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ABSTRACT

This study evaluated the performance of Gaussian Process Regression (GPR) models for predicting the production
rates of oil, gas, and water in the energy industry. GPR is a non-parametric, Bayesian-based machine learning
technique that models the uncertainty in the predictions, providing not only a prediction but also a confidence
interval for the prediction. This study analyzed the impact of various input features on the production rates,
including choke size, tubing head pressure, flow line pressure, basic sediment and water, net Application
Programming Interface (API), well flowing pressure, and static pressure. The result of this study provides valuable
insights into the potential of GPR for improving production forecasting and resource management in the oil and gas
industry. The findings also shed light on the suitability of different kernels in modeling the production rates and the
significance of each input feature in production forecasting and optimization. The use of GPR in production
forecasting has the potential to increase efficiency, improve productivity, and reduce costs in the oil and gas industry.
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INTRODUCTION

Oil, gas, and water production are essential components of the
energy industry and play a critical role in meeting global energy
demands. Accurate predictions of these production rates are
crucial for effective decision-making and resource management.
In recent years, machine learning techniques have become
increasingly popular in the oil and gas industry, providing a
related to
production forecasting. Gaussian Process Regression (GPR) is a

powerful tool for solving complex problems
machine learning technique that has shown promising results in
a variety of applications, including the prediction of oil, gas, and

water production rates [1-3].

GPR is a non-parametric, Bayesian-based technique that models
the underlying relationship between the inputs and outputs [4-
6]. Unlike traditional regression techniques, GPR models the
uncertainty in the predictions, providing not only a prediction
but also a confidence interval for the prediction. This makes

GPR an ideal tool for forecasting the production rates of
oil, gas,
complex and uncertain.

and water, where the underlying processes are

In this study, the performance of GPR models was evaluated for
predicting the production rates of oil, gas, and water using
different kernels. The results of this study will provide valuable
insights into the potential of GPR for improving production
forecasting in the oil and gas industry. Additionally, the study
will also help to shed light on the suitability of different kernels
in modeling the production rates of these resources, which can
provide a basis for future research in this field. The use of GPR
in production forecasting has the potential to revolutionize the
oil and gas industry by providing more accurate predictions,
which can help to optimize resource allocation and decision-
making. This, in turn, could lead to increased efficiency,
improved productivity, and reduced costs. To accurately model
the production rates of oil, gas, and water, it is important to
consider the relevant input features that impact these rates.
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In this study, a comprehensive set of input features was selected
and analyzed for their impact on the production rates. The
features selected include choke size, tubing head pressure, flow
line pressure, basic sediment and water, net API, Well Flowing
Pressure (Pwf), and Static Pressure (Ps). These features were
carefully chosen to provide a comprehensive understanding of
the underlying relationships between the input features and the
production rates.

Choke size is an important factor in oil and gas production as it
affects the flow rate of fluid from the well. The choke size is a
device installed in the wellhead that regulates the flow of fluid
by controlling the pressure drop across the choke. A smaller
choke size results in a higher pressure drop and a reduced flow
rate, while a larger choke size allows for a lower pressure drop
and increased flow rate. In oil and gas production, the choke
size is adjusted to maintain a desired flow rate and to optimize
production [7].

Tubing head pressure refers to the pressure at the top of the
tubing, which is the pipe that runs from the bottom of the well
to the surface. It is an important parameter to consider in oil
and gas production as it affects the flow rate of the production
fluid. A high tubing head pressure can cause fluid to become
trapped in the well, leading to reduced production rates, while a
low tubing head pressure can result in excessive fluid flow,
causing problems with the wellhead and downhole equipment.

Flow line pressure refers to the pressure of the fluid that is
present in the pipeline that carries the produced fluid from the
wellhead to the production facility. This factor plays a crucial
role in determining the production rate of oil, gas, and water.
High flow line pressure can result in decreased production due
to the rise in backpressure at the wellbore, which hampers the
flow of fluid. On the other hand, low flow line pressure can
result in increased production but can also cause the formation
of gas hydrate, a harmful solid form of gas that can block the
flow line. This study evaluated the impact of flow line pressure
on the production rates of oil, gas, and water as one of the input
features considered in the GPR models. The findings of this
study will provide important information about the significance
of flow line pressure in production forecasting and its influence
on optimizing production.

Basic Sediment and Water (BSW) refers to the mixture of solid
particles and water present in the produced fluid from an oil
well. BSW can have a significant impact on the production rates
of oil, gas, and water as it can cause blockages and reduce the
efficiency of production equipment. In this study, the effect of
BSW on the production rates of oil, gas, and water was
evaluated as part of the input features used in the GPR models.
The results will provide valuable insights into the importance of
BSW in production forecasting and its impact on production
optimization. Additionally, the findings of this study can be
used to improve production processes and minimize the negative
impact of BSW on production efficiency.

The API gravity measurement of petroleum liquids, known as
the Net AP, is a crucial factor in determining the density and
value of a well's production. This measurement compares the
density of petroleum liquids to water, with higher API gravity
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indicating a lighter liquid and lower API gravity signifying a
heavier liquid. This study analyzed the effect of Net API on the
production rates of oil, gas, and water using GPR models,
incorporating it as one of the input features. The results of this
study will provide valuable insight into the relationship between
Net API and production rate and its impact on production
forecasting and optimization.

In this study, the effect of well flowing pressure on the
production rates of oil, gas, and water was evaluated as part of
the input features used in the GPR models. The results will
provide valuable insights into the relationship between well
flowing pressure and the production rate, and its impact on
production forecasting and optimization. By understanding the
relationship between well flowing pressure and the production
rate, operators can make informed decisions on how to optimize
the production of oil, gas, and water and maximize the potential
of their wells.

Static pressure refers to the pressure of a fluid when it is
stationary and not in motion. In the oil and gas production
industry, the static pressure of a well represents the pressure of
the fluid in the reservoir prior to the start of production. This
pressure plays a crucial role in determining the production rate
of oil, gas, and water as it impacts the flow rate of the fluid from
the reservoir to the wellbore. A higher static pressure can lead to
higher production rates, while a lower static pressure may result
in reduced production. This study analyzed the effect of static
pressure on the production rates of oil, gas, and water by
incorporating it as one of the input features in the GPR models.

METHODOLOGY

The Machine Learning (ML) engine used in this study was the
GPR, which is characterized by a mean and covariance called the
kernel. Some of the many kernels used in GPR model include
the matern kernel [8-9], Rational Quadratic Kernel (RQ) [10-12],
Radial Basis Function (RBF) [13-14], the white-noise kernel [15].

The Matern kernel is a versatile covariance function used in
GPR and other ML applications. It allows for more complex
modeling of relationships between data points than the Squared
Exponential (SE) kernel by considering the distance between
points and a smoothness parameter. It is commonly used for
modeling non-stationary processes and in spatial and temporal
modeling.

The RQ kernel is a flexible covariance function in GPR and ML
that models short and longrange dependencies between input
variables by combining a squared exponential kernel and a white
noise kernel. It is defined by two parameterslength-scale and
smoothness-which control the smoothness and range of the
covariance. The RQ kernel is useful for modeling non-stationary
processes due to its ability to capture complex relationships
between data points.

The RBF is a widely applied basis function in ML techniques,
including support vector machines, neural networks, and GPR.
It maps the input data into a higher-dimensional space by
utilizing the distance between the input and a central point,
allowing for non-linear separation of classes. RBFs exhibit great
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versatility in modeling complex relationships between inputs
and outputs and are frequently used as kernel functions in non-
linear regression and classification.

In signal processing and ML, white noise kernel is a model for
uncorrelated random data with constant power spectral density.
It is utilized as a basic model for noise or background signal and
as a covariance function in GP models, assuming constant
variance and independence of observations. White noise kernel
is employed to represent random

measurement errors,

fluctuations in data and regression analysis.

For this study, three kernels were considered: the RQ, RBF and
matern kernels, and hyperparameter tuning was done [16-17].

Data generation

The input features for the model were derived from production
data from a field, including choke size, Tubing Head Pressure
(THP), Flow Line Pressure (FLP), Basic Sediment and Water
(BSW), net API, Well Flowing Pressure (Pwf), and Static
Pressure (Ps). The goal of the model was to use these input
features to predict the output features of oil, water, and gas rates.
The data used in this study was collected over a period of three
years, representing the average production rate during the time
periods when production was not completely shut down. 70% of
the total data-set was used as the training data. The test data set
was created by discretizing the choke size, THP, FLP, BSW,
and net API values along the minimum and maximum values
observed in the original data set. This test data set was different
from the original data and was used to evaluate the performance
of the machine learning model. This was done to further
evaluate the impact of the input features. The input features of
the training dataset were standardized using the mean and
standard deviation from the corresponding test data feature.

Once the data was preprocessed and divided into training
dataset, the Gaussian Process Regressor (GPR) machine learning
model was trained using the RQ, RBF, and Matern kernels. The
performance of the model was evaluated using metrics such as
the coefficient of determination (R?) on the test data. The
results showed the effectiveness of the GPR model in predicting
the oil, water, and gas rates using the input features from the
production field data.

RESULTS

Using the matern kernel

The predictions for oil, water, and gas rates were made using the
three different kernels described in Section 2.0. Figures 1-3
and its depicts upon the R? plots comparing the results of the
predictions of oil, water, and gas rates on the test data set to
those of the original data set using the matern kernel. The R?
value obtained from modeling the oil rates was 0.87, while the
R? value for water rates was 0.92 and for gas rates was 0.8. This
implies that the matern kernel performs well and there is room
for improvement in the hyperparameters for the prediction of
gas rates (Figures 1-3).
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Figure 1: R? between the original data and test data oil rates
using the matern kernel. Note: ® R?=0.87
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Figure 2: R? between the original data and test data water rates
using the matern kernel. Note: ® R?=0.92
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Figure 3: R? between the original data and test data gas rates

using the matern kernel. Note: # R?=0.8

Using the rational quadratic kernel

The results indicate that the RQ kernel was effective in
modeling the oil and water rates, with R? values of 0.88 and
0.86 respectively. However, the gas predictions were not as
accurate, with an RZ value of only 0.8. This suggests that further
optimization and refinement of the RQ kernel or the use of a
different kernel could lead to improved predictions for the gas
rates. Additionally, exploring other factors that may impact the
accuracy of the gas predictions, such as the presence of outliers
or the need for additional feature engineering, may also lead to
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improved results. Overall, the results of this study demonstrate
the potential for GPR and ML techniques to provide valuable
insights into oil and gas production rates and to inform
production optimization efforts. Figures show the results for the
oil, water and gas models respectively (Figures 4-6).
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Figure 4: R? between the original data and test data oil rates
using the RQ kernel. Note: ® R?=0.88
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Figure 5: R? between the original data and test data water
rates using the RQ kernel. Note: » R?=0.86
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Figure 6: R? between the original data and test data gas rates
using the RQ kernel. Note: &« R?=0.8
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Using the radial basis function kernel

The results of using the RBF kernel for the prediction of oil,
water, and gas rates in this study showed that the oil rate
prediction was the best performer with an R? of 0.87. This
indicates that the RBF kernel was able to capture the
relationship between the input variables and the oil rate
effectively. The water rate prediction also performed well, with
an R? of 0.82, however, the gas rate prediction showed a poor
performance, with an R% of only 0.79.

It is important to note that R? values close to 1 indicate a strong
correlation between the predicted and actual values, while values
close to O indicate a weak correlation [18-20]. In this case, the
results indicate that while the RBF kernel was effective in
predicting the oil and water rates, it was less effective in
predicting the gas rates.

Further analysis may be required to determine the reason for the
poor performance of the gas rate prediction and to determine if
improvements can be made. This could include the use of
different hyperparameters, the addition of more input variables,
or the use of a different kernel function. Figures 7-9 shows the
results for the oil, water and gas models respectively (Figures7-9).
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Figure 7: R? between the original data and test data oil rates
using the RBF kernel. Note: # R2=0.87
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Figure 9: R? between the original data and test data water
rates using the RBF kernel. Note: ® R2=0.79.

CONCLUSION AND RECOMMENDATIONS

In conclusion, Gaussian Process Regression (GPR) is a promising
tool for production forecasting in the oil and gas industry. This
study evaluated the performance of GPR models for predicting
the production rates of oil, gas, and water and analyzed the
impact of different input features, including choke size, tubing
head pressure, flow line pressure, basic sediment and water, net
static pressure, on the
production rates. The results of this study will provide valuable

APL, well flowing pressure, and
insights into the potential of GPR for improving production
forecasting and optimization in the oil and gas industry, as well
as the suitability of different kernels in modeling the production
rates of these resources. The findings of this study will also help
to understand the significance of each input feature in
production forecasting, which can be used to improve
production processes and efficiency. In this study, we can
conclude that the matern kernel is generally the better kernel.
The choice of kernel is crucial as it controls the shape of the
covariance function, and different kernels can lead to different
Moreover, additional

information, such as geological data and well logs, into the GPR

predictions. incorporating relevant
model could also improve the rate predictions. It is essential to
continually evaluate and refine the GPR model to ensure that it
provides accurate predictions of the oil, water, and gas rates. This
will help with better decision-making for oil and gas production

operations.
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