression [51-53]. The role 
of DCN in tumourigenesis can also be mediated via the Insulin-Like 
Growth Factor-I (IGF-I) system [54]. In addition, although not well 
understood, DCN´s interaction with Toll-Like Receptors (TLRs) has 
been reported to cause reduced tumour growth via immune response 
through Programmed Cell Death 4 (PDCD4) and microRNA-21 [55]. 
Antitumouric action of DCN has been observed with systemic delivery 
of decorin core protein [56] and with DCN transfection on cancer cells 
[57,58].

The association of decorin´s class mate, BGN, with cancer is more 
complicated. In several cancer types such as gastric [59] and colorectal 
cancers [60] decreased expression of BGN seems to be a biomarker 
for poorer prognosis. Furthermore, in pancreatic adenocarcinoma, 
increased expression of BGN is considered to prevent tumour growth 
and invasivity of cancer cells [61]. BGN has also been discovered to 
act as a signaling molecule [62,63] and being capable of regulating 
downstream signaling events by clustering different types of cell surface 
receptors [64]. While BGN mediated signaling influences tumour 
microenvironment, the precise role of BGN in cancer is still not known. 
In a recent paper by Yamamoto and collegues [65], BGN was found to 
act as an autocrine angiogenic factor of tumour endothelial cells, thus 
widening the role of BGN in tumourigenesis even further.

Also other SLRPs including asporin [66,67], fibromodulin 
[12,17,68], and lumican [69-71] have been shown to be associated with 
tumourigenesis - asporin and fibromodulin via their potential clinical 
value for applications in diagnostics and therapeutics and lumican 
via its antiangiogenic activity. In more detail, asporin is found to be 
expressed in significant amounts in pancreatic ductal adenocarcinoma 
tissue [66] and its concentration has been shown to be increased in 
the blood of men with prostate adenocarcinoma [67]. Regarding 
fibromodulin, it exhibits exclusive ectopic expression in B-cell chronic 
lymphocytic leukemia [72]. Lumican, in turn, has been shown to 
enhance Fas mediated endothelial cell apoptosis in vivo [71] as well 
as cause interference with 1 receptor activity and downregulation of 
MMP-14 [70].

Expression of modular PGs and HA in tumour 
microenvironment

Modular ECM PGs are multidomain PGs with various elongated 
protein modules and highly glycosylated structure [32]. They can be 
divided into two groups; first to hyalectans such as versican, aggrecan 
and brevican, and secondly to non-hyaluronan binding PGs, e.g. 
perlecan [32,73]. These ECM PGs contain a central domain that carries 
most of the GAGs, from three in brevican up to 100 in aggrecan, and 
this domain is flanked by regions that bind HA and contain C-type 
lectin-like domains, respectively [32,74].

From the hyalectans, versican is the most cancer associated 
ECM PG, as its expression is altered in most cancer types including 
bladder [75], colon [76], breast [77] and ovarian cancers [78]. In 
adenocarcinomas, versican seems to be the primary ECM PG secreted 
by the activated peritumoural stromal cells, e.g. myofibroblasts [79,80]. 
The role of versican in promoting [75] or inhibiting [76] cancer 
development is based on its vast network of interactions with other 
ECM molecules and cell-surface proteins including HA, multiple 
types of cell adhesion receptors and molecules, growth factors and 
their receptors and chemokines [74,81]. Versican is expressed as 
five isoforms (V0-V4) [77], V0 and V1 being the most prominent in 
cancer tissues as reviewed by Ricciardelli and collegues [82]. Isoforms 
V0 and V1 have been indicated e.g. in promoting glioma [83] and 
melanoma cell behaviour [84] towards more malignant phenotype via 
their capability to interact with TGF- 2 and the hyaluronan cell surface 
receptor CD44, respectively. Also other modular ECM PGs such as 

Figure 1: Proteoglycan decorin in desmoplastic reaction associated with 
Kaposi´s sarcoma. A.Immunohistochemical staining of Kaposi´s sarcoma 
tissue sample with an antibody to the endothelial cell marker CD31 [38]. B. 
In Situ Hybridization (ISH) of consecutive tissue section for decorin. Decorin 
ISH was performed on Kaposi´s sarcoma tissue sample with human decorin 
antisense and sense single-stranded RNA riboprobes [38]. Positive reaction in 
ISH can be seen in purple. Note that decorin is heavily expressed in the ECM 
surrounding the sarcoma tissue. Asterisks in A and B indicate the tumour mass. 
Arrows in B point to the border between the sarcoma tissue and its surrounding 
ECM. Scale bar in A and B, 100 µm.

Molecule Core protein size 
(kDa)

GAG type (number of 
GAGs)

SLRPs

Decorin 40 CS/DS (1)
Biglycan 40 CS/DS (1-2)
Asporin 43 none
Fibromodulin 58 KS (4)
Lumican 38 KS (2-3)

Modular PGs
Versican 
(isoforms V0- 
V4)

370, 262, 180, 72, 
115 (V0-V4) CS/DS (0-23)

Aggrecan 210-250 CS (100) KS (30)
Brevican 50,80,145 CS (0-5)

Perlecan 400-467
HS (3-10)/(CS, DS, hybrid
HS/CS, CS/DS chains or
GAG-free glycoprotein)

HA*

Very low, low, 
medium
and high HA 
species

Molecular weight 
(kDa)
50, 300, 800, 2000-
3000

Repeating glucuronic 
acid and
N-acetylglucosamine
disaccharides

*HA is the only GAG synthesized in a free form lacking a protein core.

Table 1: Extracellular matrix PGs and HA in tumour microenvironment.
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aggrecan [85,86] and brevican [87] have been indicated with cancer 
development through their differential expression in cancer compared 
to healthy tissue. With aggrecan, it has been shown that in laryngeal 
squamous cell cancers the amount of aggregable aggrecan is excessively 
lost which is associated with cartilage destruction and linked with 
progression of the cancer [86].

Furthermore, chondrosarcoma cells are known to experience 
altered pattern of aggrecan mRNA splicing compared to normal 
cartilage. This is associated with transformation of chondrocytes into 
malignant cells [85]. Regarding brevican, its expression is upregulated 
in brain tumours including astrocytoma where it represents one of 
the ECM molecules responsible for invasiveness of the malignant 
cells and thus provides potential target for treatment for cancer [87]. 
Furthermore, in glioma the enhanced cell adhesion and migration of 
cancer cells have been shown to be dependent on proteolytic cleavage 
of brevican via activating e.g. EGF signaling resulting in secretion and 
accumulation of fibronectin [88]. Concerning the HSPG perlecan, 
its expression has been shown to be involved directly in the tumour 
progression through its ability to store and capture growth factors such 
as basic fibroblast growth factor (bFGF) [32,73] . In addition, in various 
cancer types including melanomas, the expression of perlecan has been 
shown to be marker for aggressive phenotype [73].

Hyaluronan,  a  versatile  non-sulfated  GAG,  which  is  produced  
by  hyaluronan synthases   1-3   (HAS1-3),   consists   of   repeating   
glucuronic   acid   and   N-acetylglucosamine disaccharides. It can 
be found abundantly in most tissues of the human body [89,90]. 
HA does not have a core protein but it can bind to a variety of PGs 
namely hyalectans via the N-terminal domains of these PGs and act as 
an organizer of pericellular and extracellular matrices [31,90]. There 
is a vast amount of evidence ascertaining the role of HA in several 
cancer types such as prostate [91], ovarian [92], breast [93] and thyroid 
cancers [94] with stromal accumulation typical for progressed and 
poorly differentiated tumors indicating poor prognosis.

Specifically, breast and lung cancers exhibit more pronounced HA 
expression in the invasion front than in central tumour areas [95,96], 
and the metastatic score of breast cancer can even be assessed on 
the basis of HA metabolism [97]. The expression of HA has typically 
been linked with tumour progression via various mechanisms such as 
increased motility, invasive phenotype, proliferation and stimulation 
of growth factor production emphasizing a central role for HA as a 
modifier of tumour cell behaviour [98,99]. Binding of HA to its 
receptors, hyaladherins, e.g. CD44 and different isoforms of RHAMM 
[receptor for hyaluronan-mediated motility] [100,101] activates 
intracellular signaling leading to bidirectional information flow 
between the ECM and the cell genome in a phenomenon called dynamic 
reciprocity [102,103]. More precisely, CD44/HA binding leads to e.g. 
release of Basic Fibroblast Growth Factor (bFGF) and TGF- 1 [99] 
whereas RHAMM/HA interaction activates Focal Adhesion Kinase 
(FAK) and extracellular signal-regulated kinase (ERK1/2) [104]. More 
examples concerning the possible roles of HA in desmoplastic reaction 
and tumourigenesis could also be introduced.

In addition to HA, also other GAGs, namely chondroitin, dermatan, 
and heparan sulfates which normally exist as side chains of PGs have 
been shown to variously accumulate in the microenvironment of a 
number of tumours including breast and ovarian cancers and thereby 
influence tumourigenesis [105-107]. However, it is noteworthy that the 
accumulation of GAGs does not necessarily promote tumourigenesis 
but can prevent it as has been shown for heparin-like polysaccharides 
[106].

Desmoplastic Reaction and Development of New 
Oncological Pharmacotherapies in the Future

As brought up above, drastic changes in the composition of ECM 
macromolecules including specific species of ECM PGs and also HA 
can take place in tumour microenvironment. These changes can lead to 
the formation of fibrotic response called desmoplastic reaction which 
can have various effects on tumourigenesis. The fibrotic response can 
also drastically restrict the use of pharmacotherapies, i.e. if the drug 
does not reach cancer cells, it cannot kill them despite of its efficacy in 
cell culture conditions [108]. Fibrosis in desmoplastic reaction causes 
problems to the delivery of anticancer drugs particularly in pancreatic 
[10,16] and liver cancers [15].

For example, in pancreatic cancer, the fibrotic tissue surrounding 
the tumour mass can account for >80% of the tumour volume [109]. 
In that perspective, inhibition of the synthesis of accumulating ECM 
macromolecules or their degradation could assist drug availability to 
the target tissue. Antifibrotic therapy on pre-neoplastic diseases such 
as liver cirrhosis [110] and pancreatic fibrosis [111] has already been 
promisingly tested in animals, but their real benefits in clinical trials 
wait to be evaluated. Furthermore, in malignancies like pancreatic 
ductal carcinoma and liver cirrhosis, the desmoplastic reaction 
also contains vast amounts of HA resulting in exceptionally high 
interstitial fluid pressure in solid tumour tissue, which in turn can 
prevent perfusion and diffusion of small molecule therapeutics [112]. 
Therefore, degradation of HA or restriction of its synthesis could be a 
rationale way to improve drug availability in these diseases. This kind 
of approach has already been successfully applied in the treatment of 
diabetes where the use of hyaluronidase can accelerate insulin exposure 
[113]. Also the use of 4-methylumbelliferone, a HA synthesis inhibitor 
has been shown to reduce HA induced fibrosis and to possess also other 
antitumour effects in hepatocellular carcinoma [114]. As it is natural, 
additional examples regarding oncological therapies that focus on 
ECM of tumours could be presented [115].

Conclusion
As discussed above, cancer cells create their own microenvironment. 

Desmoplastic reaction is a phenomenon where a dense fibrotic 
tissue rich in collagen and other ECM macromolecules including 
specific species of matrix PGs and HA around the tumour mass 
is observed. This reaction can either restrict or promote tumour 
progression. Desmoplastic reaction has even been suggested to 
precede tumourigenesis. Although much is already known about the 
possible mechanisms how individual ECM macromolecules involved 
in desmoplasia influence tumour cell behaviour, the importance of 
desmoplastic reaction as a whole in tumourigenesis still remains to 
be resolved. Nevertheless, targeting individual ECM macromolecules 
involved in desmoplastic reaction offers new promising ways to 
influence tumour progression via modulating e.g. growth factor 
activity. In the future novel drugs targeted to the microenvironment 
of cancers represent a direction of anticancer therapy that cannot be 
overlooked, especially in highly lethal cancer types such as pancreatic 
cancer associated with harmful desmoplasia. Furthermore, gaining 
better understanding of the process behind desmoplastic reaction and 
its influence on cancer progression would improve the development of 
even more effective cancer treatments.
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