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Editorial
How cells communicate over large or small distances has only 

recently become known (Figure 1). The body uses nanometer-sized 
exosomes, also called Extracellular vesicles [EVs], to facilitate cell 
communication and send signals to distant cells throughout the body 
[1]. Mounting evidence indicates that programmed/triggered secretion 
and targeted migration of exosomes to distant cells is a fundamental 
aspect of cell biology that is ubiquitous in diseased and normal cells. 
Exosome transport occurs through extracellular body fluids including 
blood, cerebrospinal fluid, saliva, milk, and urine. Characterizing 
this fascinating class of nanovesicles offers exciting and unique 
insights into how intercellular biomolecular machinery remotely 
orchestrates physiological and pathological events at a distance. They 
have been described as a cellular FedEx system. Furthermore, it is 
being increasingly suggested that diseases such as cancer, Alzheimer’s 
disease, and AIDS can propagate throughout the body by hijacking 
exosomes and disguising themselves like wolves in sheep’s clothing to 
sneak into healthy cells [2]. Thus, EVs are intriguing for cell biology 
research, their importance in various diseases, and as models for a new 
class of pharmaceuticals.

From the nanotechnology perspective, exosomes are truly amazing 
multifunctional nanoparticles. Quantitative high-speed and high-
resolution single-vesicle methods for isolation and characterization 
of exosomes derived from various biological specimens, are essential 
for understanding exosomes. Applications of nanotechnology tools are 
important to facilitate knowledge of exosome disease biomarkers, and 
for new therapeutics that go beyond current bulk proteomic, genomic, 
or lipidomic assays. Those assays often target the biomolecular 
complex that constitutes the exosomes with unique signatures from the 
cells of origin, or explore the functional effects of exosome-mediated 
intercellular communication. Efforts have now focused on investigating 
exosomal content, which is rich in mRNA, microRNA, ncRNA and 
double- and single-stranded DNA signatures. This includes disordered 

genes, lipids or proteins [membrane, soluble, cytoplasmic, and perhaps 
nuclear] and protein modifications such as phosphorylation relating to 
cancerous, neurodegenerative, or other disease pathways.

Opportunities include signatures and characterization of 
therapeutic response, identifying cellular [stem] cell subpopulations 
and cellular states, and Epithelial-Mesenchymal transitions to identify 
disease detection, progression, and treatment modalities. EVpedia 
[3], a public database for exosome research shows 172,080 vesicular 
components identified from 263 high-throughput datasets.

Our current knowledge of single exosomes is, however, desperately 
lacking, despite the wealth of methods applied thus far for their 
characterization [4]. Basic questions concerning morphology, size, 
phenotype, internal or external location of constituent components, 
and even concentration levels remain to be elucidated using semi-
quantitative and quantitative characterization methodologies. These 
factors are hampered by two main challenges related to their nanometer 
dimensions and heterogeneity.

It is evident that characterizing these “super-enriched information” 
particles at the vesicular and sub-vesicular scale has tremendous 
potential for understanding, diagnosing, and identifying new 
approaches to combat brain and other cancers, Alzheimer’s disease, 
and other potentially exosome-mediated infectious and non-infectious 
diseases. In particular, more efficient nanoparticle sizing, enumeration, 
and phenotyping methods that provide quantitative, sensitive, and 
specific “visualization” of isolated EV preparation can expand and 
complement the much-needed confirmation of EV purity, distinct 
differentiation from other smaller cells, and aggregates. This will help 
standardize any potential methods for downstream studies in disease-
associated exosome genomics, proteomics, and lipidomics. To better 
understand the role of exosomes in health and disease, we first need 
accurate individual or simultaneous measurements of exosome size, 
composition, concentration, and cell of origin.

Nanoscale imaging techniques have captured biological processes 
ranging from dynamic events such as endocytosis, cancer cells, and 
subcellular structures to malfunctioning protein structures associated 
with Alzheimer and Parkinson’s disease. While much progress has 

Figure 1: Schematic illustration of an exosome: A nano-jigsaw puzzle. 
Structurally, exosomes arespherical lipid bilayer vesicles, shown here in green. 
The presence, density and organization of an exosome’s surface and luminal 
biomolecules is still a major puzzle.
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been made in vesicular imaging since the discovery of exosomes 
using electron microscopy [EM] [5] in the mid-1980s, we need to 
continue to push the limits of microscopy and imaging for exosome 
research. The availability of new and advanced tools with correlative 
techniques have made quantitative, high-resolution information on 
EV size, morphology, phenotype, and biomolecular characteristics 
of single exosomes possible. Imaging modalities such as cryogenic-
transmission electron microscopy [cryo-TEM], scanning electron 
microscopy [SEM], Field-Emission SEM [FESEM] and atomic force 
microscopy [AFM] have been used to assess morphology and quality 
of exosome preparation. AFM and FESEM studies [6] have challenged 
the previous model of “cup-shaped” exosomes originally proposed 
from stained samples studied with TEM. Recent advances in cutting-
edge nanotechnologies, and physical and biochemical know-how, are 
facilitating improved detection, visualization, and characterization of 
individual vesicles. The aim of this progress is to combine advantages 
of high-resolution imaging technologies with molecular phenotyping 
of exosomes.

Correlative microscopy

Correlative Microscopy uses different complementary forms 
of microscopy to create multidimensional information, such as 
combining optical and electron microscopy. This approach enables 
detailed spatially resolved information that is greater than the sum of 
its parts and is becoming increasingly useful in biology.

Cryo-EM

While a common method for imaging exosomes, it is acknowledged 
that conventional EM observations are inadequate for characterizing 
the structure of exosomes due to artifacts introduced by sample 
preparation and staining strategies [7]. More advanced modes [7], such 
as the cryo-TEM, are powerful tools for investigation of exosomes in 
their native aqueous environment without staining or added fixatives. 
Cryo-EM [8] also enables 3D tomography, enabling spatial visualization 
of more complex structures. Although Cryo-EM studies of viruses are 
widespread [9-11], it has only recently been used for imaging exosomes 
[12]. Cryo-EM and immuno-gold labeling with secondary antibodies 
also allow detailed characterization of subpopulations of exosomes for 
more accurate phenotyping and enumeration in complex biofluidic 
environments [13]. Using field-emission cathodes in SEMs [FESEM] 
provides narrower probing beams at low and high electron energies. 
This improves spatial resolution, minimizes sample charging, and 
minimizes sample damage, and has been successful for illustrating 
morphological characteristics of individual exosomes [6]. FESEM 
provides lower electrostatic distortion, enabling a spatial resolution 
~1.5 nm. High-quality, low-voltage images are obtained with negligible 
electrical charging of samples with accelerating voltages ranging from 
0.5 to 30 kV.

Atomic force microscopy [AFM] 

Atomic force microscopy [AFM] has emerged as a successful 
method for studying the morphology, size, and phenotype of exosomes 
[6]. AFM enables imaging of isolated vesicles under physiological 
buffers to achieve nanoscale morphology, size, and exosome count 
information for populations and subpopulations. Using either 
functionalized nanobeads or a functional probe tip [single molecule 
force spectroscopy [SMFS], AFM enables complementary phenotyping 
of exosome subpopulations at the single-vesicle level [14].

Advanced AFM methods such as peak-force mapping enable 
simultaneous evaluation of 3D morphology and physicochemical 

properties [elasticity and adhesion] of the nanoparticles at sub-nm 
resolution with pico-Newton [pN] sensitivity [15]. Several examples 
of integrated fluorescence and atomic force correlative microscopy 
have been reported in recent years. AFM has been integrated with a 
total internal reflection fluorescence microscope [TIRFM] [16] and 
a confocal optical microscope [17,18]. Diffraction limits lens-based 
optical microscopes at around half the optical wavelength, which is 
incompatible with imaging nano-sized particles. However, stimulated 
emission depletion [STED] microscopy [19] and stochastic optical 
reconstruction microscopy [STORM] achieve high lateral resolution 
down to several tens of nanometers, comparable to AFM measurements. 
Recently, an integrated imaging system combining STED and AFM 
was reported [20], enabling simultaneous imaging of morphological 
features and biomechanical parameters of fluorescently stained cells or 
vesicles. High-resolution information obtained by STED requires high 
illumination intensity, which may cause phototoxicity. STORM uses 
less intense radiation, but resolution is determined by data acquisition 
time. STED and STORM are scanning technologies, so the time 
resolution for larger samples is low. Live-cell imaging using STED is 
limited to smaller, less dynamic processes unlike real-time exocytosis 
of exosomes.

Despite limitations and complexity of multicolor imaging, the 
resolution of STED and STORM are highly attractive for vesicle 
research and we expect that integrated super-resolution/AFM systems 
will offer vesicle characterization with nanoscale resolution.

Combined flow cytometry and flow imaging

Exosomes have been analyzed by conventional flow cytometry via 
bead-based assays [21,22] where they are captured nonspecifically on 
the surfaces of microspheres [via chemical conjugation] or specifically 
[via antibody capture], then detected using a fluorescent antibody 
[or antibody combinations] against exosome surface markers. The 
beads are readily detected using light-scatter triggering, and the 
amount of exosomes captured is estimated based on the reflected 
fluorescence intensity of the bead-bound reporter antibody. This 
approach provides information on a population average of all of the 
exosomes captured on the beads. Because of their nanoscale size and 
inability of most flow cytometers to detect particles under 500 nm 
across, the accurate assessment of individual nanoparticles is difficult. 
Custom instruments with improved sensitivity and calibration [23,24] 
show promise for providing accurate estimates of size and antigen 
number on individual exosomes. Swarm detection [25] of exosomes 
remains useful for detection of smaller [<500 nm] microparticles. 
Here multiple vesicles are simultaneously illuminated by laser 
beam and counted as a single event, which results in significantly 
underestimating the concentration of measured vesicles in a sample 
[26]. As with conventional flow cytometers, protein aggregates and 
other vesicles or cellular components may limit the performance of 
novel generation flow cytometers. Combining exosome flow cytometry 
with imaging eliminates some of these limitations while providing 
morphological confirmation and ability to distinguish true single 
events from aggregates and cell debris [27]. Typically, flow cytometry 
generates exosome-sizing data exclusively based on fluorescence and 
scatter signals without the ability to confirm the source of these signals. 
Adding imaging to flow cytometry offers way to identify “true” vs. 
“false” positive events and enables higher sensitivity over conventional 
flow cytometry for exosome analysis by giving a better “view” of what 
is quantified in exosome preparations.
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SEM coupled with raman spectroscopy

Methods such as Raman microspectroscopy have the potential to 
obtain biochemical information, such as cellular origin, on the level 
of single vesicles, directly in suspension, without labeling. Recently, 
Raman spectroscopy and surface-enhanced Raman spectroscopy 
[SERS] were applied to study the compositional differences between 
exosomes derived from ovarian cancer cells [28]. SEM/Raman 
spectroscopy can provide detailed exosome biochemical information 
with relative size distribution and morphology. SEM enables nanoscale 
imaging of exosomes, while Raman spectroscopy can acquire molecular 
fingerprints of individual particles. Raman spectroscopy can provide a 
direct measure of chemical component ratios like exosome’s DNA-to-
RNA, proteins-to-lipids, etc., and does not require molecular labels. 
Thus, it is a powerful technique for unbiased biomarker detection in 
cells, and is complementary to fluorescence labeling strategies [29].

For our knowledge of vesicles to leap forward, detection limits need 
to be pushed further by combining or developing new technologies. 
With more sensitivity, we expect to gain a growing insight into 
composition, and biological and clinical relevance, of vesicles in 
health and disease. The rapid development of nanoscale microscopy 
techniques over the last two decades positions us to gain insights 
into a detailed model of how exosomes work and how they can be 
manipulated to control diseases from HIV and Alzheimer disease to 
brain cancer.

Such control will certainly open a pathway for new drugs and could 
revolutionize medicine.
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