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ABSTRACT
This study evaluated the performance of Gaussian Process Regression (GPR) models for predicting the production

rates of oil, gas, and water in the energy industry. GPR is a non-parametric, Bayesian-based machine learning

technique that models the uncertainty in the predictions, providing not only a prediction but also a confidence

interval for the prediction. This study analyzed the impact of various input features on the production rates,

including choke size, tubing head pressure, flow line pressure, basic sediment and water, net Application

Programming Interface (API), well flowing pressure, and static pressure. The result of this study provides valuable

insights into the potential of GPR for improving production forecasting and resource management in the oil and gas

industry. The findings also shed light on the suitability of different kernels in modeling the production rates and the

significance of each input feature in production forecasting and optimization. The use of GPR in production

forecasting has the potential to increase efficiency, improve productivity, and reduce costs in the oil and gas industry.
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INTRODUCTION
Oil, gas, and water production are essential components of the 
energy industry and play a critical role in meeting global energy 
demands. Accurate predictions of these production rates are 
crucial for effective decision-making and resource management. 
In recent years, machine learning techniques have become 
increasingly popular in the oil and gas industry, providing a 
powerful tool for solving complex problems related to 
production forecasting. Gaussian Process Regression (GPR) is a 
machine learning technique that has shown promising results in 
a variety of applications, including the prediction of oil, gas, and 
water production rates [1–3].

GPR is a non-parametric, Bayesian-based technique that models 
the underlying relationship between the inputs and outputs [4–
6]. Unlike traditional regression techniques, GPR models the 
uncertainty in the predictions, providing not only a prediction 
but also a confidence interval for the prediction. This makes 

GPR an ideal tool for forecasting the production rates of 
oil, gas, and water, where the underlying processes are 
complex and uncertain.

In this study, the performance of GPR models was evaluated for 
predicting the production rates of oil, gas, and water using 
different kernels. The results of this study will provide valuable 
insights into the potential of GPR for improving production 
forecasting in the oil and gas industry. Additionally, the study 
will also help to shed light on the suitability of different kernels 
in modeling the production rates of these resources, which can 
provide a basis for future research in this field. The use of GPR 
in production forecasting has the potential to revolutionize the 
oil and gas industry by providing more accurate predictions, 
which can help to optimize resource allocation and decision-
making. This, in turn, could lead to increased efficiency, 
improved productivity, and reduced costs. To accurately model 
the production rates of oil, gas, and water, it is important to 
consider the relevant input features that impact these rates.
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indicating a lighter liquid and lower API gravity signifying a 
heavier liquid. This study analyzed the effect of Net API on the 
production rates of oil, gas, and water using GPR models, 
incorporating it as one of the input features. The results of this 
study will provide valuable insight into the relationship between 
Net API and production rate and its impact on production 
forecasting and optimization.

In this study, the effect of well flowing pressure on the 
production rates of oil, gas, and water was evaluated as part of 
the input features used in the GPR models. The results will 
provide valuable insights into the relationship between well 
flowing pressure and the production rate, and its impact on 
production forecasting and optimization. By understanding the 
relationship between well flowing pressure and the production 
rate, operators can make informed decisions on how to optimize 
the production of oil, gas, and water and maximize the potential 
of their wells.

Static pressure refers to the pressure of a fluid when it is 
stationary and not in motion. In the oil and gas production 
industry, the static pressure of a well represents the pressure of 
the fluid in the reservoir prior to the start of production. This 
pressure plays a crucial role in determining the production rate 
of oil, gas, and water as it impacts the flow rate of the fluid from 
the reservoir to the wellbore. A higher static pressure can lead to 
higher production rates, while a lower static pressure may result 
in reduced production. This study analyzed the effect of static 
pressure on the production rates of oil, gas, and water by 
incorporating it as one of the input features in the GPR models.

METHODOLOGY
The Machine Learning (ML) engine used in this study was the 
GPR, which is characterized by a mean and covariance called the 
kernel. Some of the many kernels used in GPR model include 
the matern kernel [8-9], Rational Quadratic Kernel (RQ) [10-12], 
Radial Basis Function (RBF) [13-14], the white-noise kernel [15].

The Matern kernel is a versatile covariance function used in 
GPR and other ML applications. It allows for more complex 
modeling of relationships between data points than the Squared 
Exponential (SE) kernel by considering the distance between 
points and a smoothness parameter. It is commonly used for 
modeling non-stationary processes and in spatial and temporal 
modeling.

The RQ kernel is a flexible covariance function in GPR and ML 
that models short and long-range dependencies between input 
variables by combining a squared exponential kernel and a white 
noise kernel. It is defined by two parameters-length-scale and 
smoothness-which control the smoothness and range of the 
covariance. The RQ kernel is useful for modeling non-stationary 
processes due to its ability to capture complex relationships 
between data points.

The RBF is a widely applied basis function in ML techniques, 
including support vector machines, neural networks, and GPR. 
It maps the input data into a higher-dimensional space by 
utilizing the distance between the input and a central point, 
allowing for non-linear separation of classes. RBFs exhibit great
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In this study, a comprehensive set of input features was selected 
and analyzed for their impact on the production rates. The 
features selected include choke size, tubing head pressure, flow 
line pressure, basic sediment and water, net API, Well Flowing 
Pressure (Pwf), and Static Pressure (Ps). These features were 
carefully chosen to provide a comprehensive understanding of 
the underlying relationships between the input features and the 
production rates.

Choke size is an important factor in oil and gas production as it 
affects the flow rate of fluid from the well. The choke size is a 
device installed in the wellhead that regulates the flow of fluid 
by controlling the pressure drop across the choke. A smaller 
choke size results in a higher pressure drop and a reduced flow 
rate, while a larger choke size allows for a lower pressure drop 
and increased flow rate. In oil and gas production, the choke 
size is adjusted to maintain a desired flow rate and to optimize 
production [7].

Tubing head pressure refers to the pressure at the top of the 
tubing, which is the pipe that runs from the bottom of the well 
to the surface. It is an important parameter to consider in oil 
and gas production as it affects the flow rate of the production 
fluid. A high tubing head pressure can cause fluid to become 
trapped in the well, leading to reduced production rates, while a 
low tubing head pressure can result in excessive fluid flow, 
causing problems with the wellhead and downhole equipment.

Flow line pressure refers to the pressure of the fluid that is 
present in the pipeline that carries the produced fluid from the 
wellhead to the production facility. This factor plays a crucial 
role in determining the production rate of oil, gas, and water. 
High flow line pressure can result in decreased production due 
to the rise in backpressure at the wellbore, which hampers the 
flow of fluid. On the other hand, low flow line pressure can 
result in increased production but can also cause the formation 
of gas hydrate, a harmful solid form of gas that can block the 
flow line. This study evaluated the impact of flow line pressure 
on the production rates of oil, gas, and water as one of the input 
features considered in the GPR models. The findings of this 
study will provide important information about the significance 
of flow line pressure in production forecasting and its influence 
on optimizing production.

Basic Sediment and Water (BSW) refers to the mixture of solid 
particles and water present in the produced fluid from an oil 
well. BSW can have a significant impact on the production rates 
of oil, gas, and water as it can cause blockages and reduce the 
efficiency of production equipment. In this study, the effect of 
BSW on the production rates of oil, gas, and water was 
evaluated as part of the input features used in the GPR models. 
The results will provide valuable insights into the importance of 
BSW in production forecasting and its impact on production 
optimization. Additionally, the findings of this study can be 
used to improve production processes and minimize the negative 
impact of BSW on production efficiency.

The API gravity measurement of petroleum liquids, known as 
the Net API, is a crucial factor in determining the density and 
value of a well's production. This measurement compares the 
density of petroleum liquids to water, with higher API gravity
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Figure 1: R2 between the original data and test data oil rates 
using the matern kernel. Note:     R2=0.87

Figure 2: R2 between the original data and test data water rates 
using the matern kernel. Note:      R2=0.92

Using the rational quadratic kernel

The results indicate that the RQ kernel was effective in 
modeling the oil and water rates, with R2 values of 0.88 and 
0.86 respectively. However, the gas predictions were not as 
accurate, with an R2 value of only 0.8. This suggests that further 
optimization and refinement of the RQ kernel or the use of a 
different kernel could lead to improved predictions for the gas 
rates. Additionally, exploring other factors that may impact the 
accuracy of the gas predictions, such as the presence of outliers 
or the need for additional feature engineering, may also lead to 
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versatility in modeling complex relationships between inputs 
and outputs and are frequently used as kernel functions in non-
linear regression and classification.

In signal processing and ML, white noise kernel is a model for 
uncorrelated random data with constant power spectral density. 
It is utilized as a basic model for noise or background signal and 
as a covariance function in GP models, assuming constant 
variance and independence of observations. White noise kernel 
is employed to represent measurement errors, random 
fluctuations in data and regression analysis.

For this study, three kernels were considered: the RQ, RBF and 
matern kernels, and hyperparameter tuning was done [16-17].

Data generation

The input features for the model were derived from production 
data from a field, including choke size, Tubing Head Pressure 
(THP), Flow Line Pressure (FLP), Basic Sediment and Water 
(BSW),    net    API, Well Flowing Pressure (Pwf), and Static 
Pressure (Ps). The goal of the model was to use these input 
features to predict the output features of oil, water, and gas rates. 
The data used in this study was collected over a period of three 
years, representing the average production rate during the time 
periods when production was not completely shut down. 70% of 
the total data-set was used as the training data. The test data set 
was created  by  discretizing  the  choke  size,  THP,   FLP,   BSW, 
and net API values along the minimum and maximum values 
observed in the original data set. This test data set was different 
from the original data and was used to evaluate the performance 
of the machine learning model. This was done to further 
evaluate the impact of the input features. The input features of 
the training dataset were standardized using the mean and 
standard deviation from the corresponding test data feature.

Once the data was preprocessed and divided into training 
dataset, the Gaussian Process Regressor (GPR) machine learning 
model was trained using the RQ, RBF, and Matern kernels. The 
performance of the model was evaluated using metrics such as 
the coefficient of determination (R2) on the test data. The 
results showed the effectiveness of the GPR model in predicting 
the oil, water, and gas rates using the input features from the 
production field data.

RESULTS

Using the matern kernel

The predictions for oil, water, and gas rates were made using the 
three  different  kernels  described in  Section 2.0.  Figures 1-3  
and  its  depicts  upon the R2 plots comparing the results of the  
predictions of oil, water, and gas rates on the test data set to 
those of the original data set using the matern kernel. The R2

value obtained from modeling the oil rates was 0.87, while the 
R2 value for water rates was 0.92 and for gas rates was 0.8. This 
implies that the matern kernel performs well and there is room 
for improvement in the hyperparameters for the prediction of 
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Figure 3: R2 between the original data and test data gas rates 
using the matern kernel. Note:     R2=0.8

gas rates (Figures 1-3).



Figure 4: R2 between the original data and test data oil rates 
using the RQ kernel. Note:     R2=0.88

Figure 5: R2 between the original data and test data water 
rates using the RQ kernel. Note:     R2=0.86

Figure 6: R2 between the original data and test data gas rates 
using the RQ kernel. Note:     R2=0.8

Using the radial basis function kernel

The results of using the RBF kernel for the prediction of oil, 
water, and gas rates in this study showed that the oil rate 
prediction was the best performer with an R2 of 0.87. This 
indicates that the RBF kernel was able to capture the 
relationship between the input variables and the oil rate 
effectively. The water rate prediction also performed well, with 
an R2 of 0.82, however, the gas rate prediction showed a poor 
performance, with an R2 of only 0.79.

It is important to note that R2 values close to 1 indicate a strong 
correlation between the predicted and actual values, while values 
close to 0 indicate a weak correlation [18-20]. In this case, the 
results indicate that while the RBF kernel was effective in 
predicting the oil and water rates, it was less effective in 
predicting the gas rates.

Further analysis may be required to determine the reason for the 
poor performance of the gas rate prediction and to determine if 
improvements can be made. This could include the use of 
different hyperparameters, the addition of more input variables, 
or  the use of a  different kernel function. Figures 7-9 shows the  
results for the oil, water and gas models respectively (Figures  7-9).

Figure 7: R2 between the original data and test data oil rates 
using the RBF kernel. Note:      R2=0.87

Figure 8: R2 between the original data and test data water rates 
using the RBF kernel. Note:      R2=0.82.
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improved results. Overall, the results of this study demonstrate 
the potential for GPR and ML techniques to provide valuable 
insights into oil and gas production rates and to inform 
production optimization efforts. Figures show the results for the 
oil, water and gas models respectively (Figures 4-6).
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CONCLUSION AND RECOMMENDATIONS

In conclusion, Gaussian Process Regression (GPR) is a promising 
tool for production forecasting in the oil and gas industry. This 
study evaluated the performance of GPR models for predicting 
the production rates of oil, gas, and water and analyzed the 
impact of different input features, including choke size, tubing 
head pressure, flow line pressure, basic sediment and water, net 
API, well flowing pressure, and static pressure, on the 
production rates. The results of this study will provide valuable 
insights into the potential of GPR for improving production 
forecasting and optimization in the oil and gas industry, as well 
as the suitability of different kernels in modeling the production 
rates of these resources. The findings of this study will also help 
to understand the significance of each input feature in 
production forecasting, which can be used to improve 
production processes and efficiency. In this study, we can 
conclude that the matern kernel is generally the better kernel. 
The choice of kernel is crucial as it controls the shape of the 
covariance function, and different kernels can lead to different 
predictions. Moreover, incorporating additional relevant 
information, such as geological data and well logs, into the GPR 
model could also improve the rate predictions. It is essential to 
continually evaluate and refine the GPR model to ensure that it 
provides accurate predictions of the oil, water, and gas rates. This 
will help with better decision-making for oil and gas production 
operations.
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Figure 9: R2 between the original data and test data water 
rates using the RBF kernel. Note:      R2=0.79.
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