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ABSTRACT
We seek to address labor shortages, in particular, the aging workforce of rural areas and thus facilitate agricultural 

management. The movement and operation of agricultural equipment in Taiwan is complicated by the fact that many 

commercial crops in Taiwan are planted on hillsides. For mixed crops in such sloped farming areas, the identification 

of tree species aids in agricultural management and reduces the labor needed for farming operations. General optical 

images collected by visible-light cameras are sufficient for recording but yield suboptimal results in tree species 

identification. Using a multispectral camera makes it possible to identify plants based on their spectral responses. We 

present a method for tree species classification using UAV visible light and multispectral imagery. We leverage the 

differences in spectral reflectance values between tree species and use near infrared band images to improve the 

model’s classification performance.

CNN based deep neural models are widely used and yield high accuracies, but 100% correct results are difficult to 

achieve, and model complexity generally increases with performance. This leads to uncertainty about the system’s 

final decisions. Interpretable AI extracts key information and interprets it to yield a better understanding of the 

model’s conclusions or actions. We use visualization (four pixel level attribution methods and one region level 

attribution method) to interpret the model post-hoc. Fuzzy IG for pixel level attribution best represents texture 

features, and  region level attribution  represents life regions  more effectively  than pixel level  attribution, which 

aids human understanding.

Keywords: Explainable AI (XAI); Convolutional Neural Network (CNN); Multispectral; Tree species classification; 

Unmanned Aerial Vehicle (UAV)

INTRODUCTION
Taiwan's land is narrow and densely populated, and hillside land 
comprises over 70% of the country's total land area. It contains 
rich natural resources, and there are more than 30 kinds of 
fruits, with production areas all over the country. Constrained 
by the steep terrain of Taiwan's sloping land, which is not 
conducive to the movement and operation of equipment, 
agricultural work is still mainly carried out manually, which is 
laborious and time consuming. In addition, many sloping plots 
of land are planted with mixed fruit trees, which adds difficulty 
to planting operations. Species investigation is particularly

important for these reasons. Because traditional manual survey 
work is time consuming and labor intensive, methods have been 
developed for automated tree species through smart agriculture, 
which not only yields a better understanding of the distribution 
of tree species on farmland but also provides effective 
geographical environment information that facilitates the 
implementation of pest control and pesticide spraying 
operations [1].

In practice, smart agriculture requires various Artificial Internet 
of Things (AIoT) and smart agricultural machinery or 
technologies, for instance, automated environmental control
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irrigation, weed detection, and so on. Platforms include 
satellites, UAVs, and Unmanned Ground Vehicles (UGVs).

Challenges of remote vegetation sensing include increasing data 
volumes and computational loads and more diverse data 
structures, whose dimensions (spatial, temporal, and spectral) 
often are characterized by complex relationships. Therefore, 
using remote sensing data for vegetation assessment and 
monitoring requires efficient, accurate, and flexible analytical 
methods. Over the past few decades, various technological 
advances have increased the availability of remote sensing data.

Multispectral UAV imagery

To date, remote sensing research relies primarily on satellites or 
aircraft. In the past, multispectral satellites were the focus of 
attention: They are low cost and cover large areas, helping to 
map forest or vegetation cover types [5]. The disadvantages of 
such satellites are their low resolution, which makes it difficult 
to identify tree species and support precision agriculture. After 
2000, many studies began to use data from commercial satellites 
in the form of high-resolution panchromatic and multi-spectral 
images for tree species classification. In addition, recent studies 
using drones have successfully classified tree species using 
images with resolutions ranging from 0.2 to 3.0 meters. Novel 
remote sensing platforms such as microsatellite swarms or UAVs 
yield imagery of vegetation canopies with increased spatial 
detail.

UAVs have been used experimentally in forestry applications 
over the past few decades [6]. Compared to manned aircraft, 
drones are an easy to use, low-cost telemetry tool. In addition, 
drones can fly near tree canopies to capture extremely high 
resolution images. Most related studies use special hardware 
such as visible light cameras, multispectral sensors, hyperspectral 
sensors, and Light Detection and Ranging (LIDAR) sensors to 
achieve good results when classifying tree species [7]. Visible 
light imagery can also be used in combination with Near 
Infrared (NIR) or multi-spectral imagery to improve the accuracy 
of biomass calculations [8]. Applications also exist that combine 
multi-spectral or hyperspectral sensors and lidar data; although 
this method of data acquisition yields superior performance, the 
sensing equipment involved is expensive [9].

Vegetation telemetry technology and AI

Neural network [10] technology has been under development for 
over three decades and is now a dominant approach. Support 
vector machines were popular from 1980 to 2000, primarily 
because few neural network layers (about 1 to 3 layers) could be 
built at that time, resulting in a limited number of features that 
the networks could learn and thus poor model performance; 
these are termed shallow neural networks. Inspired by human 
learning, Artificial Neural Networks (ANNs) employ connected 
units to learn features from data. In recent years, with the 
improvement of various aspects of computer technology, it has 
become much easier to build larger neural networks, which has 
led to major efficiency breakthroughs in deep neural networks, 
such that neural networks are once again superior to previous 
methods.  Deep  learning  models, or  deep ANNs with more than
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equipment, sensors, Artificial Intelligence (AI), agricultural 
robots, and agricultural drones. Using technologies such as 
Unmanned Aerial Vehicles (UAVs) and deep learning, data 
analysis can improve agricultural management and reduce 
agricultural labor requirements. In recent years, UAVs have 
greatly improved the efficiency of agricultural production and 
enabled production in a more immediate, lower cost, and less 
labor-intensive way. In tasks such as forest management, 
environmental monitoring and crop identification, UAVs are 
often equipped with cameras for image collection. Although 
general high resolution lenses in the visible light band are 
sufficient to meet the needs of recording, in agricultural 
applications, to obtain more effective information for precision 
agriculture, it is necessary to integrate additional components 
such as multispectral sensors, hyperspectral sensors, or thermal 
imaging sensors [2].

With the increasing ubiquity of AI come questions of trust, bias, 
accountability, and process, all concerning how the machines 
are reaching their conclusions. AI based systems are not 100%
perfect, and improvements in system performance are often 
achieved by increasing model complexity, making these systems a 
“black box” and leading to uncertainty about how they operate 
and how they ultimately make decisions. Thus, insights into 
decisions not only elicit trust but also prevent life threatening 
mistakes [3]. Explainable AI research delves deeper into the 
black box of deep learning and yields information or 
explanations about how an algorithm has come to its 
conclusions or actions. In addition to providing accountability, 
XAI can be useful for system fine-tuning.

For these reasons, we attempt to use a UAV with multi-spectral 
sensors and XAI technology to automatically identify and 
investigate mixed crops in sloped farming areas, reducing costs 
and labor burdens and yielding useful information for 
agricultural management. This facilitates follow-up pest 
management and pesticide spraying operations and increases the 
transparency of deep learning models. We use post-hoc 
explanation methods in XAI four pixel level attribution methods 
and one regional level attribution method-to visualize important 
model learning features to better understand the model’s 
decision factors for use in revising the model. The experimental 
results show that regional attribution combines pixel level 
attribution and image over-segmentation to rank block 
importance to more effectively quantify feature meaning and 
importance.

MATERIALS AND METHODS

Telemetry image monitoring

In the remote sensing of vegetation, research data is most often 
obtained in the form of field surveys or observations [4]. 
However, the amount of information for field surveys is usually 
limited because such surveys involve considerable 
transportation, equipment, and labor costs. For study of the 
natural environment in particular, factors such as climate and 
topography also limit the sampling frequency. Remote sensing 
monitoring is a popular topic for research on precision 
agriculture,  forestry management, crop yield prediction,
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users with greater confidence and increasing trust in ML 
systems.

In practical situations, linear models or shallow neural networks 
are often not expressive enough to make predictions. As a result, 
deep neural networks are gradually taking over as the most 
common predictive model. Depending on the neural network 
architecture, a single prediction can involve millions of 
mathematical operations. Humans must consider millions of 
weights interacting in complex ways to understand the 
predictions of neural network models. The complexity of deep 
neural network models greatly complicates model interpretation, 
making it necessary to develop specific interpretation methods 
to explain the behavior and predictions of the model.

Given the opaque nature of neural network systems such as 
CNNs, it is difficult to ascertain which layers or parameters 
affect the training process. In this study, we focus not on how 
the model learns but rather on understanding what features 
have the greatest effect on the model in an effort to increase 
model reliability and make the models more transparent.

Research architecture

In this section we introduce the system architecture, neural 
network framework, and image classification performance 
indices.

System architecture: The system architecture of this study is 
shown in Figure 1. First, we placed Ground Control Points 
(GCPs) in the experimental area to correct the three-
dimensional coordinates. Next, we collected images of the 
experimental site through a visible light lens and an onboard 
multispectral lens. After this came orthophoto production, data 
preprocessing, training classification model, and explainable AI.

Production of orthophoto images requires multi-spectral 
radiometric calibration to reduce light caused radiation effects. 
To accurately match the visible light image and the multi-spectral 
image, we used GIS software to inspect the coordinates of the 
fixed feature points and correct the coordinates. The processing 
steps are shown in Figure 2. After completing these operations, 
we proceeded to the data preprocessing stage.
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two hidden layers, are complex enough to learn features from 
data, removing the need to manually extract features based on 
human experience and prior knowledge.

CNN based deep neural models have achieved unprecedented 
breakthroughs in computer vision tasks and are one of the most 
successful network architectures for methods ranging from 
image classification, object detection, and semantic 
segmentation to image captioning, visual question answering, 
and most recently visual dialog [11].

Deep learning, a breakthrough technology, has been used for 
data mining and remote sensing research. Research that 
combines deep learning and remote sensing data has shown 
great potential in plant detection, forest cover mapping, and 
crop damage assessment. One advantage of deep learning over 
Machine Learning (ML) methods is that it does not require 
manual feature extraction. An ML method extracts texture 
features, vegetation indexes, and original band values, after 
which hyperspectral data can be used for feature selection to 
reduce dimensionality and avoid the “curse of dimensionality” 
and high computational costs caused by high dimensional 
spaces [12]. Deep learning exploits complete feature 
information, especially information related to spatial pixel 
relationships such as tree texture and shape. Therefore, even 
with simple digital images, deep learning can yield high detail 
and high accuracy recognition results.

Deep learning has become an important tool for agricultural 
classification and quality control due to its powerful and fast 
feature extraction capabilities. Applications use deep learning 
and imagery to assist agriculture for tasks such as grape variety 
classification using visible light imagery with AlexNet and Mask 
R-CNN; crop identification and land use classification using 
multispectral satellite imagery; crop classification using six CNN 
architectures trained on 14 classes of multi-spectral land 
cover imagery; plant disease detection using the VGG-16 model; 
weed detection in sugar beet fields using VGG-16 and 
classification of field land cover using the Inception-v3 model 
[13].

Explainable AI

As AI becomes more ubiquitous, questions of trust, bias, 
accountability, and process become more important: How 
exactly are these machines reaching their conclusions? AI based 
systems are not 100% perfect, and improvements in system 
performance are usually achieved by increasing model 
complexity, making these systems a “black box” and leading to 
uncertainty about how they operate and how they ultimately 
make decisions. Thus, insights into decision making not only 
elicit trust but can also prevent life-threatening mistakes [14].

Explainable AI research aims to peek into the black box of ML 
and deep learning and extract information or explanations for 
how an algorithm has come to certain conclusions or why it has 
taken certain actions. In addition to accountability, XAI can 
assist in tuning machine learning systems. The inputs and 
outputs of ML algorithms as well as their network design are still 
determined by humans and are therefore often subject to 
human error or bias. XAI addresses these issues, providing end
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For image preprocessing, we resampled the multi-spectral 
orthophoto via bicubic interpolation to the same size and 
resolution as the visible light orthophoto. Next, we used a sliding 
window to cut the orthophoto image into smaller sub images, of 
which 20% were taken as the dataset, which we further classified 
manually. This dataset was then partitioned into 80% for the 
training set and 20% for the testing set, as shown in Figure 3.

Last, in the XAI stage, we used four pixel level attribution 
methods to visualize features, and used a region level attribution 
XRAI method to better understand the reason for the model's 
decisions.

Below, we describe the neural network model and the image 
classification metrics for the experiments, and present the results 
of the study.

Neural network framework: We extended the experimental 
content for this study from our previous tree species 
classification study in which we compared the performance of 
four CNN architectures on visible light images CNN-4, VGG-16, 
VGG-19 and ResNet-50 of which the VGG-16 model yielded the 
highest overall accuracy rate (0.852). Therefore, in this study we 
used a modified VGG-16 model with an added multi-
spectral NIR band to improve classification accuracy, and added 
post-hoc back propagation gradient based explanation methods 
to produce feature attributions.

The modified VGG-16 model is shown in Figure 5. Taking the 
model architecture used in the Dongshan area as an example, 
the input image size is 224 × 224 × 3, and the model includes 13 
convolution layers, 5 max pooling layers, and 3 fully connected 
layers. To better understand which features have the greatest 
effect on the classification results, we calculated and generated 
an attribution map of the image via gradient backpropagation.
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The model training steps are shown in Figure 4. We input the 
training set to the VGG-16 model, adjusted the parameters, 
trained the model, and then evaluated the model performance 
on the test set. If the evaluation indices did not meet our 
expectations, we adjusted the parameters and re-trained the 
model; if this then met our expectations, we considered this the 
best model. We used the best model to classify the sub images 
over the whole area, and present the classification results as a 
multicolor distribution map.
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Figure 2: Orthophoto production.

Figure 3: Data preprocessing.

Figure 5: Explainable VGG-16 network.



species, buildings, and roads in the experimental area (Table 
1). To evaluate the performance of the models, we use 
the confusion matrix, the overall precision rate, and the recall 
rate.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Positive (FP)

Actual negative False Negative (FN) True Negative (TN)

A confusion matrix, a standard format for evaluating models,
has N rows and N columns. Each column represents the
predicted value, and each row represents the actual value. The
matrix shows whether there is confusion between multiple
categories, that is, how many results the model has judged
correctly and how many results are wrong. From the confusion
matrix we calculate metrics such as accuracy, precision, recall,
and F-score. For binary classification, the confusion matrix has 2
rows and 2 columns, as shown in Table 1. Naturally, we seek to
maximize true positives and true negatives while minimizing
false positives and false negatives, which are respectively termed
type I errors and type II errors.

Overall accuracy, a common metric for model performance, is
calculated using formula 1, which calculates the correct ratio of
all predictions and describes the ability of the model to find the
correct class. However, note that accuracy considers each class to
be equal.

Recall, also known as the true positive rate or the hit rate,
indicates how many true positive samples were correctly
classified; see formula 2.

as the site is surrounded by mountains, communication signals 
are easily interrupted, which hinders signal transmission and 
reception during measurement operations, increasing the 
difficulty of this study.

Ground control point placement and measurement

In this study, after we placed Ground Control Points (GCPs) at 
the site to facilitate accurate orthophotography, we flew a 
quadrotor UAV equipped with a visible light camera and a 
multi-spectral camera back and forth at a high altitude to scan 
the site and capture imagery at an angle perpendicular to the 
ground.

GCPs are a common way to improve the geographic accuracy of 
map surveying, and greatly impact the construction of Digital 
Terrain Models (DTMs). When placing control points, 
considerations include their number, spacing, and locations.

In this study, ten square marks were drawn with white paint on 
open and flat ground at the Nanhua experimental site. The 
center points of these squares were measured using a handheld 
satellite locator (stonex P9A) and a geodesic GNSS receiver 
(stonex S3A), and the three-dimensional geographic information 
for each point was recorded. When creating an orthophoto, the 
coordinates of each control point were imported to produce 
orthophoto with accurate coordinates.

Orthophoto production

In this study, visible light photos and multi-spectral photos were 
used to obtain orthophotos of the complete area via geometric 
correction and image mosaics. Radiometric correction was used 
on the multi-spectral photos to eliminate image distortion 
caused by radiometric errors. Given these orthophotos, 
subsequent experimental steps were carried out for the visible 
light orthophotos and multi-spectral orthophotos.

We captured aerial imagery of the site using the drone and 
obtained geographic information about the real surface 
according to the Digital Elevation Model (DEM) of the site; the 
drone was flown at a height of 30 meters above ground. The 
process of making orthophotos is shown in Figure 6. Equipped 
with a visible light optical lens and a multi-spectral optical lens, 
the UAV scanned the site to capture high altitude imagery. We 
imported the individual images into Pix4Dmapper, set the 
parameters and output specifications, calibrated the site’s ten 
ground control points, and produced a high-altitude orthophoto 
covering the  entire area. To correct spatial dislocations or

Chen L, et al.

Performance indices: After training a model, we evaluate the 
model’s performance. Many validation indices can be used as 
performance indicators. In this study, we used a neural network 
model for multiclass image classification of a variety of tree

Experimental data

This section introduces the experimental site, GCP placement 
and measurement, orthophoto production, feature point 
matching, and data preprocessing. Orthophoto production 
includes radiometric calibration. Data preprocessing includes 
multispectral image resampling and dataset creation via 
cropping, classification, data augmentation, and data balancing.

Experimental site

Considering the difficulty of farming and the complexity of 
planting types due to the sloped terrain, we chose an 
experimental site in Dongshan, specifically Dongshan district, 
Tainan city, Taiwan. The terrain slopes downward from the 
northeast to the west. The main crops at the site are longan, 
plantain, jujube, avocado, and Rutaceae trees. With this study 
we seek to reduce the inconvenience of farming by automatically 
identifying tree species in the field using UAVs and AI. However,
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infrared light vary greatly among plants, and can thus be used to 
differentiate tree species; accordingly, we used NIR channel 
multispectral images for these experiments.

When constructing orthophoto images, we imported the 
coordinates of the ten control points to produce the most 
accurate output. However, there were still slight errors in the 
coordinate space attached to the two images.

To correct these errors, we first imported the visible light 
orthophoto and the multi-spectral orthophoto into the global 
mapper, recorded the error of the center coordinates of each 
control point, and took the average as the overall deviation 
value, including the horizontal and vertical offsets. Then, we 
modified the TIFF world file (TFW) file corresponding to the 
orthophoto with the overall deviation value to correct the 
deviation in the two images. TFW is a space parameter 
description file with six columns of content for TIFF files, and 
can be opened and edited using a general ASCII text editor. The 
first column represents the pixel resolution in the X direction 
(row), the second column represents the X-axis rotation amount, 
the third column represents the Y-axis rotation amount, the 
fourth column represents the pixel resolution in the Y direction 
(column), and the sixth and seventh columns represent the X 
and Y geographic coordinates of the upper left pixels 
respectively; thus we used the corrections in the sixth and 
seventh columns.

Data preprocessing

Here we describe the image preprocessing needed for model 
training, including the multi-spectral orthophoto re-sampling 
and the processing of the dataset samples, which involved 
cutting, classification, image data enhancement, and data 
balancing preprocessing, as described in the following 
subsections.

Multi-spectral image re-sampling: We collected five aerial images 
of the Dongshan site in 2022, and used software to produce five 
date aerial orthophotos as a combination of visible light 
orthophotos and multi-spectral orthophotos (five channels). 
We used re-sampling to increase the resolution of the multi-
spectral orthophotos to match the visible light images.

Take the orthophoto taken on March 19 as an example: The 
resolution of the visible light orthophoto was 0.85 cm/pixel, 
and that of the multi-spectral orthophoto was 1.39 cm/pixel. To 
produce a sub-image that covers an area of 85 × 85 
square centimeters, the visible light orthophoto would need 
to be cropped to 100 × 100 pixels, and the multi-spectral image 
would need to be 61 × 61 pixels. We used bicubic 
interpolation re-sampling to increase the size of the multi-
spectral images so that the two images would have the same 
coverage and size for image fitting and conform to the format of 
the input model.

Dataset classification

This section describes the steps taken to create the dataset. The 
orthophotos covering the experimental site were cropped to fit 
and 20% of the resultant subimages were selected as the training 
set and manually classified into several categories.

Image cropping: Since the purpose of this study is to identify 
tree species at the experimental site using the VGG-16 model,
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distortions during image stitching, we input the spatial 
geographic information (longitude, latitude, and altitude) of the 
control points into Pix4Dmapper and aligned all control points 
with the correct three-dimensional coordinates to reduce aerial 
measurement error.

The five high altitude images used in this study were captured 
on January 14, March 19, April 10, June 16, and July 18, 2022. 
Each image is the product of one visible light orthophoto and 
five multi-spectral orthophotos, including the red, green, blue, 
NIR, and red-edge spectra. Although the spatial resolution of 
the multi-spectral images was lower than that of the optical 
images, the multi-spectral images contain five channels of rich 
multiple-spectral reflectance information.

Radiometric calibration: Image data is laid out as a large matrix 
of numbers, where each pixel in the image is a number that 
corresponds to the intensity of radiation at a certain wavelength. 
This allows us to see objects such as buildings, roads, and grass 
in the imagery. However, these pixel values also reflect any 
environmental conditions present when the data was collected, 
such as changes in lighting in the form of sunny and cloudy 
days, sun orientation, intermittent cloud cover, and so on.

Since plant reflectance can be used as an indicator of a plant’s 
health, disease problems, or different species, accurate 
reflectance values are essential for understanding plant 
physiology and comparing image changes over time and space. 
Without high quality radiometric calibrations, the effects of 
lighting conditions cannot be taken into account, which greatly 
complicates time based analysis [15].

We adopted a Corrected Reflective Panel (CRP), a radiometric 
calibration method common to telemetry applications which is 
the most commonly used method historically. As the panel has 
pre-measured reflectance values, it can be used as a control 
reference. To use it, we take a photo of the corrected reflectance 
panel, which allows us to assign known reflectance values to the 
panel's pixels and adjust the rest of the dataset accordingly. The 
Pix4Dmapper software calculates the reflection values from the 
image of the corrected reflective panel as a benchmark to correct 
orthophoto data.

Feature point matching

To improve tree species identification using spectral 
information, we sought to combine visible light orthophotos 
and multi-spectral orthophotos. The reflectance values of near
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Image data augmentation: Data augmentation is common in 
image processing. Data imbalance is a common problem with 
image recognition; it is difficult to train a good neural network 
when there are too few images of a certain class, or when there is 
insufficient data in general. In this case we augment the data to 
increase the amount of data using physical techniques such as 
flipping the image, adjusting the lightness and darkness, 
adjusting the scale, and panning, all of which produce new 
images. Note that for humans, these are the same images, but 
for the machine, these are new images.

We sought to increase the amount of data by horizontal flipping 
and vertical flipping. After flipping, there was still not enough 
data, so we further adjusted the lightness and darkness to 
increase the amount of data. For example, the building in Table 
2 had only 182 original images; adding horizontal and vertical 
flips yielded a total of 546 images, and then producing three 
shades of each of the 152 original images yielded another 456 
images, for a total of 1,002 images, which we manually adjusted 
down to 1,000 images.

Class Original data size Data size after augmentation

Longan 2,047 1,000

Other trees 1,314 1,000

Soil and roads 974 1,000

Architecture 182 1,000

Total 4,517 4,000

Classification model: In this experiment, the visible 
light orthophotos and multi-spectral NIR orthophotos were 
used to classify the tree species of various crops at the site. 
The main tree species at the site were longan, bananas, 
jujube, avocado, and rutaceae. As the longan were in the 
differentiation period, their canopies were generally green in 
appearance. However, as there were fewer crop species and no 
litchi trees at the site, and the planting pattern was less 
complex, there were significant differences in the 
characteristics of each tree.

Table 3 shows the training parameters (learning rate, batch size, 
and training epochs), training time, and performance evaluation 
metrics (overall accuracy and recall) of the model. To avoid 
overfitting, the learning rate and batch size were selected using 
the early-stop strategy.
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we cropped the orthophoto images to fit and used 20% of the 
resultant subimages as the dataset, of which 80% and 20% were 
used as the training set and the testing set, respectively. Note 
that as the canopy area of different crops at the site differed, 
there was no one window size that would fit all crops. 
Empirically, we determined the most suitable window size to be 
100 × 100 pixels, as this captured local crop features and cut out 
unnecessary information. As larger viewports contained 
multiple crops or targets, we chose as small a viewport size as 
possible, but not so small that it contained too few features. To 
ensure that the images covered enough local features, we 
cropped the Dongshan orthophoto into 32 × 32 pixel image 
patches.

Classification: After cropping, the subimages were classified 
manually. Crops at the site included longan, plantain, jujube, 
avocado, and rutaceae, among which longan is the subject of 
this study. The categories were set to longan, other trees, soil/
roads, and buildings, for a total of four categories, as shown in 
Figure 7.

RESULTS AND DISCUSSION
Here we describe the classification model for the Dongshan site, 
present the tree species classification results, and provide the 
post-mortem explanation of the model. In this study, we use 
four post-hoc explanation methods based on gradient 
back propagation: A saliency map, Integrated Gradients 
(IG), guided IG, and blur IG; pixel level attribution is also 
used to visualize features. We also compare pixel level 
attribution in terms of IG.

Classification model and results

This study was conducted using visible-light and multi-spectral 
orthophotos of the Dongshan site taken on January 20, 2022. 
Here we classify the various crops into tree species, and discuss 
the experimental results.
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Imagery date January 20, 2022

Model VGG-16

Channel selection Visible+Multi-spectral NIR

Training parameters

Learning rate 0.00001

Batch size 64

Training epochs 175

Training time 181 seconds

Evaluation metrics

Overall Accuracy (OA) 0.878

Recall R(0)=0.880

R(1)=0.815

R(2)=0.980

R(3)=0.837

Classification results: On January 20, 2022, when the aerial
imagery was captured, the longan was differentiating and the
canopy appearance was dominated by green leaves. The crops at
this site are simple with a relatively consistent planting pattern,
which facilitates tree species identification. The recall rate of all
four categories (longan, other trees, soil/road, and buildings)
was over 80%. After excluding soil/roads, the highest recall rate
was 0.88 for longan: The model achieved good recognition
performance for longan trees.

Figure 8 shows the recognition results. The left image is the
visible-light orthophoto of the site; the right image is the
distribution map of the recognition results, with different colors
for each class, which clearly shows the location and types of the
various crops.

four gradient based backpropagation methods using pixel level 
attribution and then compare pixel level attribution with region 
based attribution.

Post-hoc explanations using pixel level attribution: Four pixel 
level attribution methods were used for the model: Saliency 
map, Integrated Gradients (IG), guided Integrated Gradients 
(guided IG), and blur Integrated Gradients (blur IG). IG, guided 
IG, and blur IG present input features that have the most 
influence on the predicted category as grayscale images in which 
brighter pixels are more important.

• A saliency map represents pixel level importance with respect
to a classification category by the gradient magnitude,
visualized as an attribution map.

• IG solves the problem of gradient saturation generated by the
saliency map: The gradient’s integral value is used as the
importance for the attribution map to reveal more effective
information. However, as IG can generate noise outside
relevant regions, the following methods 3 and 4 are used to
eliminate noise.

•

•

Guided IG uses adaptive paths to improve IG by dynamically
adjusting the model’s attribution path, which reduces noise by
moving in the direction of the lowest correlation bias.
Blur IG uses Gaussian filtering and the Laplacians of
Gaussians (LOG) operator for edge detection, which produces
understandable attributions and reduces noise to highlight
more highly correlated pixels.

Figure 9 shows the attribution diagrams obtained from the four 
pixel level attribution methods. Brighter pixels have a greater 
influence on model prediction. From this figure, the following 
three points can be summarized.

Chen L, et al.

Post-hoc model explanations

This study uses AI visualization methods for important features 
to yield a better understanding of the factors considered by the 
model for decision making. Visualization can be accomplished 
at the pixel level as well as the region level. Here we compare
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Table 3: Training parameters, training time, and evaluation indices.

Figure 8: Distribution map of recognized tree species.



Pixel level attribution vs. XRAI: In this section, we compare 
IG based pixel level attribution with XRAI for area attribution.

Pixel level attribution provides attribution of fine texture to the 
image model by attributing to a single pixel. However, in this 
method significant pixels may be scattered throughout the 
image, which makes it difficult to understand and interpret. 
XRAI calculates significance at the area level rather than the 
pixel level by combining IG pixel level attribution and over-
segmentation. The resulting areas are ranked to present the top 
30% of the highest importance.

Figure 2 compares the two attribution methods for correct and 
incorrect lobotomies. In the XRAI heat map, yellow indicates 
more important areas and indigo indicates less important areas.

We have two observations for this figure.

• XRAI presents importance as a regional heat map and masks
areas outside the top 30% of the most important ones. This
makes it easier than pixel level attribution to understand
features that have a greater influence on the model.

• With XRAI, it is clear that the key longan features are the
borders between clumps of leaves; images are misclassified
because the important feature areas are on the border between
trees and weeds.

Figure 11 compares the attribution methods for the other three
categories. We observe that the important feature of other trees
is the long stripes of their leaves; that because soil and roads
have fewer textural features, the most important feature is the
darker areas and the most important feature of buildings is their
dark, regular texture (Figure 12).

Chen L, et al.

Saliency map vs. component gradient: As the saliency map 
calculates the attribution gradient, when the gradient of a pixel 
with a classification score close to 1 is close to 0, it cannot 
effectively represent these important pixels. The IG attribution 
map highlights more important regions than the saliency map 
because it uses gradient scores instead of gradients, which 
presents important pixels in the attribution map.

Integral gradient vs. guided IG vs. blur IG: The guided IG and 
blur IG methods both reduce noise in IG. Blur IG is most 
effective in clearly presenting edge textures and reducing noise, 
and is thus easier to understand. We observe poor results for 
guided IG. This study suggests that IG facilitates a better 
understanding of where the important pixels are.

Correct classification vs. misclassification: The results of the 
four pixel level attribution methods for the two correctly 
classified images show that the model mainly uses the pixels at 
the edge of the lobster bush to differentiate the category. For the 
two misclassified images, the model extracts not only features of 
the dragon's eye but also soil pixels on the side as its important 
features; the blur IG attribution map shows that the small scale 
granular textures are seen to be important, in contrast to 
correctly classified large scale bush textures, thus explaining the 
misclassification.

Explanation with Ranked Area Integrals (XRAI): Explanation 
with Ranked Area Integrals (XRAI), an IG based area level 
attribution method combined with over segmented image 
processing technology, iteratively calculates the integral value of 
the gradient [16-19]. Area importance is used to merge smaller 
areas into larger areas by predicting whether a certain block is a 
positively affected image area according to pixel level 
information in the area. Figure 10 shows the relationship 
between XRAI and other types of pixel level attribution [20].
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Figure 9: Post-hoc explanation methods using pixel level 
attribution.

Figure 10: Pixel level attribution vs. XRAI.



Figure 11: Attribution methods with correctly classified 
and misclassified longan.

• We map the distribution of crop species on arable land over
large areas, undulating, or difficult to manage topography. The
method clearly distinguishes the distribution of various tree
species, which facilitates farming and arable land management
and provides information on the geographic environment and
tree species for future development of smart agriculture.

• The proposed interpretable multi-spectral tree species
identification process uses visible light optical
images combined with multi-spectral NIR images to
provide additional spectral information for the model to
learn from; this enhances the model's identification effect
compared with the use of visible light images alone.

• The visualization approach yields a better understanding of
the model’s decision making process and facilitates
more timely model adjustments. It makes the model
more transparent and provides insight into the model to
determine whether the model is learning in the right
direction. We compare various visualization methods as a
reference for future research in the field of deep learning.
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Figure 12: Attribution methods with correctly classified non-
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