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Abstract

The coupling of transcription, translation and the insertion of nascent peptides into membrane (or their association with membrane),
termed transertion is increasingly been seen as a major process in the structuring of bacteria. This commentary focuses on current and
new ideas about the roles of transertion in processes as varied as lipid metabolism, RNA degradation, osmoregulation and the structuring
of nucleoid and membrane. We also discuss the problems that transertion may pose to cells.
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Introduction

For many years, transcription and translation were considered as
separate processes that occurred separately. This was despite strong
experimental [1] and theoretical [2] evidence that the processes were
physically coupled. Such coupling was later considered to have emergent
properties. In the case of the coupled transcription, translation and
insert of proteins into and through membrane, alias transertion, these
coupled processes have long been proposed to structure membranes
and nucleoid [3,4], to direct chromosome replication, chromosome
segregation and cell division [5-7], and to underpin differentiation
[8]. It has now become apparent that transertion is a major process
in its own right [9]. Extensive proteo-lipid domains have been found
in the membranes of both Escherichia coli and Bacillus subtilis [10-
17] and transertion has been implicated in such structuring [18,19].
Moreover, the extent of structuring of the nucleoid by transertion has
now been shown [20] and the relationship between ribosome location
and transertion has been elucidated [21,22], confirming transertion’s
role as a global regulator [9,19]. In what follows, we review ideas
‘under construction’ about the relationship of transertion to a variety
of bacterial structures and processes including the nucleoid and
membrane, RNA degradation, osmoregulation, lipid metabolism, the
regulation of the cell cycle and the origins of life.

Causes of Transertion
Peripheral membrane proteins may be important in transertion

In the first versions of the transertion hypothesis, the structuring
of the membrane and the tethering of genes was limited to those genes
encoding proteins that were either inserted into membranes (such as
integral membrane proteins) or secreted/exported through membranes.
The latter class has not received much attention although Brauns
lipoprotein, for example, might well have a role in transertion if the
lipid modification at the NH,-terminus of the lipoprotein were to occur
before the synthesis of the rest of the protein. Importantly, another
class of genes — those encoding peripheral membrane proteins — might
also structure the membrane and tether genes, thereby contributing to
the level of transertion in the cell; these genes include those encoding
Noc in B. subtilis, which has an N-terminal, membrane-binding,
amphipathic helix [23], and, in E. coli, SeqA [24], which forms part
of a membrane-binding complex [25] and DnaA, where the surface
of domain III is responsible for membrane binding [26]. These genes
also include mreB, which encodes the ‘actin-like’ MreB; this protein
has an N-terminal membrane-binding sequence, which takes the form
of an amphipathic helix in E. coli and a membrane insertion loop in
Thermotoga maritima [27].

RNA degradation may play a part in the dynamics of transer-
tion hyperstructures

The RNA degradosome is a hyperstructure belonging to the
functioning-dependent class [28] because it depends for its existence
on an activity that is due to the presence of its substrate (here, RNA
[29]). RNase E, which forms the scaffold of the RNA degradosome,
diffuses over the entire inner membrane of E. coli to generate short-
lived hyperstructures [29]. This means that degradosomes are separated
from the sites of transcription and this should favour the translation of
nascent transcripts by polyribosomes, that is, favour transcription and
translation being coupled rather than separated [29].

Transertion and Osmolality

It is becoming apparent that transertion is implicated in sensing
various conditions. An increase in osmolality leads to transcriptional
activation of the cls gene in E. coli [30], consistent with an increase in
CL levels being a general physiological response to osmotic stress that
protects microorganisms from lysis [31]. The polar location of CL is
correlated with the polar location of the osmosensory transporter ProP,
which actively transports osmo-protectants into the cell [30,32].

Transertion and Lipid Metabolism

The coordination of lipid metabolism with environment conditions
may be helped by the assembly of a hyperstructure containing
membrane components. Such hyperstructures might be based in part
on the transertion of enzymes responsible for phospholipid and LPS
synthesis. Significantly, acyl carrier protein (ACP), part of which in
E. coli is located in the membrane, interacts with enzymes involved in
many biosynthetic pathways, including those involved in phospholipid
and LPS synthesis in or on the membrane as well as those involved in
the synthesis of fatty acid in the cytoplasm. In particular, ACP interacts
with PIsB, a sn-glycerol-3-phosphate acyltransferase, and PssA, a PS
synthase, as well as YbgC, an Acyl-CoA thioesterase involved in fatty
acid synthesis [33]. In E. coli, PssA, which has a preference for acidic
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phospholipids, exists as both a membrane-associated active form and
a cytoplasmic latent form and plays a central role in the regulation of
the synthesis of zwitterionic (PE) and acidic phospholipids [34-38]. In
B. subtilis, the cardiolipin synthase, ClsA, which has trans-membrane
a-helices at its N-terminus and amphipathic a-helices with many
basic amino acid residues at its C-terminus, is located to septal and
polar membranes to synthesize cardiolipin [17]. This synthase binds
to membrane by its N-terminal trans-membrane helices, and then
diffuses in the plane of the membrane to be captured on septal and
polar membranes, which are probably rich in acidic phospholipids and
their precursors, where it contributes to the formation of cardiolipin-
rich domains [16,17,39]. In such domain formation, it should be noted
that the transcription of cIsA from its possible location at the edge of
the nucleoid is unlikely to be important since the rate of synthesis of
the protein is probably too low to generate a transertion hyperstructure
unless this synthesis were to occur in a burst or to be coupled to the
transertion of other proteins.

Transertion and Spirals

Transertion may help resolve the controversy over the existence of
spiral hyperstructures [40-42]. Suppose a given protein tends to form a
spiral due to protein—protein and protein-lipid interactions: it is then
possible that, in the absence of transertion, a spiral forms whereas, in
the presence of transertion, no spiral forms because this is prevented
due to an unfavourable structuring of the membrane by the nascent
proteins and associated lipids. Transertion might also generate a spiral
if the coupled ensemble of expressed gene, nascent RNA and nascent
proteins were to form a hyperstructure with a long axis parallel to the
plane of the membrane.

Transertion and the Nucleoid

Transertion of a single gene not only able to pull the gene out of the
nucleoid towards the membrane but also to pull out neighbouring genes
that may be as far away as 90 kb [20], which is several times as long
as the bacterium itself. Since such transertion may be discontinuous,
it has been proposed that the result is a dynamic structuring of the
nucleoid which would enable penetration of it by regulatory proteins,
RNA polymerases and ribosomes [20]. Transertion of the 1000 plus E.
coli genes predicted to encode integral inner membrane proteins [43]
could therefore provide a radial force to expand the entire chromosome
[7,44] and, consistent with this, many RNA polymerases and ribosomes
lie between the membrane and the nucleoid [45]. Reciprocally, a
relationship between transertion and peptidoglycan synthesis has
recently been proposed to explain how the state of the nucleoid could
help determine the width of the cell [46]. This proposal might be taken
further by attributing a particular role to a transertion hyperstructure
based on the dew (for division and cell wall) cluster of genes; this
conserved, 18 kb cluster, which in E. coli lies at the 2 min position on
the chromosome, consists of 16 genes transcribed in the same direction
that encode the enzymes needed for peptidoglycan metabolism and
cell division [47,48]. Transertion from the dcw cluster could therefore
create a large, transertion-based, division hyperstructure to help drive
invagination at the site of division. The size and force exerted on the
peptidoglycan by hyperstructures should vary with growth conditions
such that, in poor media, the distribution of RNA polymerases
and ribosomes would cause relatively more force to be generated
both by transertion hyperstructures in general and by the division
hyperstructure in particular thereby leading to narrow daughter cells.
A testable prediction of this model is that the position of the dcw cluster
on the chromosome would have an effect on peptidoglycan synthesis
during cell division and affect diameter.

Transertion Problems

Because of its importance, transertion may cause problems to which
cells must adapt. One problem would occur if transertion were to interfere
with the structure of the chemosensing hyperstructure. The distribution of
the MCPs and related proteins into many small clusters or into one giant
cluster confers different sensitivities to different levels of chemo-attractants
and chemo-repellents [49] and, if these distributions were overwritten by a
transertion-dominated distribution, this range of sensitivities would be lost.
One proposed solution is that the site of synthesis of the chemotaxis proteins
is separate from the site of operation: in E. coli, the genes that encode these
proteins are located on the chromosome so that their transertion associates
them with the assembly of the flagellum; it is then conceivable that
different lipid affinities of the chemotaxis and flagellar proteins lead to the
chemotaxis proteins relocating from the flagellar hyperstructure(s) to the
poles [50]. This proposition is supported by the diffusion of Tar-GFP from
the sites where it is synthesized to the poles [51] and by the dependence of
the polar location of the MCPs on neither the phospholipid composition of
the cytoplasmic membrane nor the curvature of the cell poles (in fact, this
location depends on the interaction of the MCPs with the trans-envelope
Tol-Pal complex, which restricts the diffusion of MCP arrays [52]).

A second problem would arise if the lipid preferences of the
constituents of the transertion hyperstructure led to it altering
the planar, bilayer structure of the cytoplasmic membrane. The
overproduction of peripheral and integral membrane proteins can
indeed lead to such alterations [53-56]. A possible solution would be for
an abundant structure such as the ATP synthase to have subunits with
complementary lipid preferences [54] since even overproduction of all
eight subunits results in morphological changes [57]. It might therefore
be expected that different proteins would have complementary
preferences for different lipids, which may be one reason why cells have
so many different lipids.

One solution to the problems occasioned by the formation of an
inappropriate transertion hyperstructure would be if cells reduced the
probability of hyperstructure formation by shortening the time the
nascent protein interacts with the membrane; this could be achieved
by, for example, locating the membrane-interacting sequences (such as
amphipathic helices) at the COOH-terminus rather than at the NH,—
terminus [19].

Transertion Perspectives

In the near future, we anticipate that transertion will be given
a major role in several aspects of bacterial physiology. In the case of
the structure of the nucleoid, modelling and experimental evidence
increasingly favour a model in which groups of genes that are co-
functional (i.e., co-expressed, or encoding products that co-assemble
or that act in the same pathway) are distributed so as to organise the
nucleoid into either a rosette-like or a solenoid-like structure thereby
facilitating the relationship between gene expression and the rapid,
efficient acquisition of coherent phenotypes [58]. It is therefore easy to
imagine how the distribution of these co-functional genes may combine
with transertion to structure genome, membrane and cytoplasm. Such
structuring must also involve transembly - the coupling of transcription
and/or translation to the assembly of macromolecules into complexes
and hyperstructures [59]; in particular, evidence for transembly in
the form of the bacterial ‘nucleolus’ is now compelling [60]. In the
case of the cell division, a relationship with nucleoid occlusion has
long been suggested [61] and attributed to transertion [4,6,7]; this is
now being put in the context of a relationship between transertion
and the binding of the nucleoid occlusion protein, Noc, to both DNA
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and membrane [23]. In the case of the initiation of chromosome
replication, a relationship with the degree of use of cellular constituents,
which has been attributed to transertion [5], is being revisited as an
intensity-sensing mechanism involving transertion, transembly, ion
condensation/decondensation and strand separation at the origin of
replication [62]. Finally, in the case of the origins of life, relatively non-
specific transertion may have provided forces sufficient to resist turgor
pressure and to maintain membrane integrity in the precursors of cells
[19,63,64], which might help explain the importance of transertion in
osmoregulation in modern cells (see above) and in determining the cell
diameter [46]. This force-generating hypothesis could be tested in the
former case using bacterial L-forms, which are believed to capture some
of the features of early cells [65-68] and in the latter case by relocating
the 2 min cluster to other positions on the chromosome and checking
the cell diameter.
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