

Cardiovascular Pharmacology: Open Access

Short Communication

Expandable Polyurethane Stent Valve, implanted by catheter, in pediatric and adult patients: Results from physical, hydrodynamic, animal and ultrastructural Studies

Miguel A. Maluf

São Paulo Federal University, Brazil

Abstract

Background: Patients with pediatric prostheses suffer from mismatch and early calcification, which causes a high number of reoperations

Methods: Expandable Polyurethane Stent Valve – EPSV, is composed by a flexible polyurethane (PU) leaflets is grown on the top of an expandable cobalt-chrome alloy stent, including the formation of three leaflets. Physical, hydrodynamic, animal studies, were performed following: ISO 5840-3, 2015.

Results: Physical tests. Result of study of surface scanning of pre and post crimp stent, showed no structural modification of the PU. Hydrodynamic test showed a pressure gradient oscillation between 5 to 20mm, in basal or stress condition respectively. Experimental studies. Sheep were subjected to 3D echo-Doppler study, in 6th follow-up months, which showed satisfactory hemodynamic performance, with low transvalvular gradient (M = 6.60 mm Hg).

Ultrastructural Study: Six stents were explanted after 20 days to 21 months of follow-up to Ultrastructural analysis. All of which revealed no presence of calcium growth and prostheses structure was intact.

Conclusions: Expandable Stent valve and PU no Calcification are good expectations for pediatric use.

Biography

Miguel Angel Maluf is an Associate Professor of Cardiovascular Surgery and is the Chief of Pediatric Heart Surgery at Sao Paulo Federal University.

Citation: Miguel A. Maluf, São Paulo Federal University, Brazil, Expandable Polyurethane Stent Valve, implanted by catheter, in pediatric and adult patients: Results from physical, hydrodynamic, animal and ultrastructural Studies, 03