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Abstract
Objective: Excised fat tissue (EFT) is an excellent source of adipose-derived stem cells (ADSCs) for autologous 

cell therapy. However, the current technique for excising fat tissues with conventional surgical scissors and using 
culture medium containing fetal bovine serum (FBS) may not comply with Good Tissue Practice (GTP) guidelines. 
We thus developed a semi-automated process complying with the abovementioned guideline to manufacture clinical-
grade ADSCs from small volumes of EFT.

Methods: A semi-automated process was developed by using a disposable disperser tube operated on a Tube 
Disperser Workstation to obtain stromal vascular fraction (SVF) from EFT. A culture medium supplemented with 
human autologous serum (HAS) and mesenchymal stem cell culture adjuvant (MCA) consisted of basic fibroblast 
growth factor (bFGF/FGF-2) and antioxidants, was formulated to expand ADSCs from SVF in vitro.

Results: The semi-automated process can markedly enhance cell yields and reduce the operation time for mincing 
tissues from an hour down to a few minutes. The growth of ADSCs was slower in the 10% HAS medium than that in 
medium supplemented with FBS, but their growth in the 10% HAS medium containing MCA (10% HAS+MCA) was 
superior to both media. The 10% HAS+MCA medium also promoted adipogenesis, osteogenesis, chondrogenesis 
and increased the expression of CD44, CD73 and the stemness genes in the ADSCs.

Conclusion: Our novel semi-automated process provides an efficient isolation of SVF, and the 10% HAS+MCA 
medium accelerates the growth of ADSCs from small amounts of EFT without losing their differentiation ability.

Keywords: Disposable disperser tube; Adipose-derived stem cells;
Antioxidants; Fibroblast growth factor-2; Autologous serum

Abbreviations: ADSCs: Adipose-derived Stem Cells; HAS:
Human Autologous Serum; GTP: Good Tissue Practice; GMP: Good 
Manufacturing Practice; SVF: Stromal Vascular Fraction; MCA: 
Mesenchymal Stem Cell Culture Adjuvant; FBS: Fetal Bovine Serum; 
GVHD: Graft-Versus-Host Disease; AFT: Aspirated Fat Tissues; 
MSCs: Mesenchymal Stem Cells; BMI: Body Mass Index; EFT: Excised 
Fat Tissues; SFM: Serum-Free Medium; IRB: Institutional Review 
Board; IMDM: Iscove’s Modified Dulbecco’s Medium; NAC: N-acetyl-
l-cysteine; AsA-2P: Ascorbic Acid-2-Phosphate; PI: Propidium Iodide; 
cbfa1: Core-Binding Factor Subunit Alpha-1; OC: Osteocalcin; COL 
IA1: Collagen Type I, Alpha 1; PPARγ: Proliferator-Activated Receptor 
Gamma; aP2: Adipocyte Fatty Acid-Binding Protein; ACAN: Aggrecan; 
COL IIA1: Collagen Type II, Alpha 1; ALP: Alkaline Phosphatase; 
SOX2: Sex-Determining Region Y-box 2; CXCR4: C-X-C Chemokine 
Receptor Type 4; TERT: Telomerase Reverse Transcriptase; FGF-2: 
Fibroblast Growth Factor-2; EGF: Epidermal Growth Factor; PDGF: 
Platelet-Derived Growth Factor; VEGF: Vascular Endothelial Growth 
Factor; HGF: Hepatocyte Growth Factor; IGFBP: Insulin-Like Growth 
Factor Binding Protein; IGF: Insulin-Like Growth Factor; PL: Platelet 
Lysate; p21: Cyclin-Dependent Kinase Inhibitor 1A; p27: Cyclin-
Dependent Kinase Inhibitor 1B.

Introduction
Freshly isolated, non-expanded stromal vascular fraction (SVF) is 

considered safe and effective for cell therapy [1,2]. Adipose tissue is an 
easily accessible and rich source of SVF [3-6]. Recently, autologous SVF 
has been clinically tested for breast reconstruction and augmentation 
[7], facial lipoatrophy [8], breast implant complications [9], depressed 
scars [10], traumatic calvaria defects [11], Crohn’s disease fistulae 
[12] and graft-versus-host disease (GVHD) [13]. The SVF from these
studies were isolated from aspirated fat tissues (AFT) by liposuction
[14]. SVF contains mesenchymal stem cells (MSCs), namely adipose-
derived stem cells (ADSCs), which can differentiate into adipocytes,
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chondrocytes, osteoblasts, endothelial cells and keratocytes for further 
applications in regenerative therapy and tissue engineering [2-4, 15]. 
However, only 1%–5% of cells from non-manipulated SVF will become 
ADSCs, which provides insufficient cell yield for patients with low 
body mass index (BMI).

ADSCs derived from the direct excision of orbital fat mass [3,16] and 
buccal fat pad excised by surgery [17] compared to those isolated from 
lipoaspirated abdominal subcutaneous fat have similar differentiation 
potential [18]. Although the size of excised fat tissue (EFT) samples 
are commonly smaller, ADSC yields from EFT are often greater than 
that from AFT [6], suggesting that EFT could be an alternative source 
of ADSCs for individuals with lower BMI [3,6,16,18]. Currently, EFT 
must be minced manually with surgical scissors in a biological safety 
cabinet prior to further incubation with collagenase for SVF isolation 
[3,18]. The manual method presents major limitations including a 
lengthier time frame required to process the tissue for the extraction 
of SVF and variability in the resulting isolated cells due to intra-
operator processing. The repeated use of surgical scissors also presents 
risks of cross-contamination. Several bench-top closed systems have 
been developed for SVF isolation from AFT [1], including the Cytori 
Celution™ system [19] and the Tissue Genesis’ TGI 1000™. However, 
an appropriate automated system for the isolation of SVF or ADSCs 
from EFT has yet to be developed.

Fetal bovine serum (FBS) are commonly used for the ex vivo 
expansion of MSCs, which is a potential source of zoonotic or other 
infectious agents such as prions, viruses and mycoplasma. FBS 
is a chemically ill-defined supplement with high batch-to-batch 
variability, which may lead to unpredictable cell growth or variation 
in differentiation [20-23]. On the other hand, the expansion of 
MSCs using human serum-supplemented medium is less efficient 
[24-25]. Several serum-free media (SFMs) have been recognized to 
be safe and free from animal products and related issues [26]. SFMs 
also do not affect the immunophenotype, proliferation potential and 
multipotency of ADSCs [22,27-33]. These SFMs include MesenCult®-
XF Medium (Stemcell Technologies, Canada) [34], StemPro® MSC 
SFM (Life Technologies, US), MSC Nutristem® XF Medium (Biological 
Industries, Israel) and BD Mosaic™ (Becton Dickinson, US). However, 
the cost of these SFMs and their lack of clinical validation limit their 
clinical applications. 

Autologous cell transplantation is the best choice for patients 
who require cell therapy, where EFT harbors an excellent source 
of autologous ADSCs. We developed a semi-automated process 
complying with Good Tissue Practice (GTP) and Good Manufacturing 
Practice (GMP) guidelines to replace the current manual techniques 
to minimize human-induced variability and comply with clinical trial 
standards. In addition, we have also formulated a human autologous 
serum (HAS)- and antioxidant-supplemented medium for the 
expansion of ADSCs, and compared it with media containing either 
animal sera or HAS alone.

Materials and Methods
Clean room

Procedures for the isolation of SVF and expansion of ADSCs from 
EFT were conducted in Biological Safety Cabinets (Model 1286, Thermo 
Scientific Forma Class II Type A2, Thermo Scientific, Waltham, MA) 
in a clean room (ISO14644 Class 7) located in Gene and Stem Cell 
Production Laboratory of Hualien Buddhist Tzu Chi General Hospital. 

Each suite is supported by positive-pressure (10-15 Pa), HEPA-filtered 
air, at a temperature of 22°C and relative humidity of 55-65%. The flow 
suite is unidirectional, with entry and exit air locks. All personnel were 
trained in respect to the GMP guidelines. 

SVF isolation from EFT 

The experimental protocol was approved by the Institutional 
Review Board (IRB) of Min-Sheng General Hospital, Taoyuan, Taiwan. 
EFT from abdominal subcutaneous fat was obtained from 11 pregnant 
women (average age of 33.7 ± 3.3). About 25 grams of adipose tissues 
were collected from each donor, and the tissues were minced either 
by disposable disperser tubes (DT-20 gamma, IKA ULTRA TURRAX 
Tube drive, Staufen, Germany) or manually with surgical scissors. 
The process of isolation is shown in Figure 1. About 3 grams of EFT 
was resuspended in 12 mL of Iscove’s modified Dulbecco’s medium 
(IMDM; GIBCO-Invitrogen, Grand Island, NY), placed in a 15 mL 
disposable disperser tube, and homogenized by centrifugation at 
1200 rpm for 10 seconds thrice. Collagenase (Animal Origin Free)-A 
(LS004154, Worthington Biochemical Corporation, Lakewood, 
NJ; final concentration: 0.4 mg/mL, volume: 15 mL) was added for 
enzymatic digestion, and incubated in MO-01 hybridization oven (15 
rpm, 37°C; Double Eagle Enterprise, New Taipei City, Taiwan) for 8 
hours (Figure 1D). After dispersing the digested adipose tissues several 
times with a 10 ml sterile pipette (CORNING, Tewksbury, MA), the 
digested tissues were centrifuged at 2000 rpm for 10 min to generate 
SVF pellets (Figure 1E and 1F). The SVF pellet was then resuspended in 
PBS and filtered through a 70 μm strainer (Becton Dickinson, San Jose, 
CA) and the SVF cells were ready for ADSCs culture.

ADSCs culture

HAS was collected from each respective donor in Serum/Plain 
Tube (Cat# 366430; Becton Dickinson) with informed consent. The 
SVF cells were propagated in MSC maintenance medium containing 
IMDM, 2 mM L-glutamine (GIBCO-Invitrogen), 2% or 10% HAS 
and MSC-culture adjuvant (MCA). The MCA is consisted of 10 ng/
mL fibroblast growth factor 2 (FGF-2, R&D Systems, Minneapolis, 
MN), 2 mM N-acetyl-l-cysteine (NAC, Sigma, St. Louis, MO) and 
0.2 mM L-ascorbic acid-2-phosphate (AsA2P, Sigma). Other media 
consisted of IMDM, 2 mM L-glutamine with 10% FBS (MSC-Qualified; 
GIBCO-Invitrogen) or 10% HAS, together with 10 ng/mL FGF-2 in 
all conditions, were used for comparison in the following assays (see 
below). The cells were cultured at 37°C in a humidified, 5% CO2 
incubator (Forma Series II Model 3110, Thermo Scientific). Cells at 
passages 1-3 of different donors were used in the following experiments.

Cell number and viability assays 

For cell number and viability assays of SVF, cells were counted 
using an automatic cell counter, ADAM-MC (NanoEnTek, Seoul, 
Korea), with Propidium Iodide (PI) according to the manufacturer’s 
instructions. For cell proliferation and viability assays, ADSCs were 
detached by trypsinization and then counted in triplicates using 
Vi-CELL AS cell counter (Beckman Coulter, Indianapolis, IN) as 
previously described [35]. For total ADSCs yield, the attached cells 
from SVF culture under various expansion media were detached by 
exposure to trypsin-EDTA on the 5th day.

Flow cytometric analysis

For the characterization of cell surface phenotype, the ADSCs were 
cultured in 75 cm2 tissue culture flasks (Becton Dickinson) at an initial 
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Figure 1: Overview of SVF isolation from fat tissues. In the following experiments, the fat tissues were all excised from abdominal subcutaneous tissues. (A) 3 g 
of the excised fat tissues were placed in the culture dishes and cut into small fragments either (B) by surgical scissors (conventional method) or (C) by disposable 
disperser tube method (our newly developed technique). (D) Samples were digested with collagenase in hybridization oven and (E-F) SVF pellets were generated by 
centrifugation.

density of 1000 cells/cm2 in a humidified 5% CO2 and 37°C incubator. 
After 6 days, single-cell suspensions were obtained by trypsinization, 
resuspended in culture medium, and further incubated at 37°C in CO2 
incubator for 30 minutes. Cells were stained with anti-human CD13, 
CD34, CD44, CD73, CD90 and CD105 (Becton Dickinson) conjugated 
with fluorescein isothiocyanate or R-phycoerythrin for 1 hour at 
4°C (for negative controls, primary antibodies were omitted). The 
expression profiles were examined by flow cytometry (FACSCalibur, 
Becton Dickinson) and analyzed by CXP Software (Beckman Coulter, 
CA).

Analysis of gene expression and karyotyping

After incubation under different culture media for 6 days (n=3 
for each medium, initial cell density of 1000 cells/cm2), the ADSCs 
were harvested to examine the expression of stemness and growth 
factor genes. Isolation of total RNA, cDNA synthesis and quantitative 
polymerase chain reaction (qPCR) were carried out as previously 
described [36]. Briefly, total RNA was isolated from cells using the 
RNeasy kit (Qiagen, Valencia, CA), and cDNA was synthesized from 
10 μg of total RNA using the Advantage RT-for-PCR kit (Clontech, 
Palo Alto, CA). qPCR and product detection were performed using 
the Fast Start Essential DNA Green Master (Roche, Indianapolis, IN) 
and the PikoReal Real-Time PCR System (Thermo Scientific) with the 
gene-specific primers as listed in Table 1. The results of amplification 
were analyzed using PikoReal 2.0 software (Thermo Scientific, PA). 
Gene expression levels were normalized to β-actin, which served as the 
internal control.

For karyotyping analysis, 75 cm2 tissue culture flasks seeded with 
ADSCs in 10% HAS+MCA-supplemented medium with an initial 
density of 3000 cells/cm2 were placed in a CO2 incubator. Once the cells 
reached 50–60% confluence, they were washed twice with phosphate 
buffered saline (PBS), detached by 0.25% trypsin-EDTA (Gibco BRL) 
and then replated at a density of 3000 cells/cm2 under the same culture 
conditions. Karyotyping of ADSCs was performed following one 
month culture by established protocols [37].

In vitro differentiation

After incubation under various culture media conditions (10% 
FBS, 10% HAS, 10% HAS+MCA or 2% HAS+MCA, n=3 for each 
medium) for 6 days, the ADSCs were seeded into 6-well plates (Becton 
Dickinson) for differentiation assays. Osteogenesis, adipogenesis and 
chondrogenesis of ADSCs were induced according to established 
protocols [38,39]. Osteogenic differentiation was evaluated by alkaline 
phosphatase (ALP) staining and the expression of cbfa1 (core-binding 
factor subunit alpha-1), OC (osteocalcin) and COL IA1 (collagen type I, 
alpha 1) on day 14. Adipogenic differentiation of ADSCs was evaluated 
using Oil red O staining and the expression of PPARγ (proliferator-
activated receptor γ) and aP2 (adipocyte fatty acid-binding protein) on 
day 7. Chondrogenic differentiation was evaluated using Alcian Blue 
(Sigma) staining of sulfated proteoglycan-rich matrix (blue color) and 
the expression of ACAN (aggrecan) and COL IIA1 (collagen type II, 
alpha 1) on day 14. Methods for ALP staining, Oil red O staining and 
Alcian Blue staining were as reported previously [4,33,35].
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Cytokine and growth factor array 

Human cytokines and growth factors from culture supernatants 
were detected and quantitated using Human Cytokine Antibody Array 
1 (Cat #AAH-GF-1, RayBiotech, Norcross, GA) according to the 
manufacturer’s instructions. Cytokine and growth factor expression 
from culture supernatants were quantified by ImageJ 1.40 g software 
(NIH), using the positive control (POS) on the same membrane as the 
internal control. Data are presented as the relative ratio of cultured to 
un-cultured groups.

Statistical analysis

Statistical analysis for cell proliferation, gene expression and 
cytokine contents in supernatants were performed with Microsoft 
Excel using t-tests. Cell numbers and viabilities following extraction via 
the two differential methods were analyzed with Wilcoxon signed rank 
test using Prism 4 (GraphPad Software, CA). p<0.05 was considered 
statistically significant. Experiments were performed at least twice, and 
each data point is presented as mean ± SD.

Results
SVF isolation from EFT by disposable disperser tubes

We have developed a novel semi-automated method to isolate SVF 
from EFT. For comparison, the EFT was minced either with surgical 
scissors (Figure 1B) or by the semi-automated disposable disperser 
tubes (Figure 1C). The processed fat tissues were then digested with 
collagenase for 8 hours (Figure 1D). Finally, SVF cells were isolated 

from the digested fat tissues by centrifugation into cell pellets (Figure 1E 
and 1F). The semi-automated disposable tube tissue dispersion method 
reduced the operation time for mincing tissue from approximately one 
hour to a few minutes, and also avoided the use of scissors, a potential 
source of contaminants.

Cell yield and viability of SVF and ADSCs prepared using the 
semi-automated tube disperser and manual operation

The yield and viability of SVF and ADSCs prepared using either 
the semi-automated tube disperser method or the manual operation 
with surgical scissors was compared in 9 donors (Figure 2). Three 
grams of fat tissues were used for both methods. To compare total 
yield of ADSCs, SVF cells were seeded at the same initial cell density 
(10,000 cells/cm2) and incubated in 10% HAS+MCA-supplemented 
medium for 5 days, and then detached using trypsin-EDTA. The cell 
yield of SVF prepared using tube disperser was 1.3-10.2 folds higher 
than the conventional method. The cell viability of SVF prepared 
using tube disperser was 0.9-2.4 folds higher than the conventional 
method (Figure 2A). Moreover, the total yield of ADSCs was 1.2-7.8 
folds higher when compared to the conventional method, and the 

S: Sense; A: Antisense

Table 1: Primers used for quantitative polymerase chain reaction.

Gene Primer sequences Product size (bp)

β-actin S: 5`- CGCCAACCGCGAGAAGAT-3`
A: 5`- CGTCACCGGAGTCCATCA -3` 168

Nanog S: 5`-AATACCTCAGCCTCCAGCAGAT-3`
A: 5`-TGCGTCACACCATTGCTATTCTT-3` 148

SOX2 S: 5`- CCTCCGGGACATGATCAG-3`
A: 5`- TTCTCCCCCCTCCAGTTC-3` 178

TERT S: 5`- AGTGGATTCGCGGGCACAGA-3`
A: 5`- TTCCCACGTGCGCAGCAGGA-3` 257

CXCR4 S: 5`-CGTGGAACGTTTTTCCTGTT-3`
A: 5`-TGTAGGTGCTGAAATCAACCC-3` 129

IGF-1 S: 5`-AAGATGCACACCATGTCC-3`
A: 5`-TGTTGAAATAAAAGCCCCTG-3` 157

HGF S: 5`-TGTTCCCTTTTTTGGGTAAGC-3`
A: 5`-CCCATTTGCCACAGAAAGTT-3` 148

EGF S: 5`-CTAATCACCTACTCAATGCCTGG-3`
A: 5`-TGATTCTCCCAGTACTCTTACTTGG-3` 109

OC S: 5`-CAAAGTCTAACTAGGGATACC-3`
A: 5`-AGAGATGAGTCTGTCCTG-3` 150

Cbfa1 S: 5`-TGGCAGCACGCTATTAAATC-3`
A: 5`-TCTGCCGCTAGAATTCAAAA-3` 103

COL IA1 S: 5`- GACTCTAAGATCAGAGACGGAGAC-3`
A: 5`- TCGCTGACATCTCCATTCATTCAC-3` 250

PPARγ S: 5`-TTGCTGTCATTATTCTCAGTGGA-3`
A: 5`-GAGGACTCAGGGTGGTTCAG-3` 124

aP2 S: 5`-CAATCTAGCAGACGGAACTGAA-3`
A: 5`-CCGTTTGAATTTTCCAATAAGTTT-3` 76

ACAN S: 5`-TACACTGGCGAGCACTGTAAC-3`
A: 5`-CAGTGGCCCTGGTACTTGTT-3` 71

COL IIA1 S: 5`-GAATAGCACCATTGTGTAGGAC-3`
A: 5`-AATGCCCCCTGAGTGAC-3` 97

Figure 2: Yield of SVF cells and ADSCs from the excised fat tissue (EFT) by 
the 2 methods. (A) Following SVF isolation, the cell numbers and viability were 
counted using an automated cell counter Adam-MC with PI. (B) The isolated 
SVF were propagated and the resulting ADSC populations were cultured for 
5 days. Cells numbers and viability were collected using an automated cell 
counter Vi-CELL AS with the trypan blue dye. Data were analyzed by Wilcoxon 
signed rank test, **p<0.01. Data show results from 9 donors and bars represent 
population averages.
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cell viability was 0.8-4.8 folds higher (Figure 2B). Although the cell 
viability did not significantly differ between the two methods for both 
SVF and ADSCs (p=0.25, p=0.3594, respectively), the total yields were 
significantly higher for both SVF and ADSCs using the tube disperser 
method (p=0.0039, p=0.0039, respectively; Figure 2).

ADSCs expansion in different culture media

We compared the growth of ADSCs in the medium containing 
10% HAS and 10% FBS, and found that the growth is slower in the 10% 
HAS-supplemented medium (Figure 3B). To improve the growth of 
ADSCs without the use of animal serum, we added two antioxidants 
(NAC and AsA2P) to the HAS-supplemented medium, where FGF-
2, NAC and AsA2P supplements were collectively named MCA as 
previously described [37]. The morphology and growth of ADSCs 
between the following conditions were compared: 10% FBS, 10% HAS, 
10% HAS+MCA and 2% HAS+MCA. ADSCs were found to maintain 
their spindle-shaped morphology under all conditions on day 3 (Figure 
3A). ADSC expansions in the 10% HAS+MCA condition significantly 
increased from 155% to 324% between days 1 to 7 as compared to the 
10% HAS condition (Figure 3C). However, ADSC expansions in the 
2% HAS+MCA condition markedly decreased when compared to the 
10% HAS+MCA condition (Figure 3D). 

Karyotyping, stemness genes, stem cell-related genes, and 
growth factor genes of ADSCs

Karyotypes of ADSCs from 2 donors after cultured in 10% 

Figure 3: The growth of ADSCs prepared by the tube dispersion method 
cultured with different media. (A) Direct visualization of cell culture and cell 
morphology on day 3. Bar=500 μm. ADSC proliferation were examined by a 
time course of cell densities under the 10% FBS, 10% HAS, 10% HAS+MCA 
and 2% HAS+MCA conditions between days 0-7. (B) 10% FBS vs. 10% HAS. 
(C) 10% HAS+MCA vs. 10% HAS alone. (D) 2% HAS+MCA vs. 10% HAS 
alone. Data are shown as mean ± SD (n=3). *p<0.05. **p<0.01. ***p<0.005.

HAS+MCA-supplemented medium for 1 month were shown in 
figure 4A and 4B. No abnormality was observed. The expression of 2 
stemness genes (Figure 4C), 2 stem cell-related genes (Figure 4D), and 
3 growth factors (Figure 4E) of ADSCs maintained in various culture 
supplements were compared. The expression of Nanog, SOX2 (sex-
determining region Y-box 2), CXCR4 (C-X-C chemokine receptor 
type 4), TERT (telomerase reverse transcriptase), IGF-1, HGF, and 
EGF were enhanced in the 10% HAS-, 10% HAS+MCA- and 2% 
HAS+MCA-supplemented media as compared to those in the 10% 
FBS-supplemented medium (Figure 4C and 4D).

Osteogenic, chondrogenic and adipogenic differentiations

Following culturing in differentiation-inducing media, the 
differentiation status of ADSCs was assessed. Alkaline phosphatase 
staining (Figure 5A) and von Kossa staining (Figure 5B) revealed the 
osteogenic differentiation of ADSCs. Expression of several osteogenic 
genes (i.e. cbfa 1, OC and COL IA1) after osteogenic induction was also 
studied (Figure 5C). In general, the expression of these genes increased 
for all HAS-containing conditions as compared to those in the FBS-
supplemented medium. Sulfated proteoglycan-rich matrix (alcian blue 
staining), indicating chondrogenic differentiation, was the highest 
in ADSCs cultured in the 2% HAS+MCA condition (Figure 6A). 
Expressions of ACAN and COL IIA1 increased significantly in ADSCs 
cultured in the 10% HAS+MCA- and 2% HAS+MCA-supplemented 
media (Figure 6B). Oil Red O-positive lipid vacuoles, indicating 
adipogenic differentiation, were evident in ADSCs for all conditions 
(Figure 6C). The expression of PPARγ increased in ADSCs cultured 
in the 10% HAS+MCA- and 2% HAS+MCA-supplemented media, 
while the expression of aP2 was increased only in the 10% HAS+MCA 
condition (Figure 6D). Thus, following the addition of differentiating 
media, ADSCs conditioned in both HAS and MCA further promoted 
all three types of differentiation when compared to ADSCs conditioned 
in media supplemented with FBS or HAS alone.

Surface markers of ADSCs

We have examined the phenotype of ADSCs grown in different 
culture conditions at passage 1 (Figure 7A) and passage 2 (Figure 7B) 
for the identification of MSCs. The expression levels of CD44 and CD73 
were higher on ADSCs grown in the HAS-containing media (10% HAS, 
10% HAS+MCA or 2% HAS+MCA) compared with those grown in the 
FBS-supplemented medium during passage 1, whereas the expression 
level of CD90 was lower on ADSCs grown in all HAS-containing media 
as compared with those grown in the FBS-supplemented medium. 
In addition, only ADSCs grown in the FBS-supplemented medium 
expressed CD34 at passage 1. These differences in expression levels 
between the HAS- and FBS-containing media were small but steady 
during passage 1. However, no differences in the expression of these 
markers were found during passage 2.

Cytokine profiles of ADSCs

Finally, we used a commercially available antibody array to 
compare the secretion of 41 growth factors between the supernatant of 
ADSCs grown in the 10% HAS- and 10% HAS+MCA-supplemented 
media for 4 days. FGF-2, epidermal growth factor (EGF), platelet-
derived growth factor (PDGF) isoforms AA, AB and BB, and vascular 
endothelial growth factor (VEGF) R3 in the supernatant decreased 
after 4 days of culture in the 10% HAS condition. Hepatocyte growth 
factor (HGF), insulin-like growth factor binding proteins (IGFBP)-1, 
IGFBP-4, IGFBP-6, insulin-like growth factor (IGF)-1 and VEGF 



Citation: Sun LY, Li DK, Chen PJ, Ho YYJ, Kuo JS, et al. (2014) Expansion of Semi-Automatic Processed Human Adipose-Derived Stem Cells in 
Medium Supplemented with Autologous Serum and Antioxidants. J Stem Cell Res Ther 4: 193. doi:10.4172/2157-7633.1000193

Page 6 of 11

Volume 4 • Issue 4 • 1000193
J Stem Cell Res Ther
ISSN: 2157-7633 JSCRT, an open access journal 

Figure 4: Karyotype and the expression of stemness genes and growth factor genes of ADSCs. (A, B) Karyotyping analyses were carried out using ADSCs from 
donors 3 and 8 following culturing in 10% HAS+MCA-supplemented medium for 1 month. Quantitative PCR were performed to quantify the relative gene expression 
of (C) the stemness genes: Nanog, SOX2, (D) the stem cell-related genes: CXCR4, TERT, and (E) the growth factor genes: IGF-1, HGF and EGF in the ADSCs that 
were cultured in the different culture media for 7 days (n=3). The gene expression was normalized to β-actin, serving as the internal control, and made relative to the 
expression levels of each gene measured for cells cultured under the 10% FBS condition. Each bar represents means ± SD. *p<0.05. **p<0.01. ***p<0.005.

increased after 4 days of culture in the 10% HAS condition (Figure 
8A and 8B). Comparing between the 10% HAS and 10% HAS+MCA 
conditions, PDGF-AA, PDGF-AB and PDGF-BB content found in the 
supernatant decreased in the 10% HAS+MCA condition, while the 
VEGF R3 increased. At the same time, the secretion of HGF and VEGF 
increased in the 10% HAS+MCA condition and the secretion of IGF-1 
and IGFBP-4 decreased (Figure 8C). These results indicate that MCA 
can affect the autocrine and/or paracrine activities of the ADSCs in the 
microenvironment.

Discussion
The development of GTP/GMP processes for the isolation of SVF 

or ADSCs using small amount of EFT represents a major advance in 
the fields of cell therapy and tissue engineering. However, the current 
manual operation with surgical scissors in EFT processing has serious 
limitations. To minimize these limitations, we developed a semi-
automated tissue processing method for the isolation of SVF (Figure 
1). This semi-automated process has three important advantages. First, 
the new process can markedly reduce the operation time for mincing 
tissues from one hour down to a few minutes. Second, the yields of 
SVF and ADSCs can be increased by the semi-automatic protocol. 
Third, the use of a disposable disperser tube instead of surgical scissors 
(requiring repeated disinfection and aseptic validation) eliminates a 
potential source of contamination. To the best of our knowledge, this 
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Figure 5: The osteogenic differentiation of the ADSCs. After incubation in the different culture media for 6 days (n=3), the ADSCs were then exposed to the differentiation 
medium for 14 days and examined for their osteogenic differentiation. Photomicrographs show alkaline phosphatase (ALP) activity (A) and von Kassa staining (B) of 
the ADSCs. Bar=500 μm. Both ALP and von Kassa staining demonstrate osteo-differentiation of the ADSCs. (C) The expression of osteogenesis-associated genes in 
the ADSCs quantified by quantitative PCR analyses, using β-actin as the internal control. Each bar represents mean cell density ± SD. *p<0.05. **p<0.01. ***p<0.005.

Figure 6: Chondrogenic and Adipogenic differentiation of the ADSCs. After incubation under the different culture media for 6 days (n=3), the ADSCs were then 
exposed to the chondrogenesis and adipogenesis differentiation medium for 14 and 7 days, respectively. (A) Photomicrographs show sulfated proteoglycan-rich matrix 
(blue color) indicating chondrogenic differentiation in the ADSCs at day 14. (B) The expression of chondrogenesis-associated genes (ACAN and COL IIA1) at day 
14. (C) Photomicrographs show lipid spheres (by Oil Red O staining) indicating adipogenic differentiation in the ADSCs at day 7. (D) The expression of adipogenesis-
associated genes (PPARγ and aP2) in the ADSCs at day 7. For (A/C), bar=500 μm. For (B/D), β-actin was the internal control and each bar represents mean cell 
density ± SD (n=3). *p<0.05. **p<0.01. ***p<0.005.
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Figure 7: The phenotype of ADSCs at day 6 following culturing in respective culture media. Black lines indicate background (control) signals; colored lines represent 
the expression of each indicated cell surface markers during (A) passage 1, and (B) passage 2.

is the first description of a semi-automated system to manufacture 
ADSCs from EFTs.

Since only very small amounts (1%–5%) of SVF cells isolated from 

AFT will become ADSCs, liposuction is not ideal for individuals with 
low BMI [7,9]. For these individuals, an enhanced SVF and ADSC 
extraction efficiency is required for effective cell therapy, where direct 
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Figure 8: The cytokine profiles of the ADSCs exposed to the different culture media (n=3). Supernatants harvested from the cultured ADSCs were compared by 
cytokine array on day 4. (A) The cytokine arrays. (B) Map of the cytokine arrays. Blue indicates reduction in the supernatant and orange indicates cytokine secretion. 
(C) Relative ratio of cytokine expression levels from cytokine array membranes. Cytokine and growth factor expression from culture supernatants were normalized 
against an internal positive control (POS) on the same membrane and presented as the relative intensity ratio of cultured, experimental (Ex) groups at day 4 to un-
cultured, control (Crl) group at day 0 (Ex/Crl). Data are presented as mean ± SD (n=3). The relative ratios of less than 1 are reduction of content in the supernatant, 
and the relative ratios of greater than 1 are classified as secretion. *p<0.05. **p<0.01. ***p<0.005.

excision of fat tissues has been found previously to increase cell yield [6]. 
Thus, processing of EFT by our semi-automatic protocol is inevitably 
necessary. Our study demonstrated that the total SVF cell yield of EFT 
(n=9) was 2.65 ± 2.2 × 105/ml by surgical scissors and 3.53 ± 2.2 × 105/
ml by tube dispersers. The cell viability was 66.22 ± 14.12% by surgical 
scissors and 74.22 ± 11.36% by tube dispersers, indicating that the semi-
automatic method enhances the viable cell yields. Studies regarding 
the total SVF yield from both EFT and AFT are rarely reported in the 
literature. Although one study has reported total SVF cell yields of 
1.44 ± 1.62 × 106/ml from males (n=36) and 2.05 ± 1.46 × 106/ml from 
females (n=78) [2], SVF yields obtained from AFT in our laboratory 
was 3.28 ± 5.59 × 105/ml (n=11) (data not published). The differences in 
cell yield may be due to differential cell counting methodology, where 

the large amount of red blood cells present in the SVF samples are more 
easily excluded using Propidium Iodide (PI) instead of the Trypan Blue 
dye. In comparison to the cell yields obtained from our AFT samples, 
cell extractions from EFT samples by our semi-automated method, on 
average, lead to higher cell yields. At the same time, fat tissue extraction 
by EFT is more suitable for individuals with low BMI. 

Serum is the most variable factor in the expansion of ADSCs at 
clinical grade standard. The use of animal sera, such as FBS, in culture 
medium increases the risk of transmitting zoonotic or other infectious 
agents [20-22]. On the other hand, the cost of proprietary chemically-
defined, xeno-free SFM presents another barrier to the production 
of ADSCs for wide clinical applications. In fact, the clinical effects of 
SFM remain unclear. Some replacements of FBS such as pooled human 
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serum, HAS or platelet lysate (PL) have been considered as alternatives 
for producing MSCs in clinical applications [24,40-42]. Although HAS 
exhibits batch-to-batch variability, it is still the safest option due to the 
elimination of the risk of contamination from xenogeneic or allogeneic 
products. In substitution for FBS, HAS and/or PL has been tested for 
ADSC cultures [24,41]. However, HAS and/or PL supplement may 
cause cell growth arrest and even cell death [20,41]. We had similar 
observations where HAS supplementation alone resulted in ADSC 
growth arrest on day 7 (Figure 3B), but the addition of MCA supported, 
and increased, the continual growth of ADSCs to the 7th day (Figure 
3C).

Cells must be retrieved in sufficient numbers for therapeutic 
efficacy [2,43,44]. In our previous study, we demonstrated that MCA 
promoted ADSCs to the S phase in the cell cycle by suppressing CDK 
inhibitors, p21 and p27, and resulted in rapid cell proliferation similar 
to that observed under hypoxic conditions [35]. In the present study, 
we found that the 10% HAS+MCA-supplemented medium enhanced 
ADSCs proliferation in vitro as compared to the 10% HAS condition 
(Figure 3C). The addition of MCA also reduced the amount of HAS 
necessary for ADSC expansion (Figure 3D). Thus, our formulation 
facilitates rapid ADSC expansion for individuals who require urgent 
autologous cell transplantation.

In our previous study, medium containing FBS and MCA caused 
significant reduction in the expression of CD29, CD90 and CD105 
in ADSCs, while at the same time enhanced their osteogenic and 
adipogenic differentiating potentials [35]. In the present study, we did 
not find significant differences in the expression level of surface markers 
on ADSCs grown in media supplemented with either HAS alone or 
HAS+MCA at passage 1 or 2. However, the expression levels of CD34, 
CD44 and CD90 on ADSCs grown in the HAS-supplemented medium 
were different to those cultured in the FBS-supplemented medium at 
passage 1. The expression levels of surface markers on ADSCs have 
been demonstrated to be associated with the differentiation potential 
of ADSCs [45,46]. The higher expression of CD44 (TGF-β receptor) 
on ADSCs grown in the HAS-supplemented medium may explain the 
enhanced osteogenic (Figure 5) and chondrogenic potentials (Figure 
6) [47].

ADSCs and their secretory factors such as VEGF, HGF and FGF-2 
are known to be beneficial in skin repair and regeneration [48]. While 
hypoxia has been found to regulate the production of a variety of 
growth factors and enhance the paracrine effect of ADSCs to promote 
hair growth [49], we have found that MCA may also affect the paracrine 
and/or autocrine activities of ADSCs via changes of cytokine and 
growth factor content in the microenvironment (Figure 8). Our results 
showed that the 10% HAS+MCA supplement induced the reduction of 
PDGF-AA, PDGF-AB and PDGF-BB found in the supernatant during 
ADSCs proliferation that may be due to an enhanced uptake, binding 
to cell surface receptors, or degradation of cytokines, whereas the 
secretion of HGF and VEGF were enhanced (Figure 8C). To the best 
of our knowledge, this is the first report demonstrating that MCA can 
regulate the autocrine and/or paracrine activities in ADSCs.

We have developed a semi-automated process that is particularly 
suitable for isolating human ADSCs from small amounts of EFT and 
formulated a xeno-free medium using HAS (2 or 10%) and MCA 
for their efficient expansion. The use of HAS and chemically-defined 
MCA comply with the GTP and GMP requirements for human tissues 
and cell products, respectively. These rapidly proliferating ADSCs 
have normal karyotypes and typical surface marker profiles, while 

maintaining stemness gene expression and differentiation potential. In 
summary, the combination of this novel semi-automated system with 
the HAS+MCA-supplemented medium may provide a better solution 
for the clinical applications of small amounts of EFT for regenerative 
medicine and tissue engineering.
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