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Abstract
Recent advances in cancer stem cell (CSC) research and the role of miroRNAs (miRNAs) provided renewed 

interest, as supported by some convincing data showing that deregulation of miRNAs are important molecular events 
in the maintenance of CSC niche, which contribute to therapeutic resistance, resulting in treatment failure. Therefore, 
we are succinctly providing state-of-the-art knowledge on miRNAs that are associated with CSCs in this article, and 
it is quite clear that CSCs and miRNAs are implicated in therapeutic resistance, suggesting that novel approaches 
must be devised to eliminate CSCs or drug resistant cells focusing on overcoming therapeutic resistance. This indeed 
could be achieved by targeted strategies either to re-express the lost miRNAs or inactivate over-expressed miRNAs 
in cancers in general and CSCs in particular. We sincerely hope that this article would be educational to attract 
innovative research in the field so that we can find specific novel approaches to eradicate cancer by overcoming 
therapeutic resistance by targeting miRNAs, which will be useful to eliminate tumor recurrence and metastasis.

General Introduction of the Topic
There is an evolving concept that cancers are diseases driven 

by cancer stem cells (CSCs) [1]. These are a small number of 
undifferentiated cells resembling primitive cells present within the 
tumor mass that have self-renewal and tumorigenic potential [2]. This 
unique capability allows them to self-renew, differentiate and form 
cells which are phenotypically, and most often genotypically similar to 
the parent cancer cells [3]. Eventually they lead to tumor re-growth 
with invasive and metastatic propensities [2]. This concept is supported 
by the fact that most tumors are a heterogenous admixture of cells 
in varying stages of differentiation with the tumor initiating cells 
comprising only a small percentage of the entire tumor cell population 
[4-6]. These cells have been demonstrated in human tumor specimens, 
and both in vitro cell cultures models and animal model studies of 
human tumors using severe combined immunodeficient (SCID) mice 
[7]. In the following paragraphs we will succinctly summarize the 
concept of CSCs and miRNAs with respect to therapeutic resistance.

Relevance of Cancer Stem Cells (Cscs) in Tumors 
Although the CSC concept was proposed several decades ago it is 

recently gaining impetus due to its emerging clinical and translational 
relevance. CSCs are being implicated not only in tumor initiation, but 
also in tumor progression and disease relapse after treatment. As a result 
of this, they impact patient management protocols, as their presence 
is associated with poor clinical outcomes [6] and drug resistance [8] 
ultimately resulting in tumor invasion and metastasis. 

In recent studies the significance of CSCs leading to drug resistance 
in patients on chemotherapeutic drugs has been emphasized and 
described to be an acquired phenomenon [8]. It is generally seen that 
patients initially show good response to an accepted and approved 
therapeutic drug regimen but suddenly worsen due to tumor 
unresponsiveness. The occurrence or enrichment of CSCs eventually 
impacts the morbidity and mortality of patients due to tumor re-growth 
and metastases. This has grave consequences in the clinical scenario 
because the presence of CSCs prevents the eradication of tumors [9], 
suggesting that novel approaches must be devised to eliminate CSCs in 
order to have complete eradication of tumors. 

Evaluation of the CSC population in a patient shows additional 

promising clues which serve as potential markers to evaluate the clinical 
benefit of anti-tumor treatments. In the current clinical context, the 
effect of treatment on tumors is evaluated by a reduction in the size of 
the tumor. However, this is not necessarily indicative of improvement 
in long term survival of patients [10]. In fact, recently it has been 
proposed that response and survival rates may be independent entities 
reflecting treatment effects against distinct cancer cell types [6]. Hence 
it has been suggested that the short term tumor size reduction could 
reflect the effect of treatment on the bulk of the tumor cells; where as 
the long term survival benefit could be due to the effect of the treatment 
on the CSC’s [6] which are known to be highly resistant to conventional 
therapeutics. 

Strategies for the Identification of CSC’s
CSCs can be identified in tumors using immunohistochemistry 

by targeting specific cell surface markers. Cell surface markers are 
molecules located on the surface of cells which can be targeted using 
immunohistochemical approach. Once the cell surface marker finds its 
complementary strand in the in the immune complex, the color in the 
chromogens is seen microscopically to identify the lineage of the cells. 
Since CSCs are tiny cells with no phenotypic morphologic features of the 
parent cell of origin, these cell surface markers are specifically helpful 
in the clinical context in identifying the lineage to which CSC’s belong. 
They form the basis of the clinically useful immunohistochemical 
approach, for identifying CSCs. Their nomenclature is based on Cluster 
Designation (CD). 
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The expression levels of these cell surface markers can be used to 
identify CSCs. AML CSC’s residing in the endosteal region of the bone 
marrow are CD34 positive and CD38 negative [11,12]. CML stem cells 
are also CD34 positive [13]. The cell surface marker, CD133, identifies 
CSCs from colon cancer [14-16], glioblastomas [17,18], ovarian cancer 
[19,20] and small-cell lung carcinomas [21,22]. Additionally, ovarian 
CSCs are also CD117 positive and some are CD44 positive and CD24 
negative [19,20]. Small-cell lung carcinoma CSCs are ABCG2 positive 
or uPAR positive [21,22]. Osteosarcoma CSCs are CD117 positive, 
Stro-1 positive, CXCR4 positive and ABCG2 positive [23]. CD44 
positivity has been observed in both pancreatic and breast cancer 
CSCs. Additionally, there is CD24 negativity in pancreatic cancer CSCs 
[24,25] and CD24 low expression in breast cancer CSCs. High CD29 
positivity (+++) along with CD24 moderate positivity (++) is also seen 
in breast cancer CSCs [26,27]. Hepatocellular carcinoma CSCs are 
Hoechst positive [28]. Hoechst positive cells are CSCs which are able to 
efflux the dye Hoechst 33342 through an ATP-binding cassette (ABC) 
membrane transporter. This is used for detecting CSCs in various 
cell lines. Prostate CSCs show high expression of CD117 and ABCG2 
[29,30]. 

CSCs can also be identified with the use of functional characteristics 
like aldehyde dehydrogenase (ALDH) activity and increased drug 
efflux potential [31-33]. ALDH1 has been used as a marker for breast 
CSCs and also has served as an indicator of poor prognosis [31], which 
is further discussed below.

Cancer Stem Cells (Cscs) in Different Malignant Tumors 
Associated with Therapeutic Resistance

CSCs have been identified and isolated from tumors of the 
hematopoietic system, breast, lung, prostate, colon, brain, head 
and neck, and pancreas [34]. They have been associated with 
chemotherapeutic drug-resistance in colorectal malignancies [14-
16], acute myelogenous leukemia (AML) [11,12], small-cell lung 
carcinomas [21,35] and osteosarcomas [23]. In breast tumors, CSCs 
contribute to cisplatin and paclitaxel resistance [26,27]. Chronic 
myelogenous leukemia CSCs are intrinsically resistant to imatinib [13]. 
In glioblastomas, CSCs show significant resistance to temozolomide, 
carboplatin, paclitaxel and etoposide [17]. In human hepatocellular 
carcinomas, resistance to doxorubicin or methotrexate has been 
implicated due to CSCs [28]. Pancreatic CSCs are gemcitabine-resistant 
[25]. Ovarian CSCs have been demonstrated to be markedly resistant 
to carboplatin and paclitaxel [19,36] as well as to cisplatin [20]. Prostate 
CSCs are resistant to arsenic-induced cytolethality [29] and cisplatin, 
paclitaxel, doxorubicin and methotrexate [30]. These reports and many 
others clearly suggest that CSCs are broadly resistant to conventional 
therapeutics.

Role Of Cscs in Prognosis 

Recent studies have demonstrated that CSCs can be used as 
predictors of clinical outcome in tumors by using either genetic 
signatures, phenotypic characteristics or by functional assays [6]. 
Tumors which have a poor outcome have either increased CSCs or 
their cells take on the CSC characteristics [6]. Presence of CSCs in 
malignancies has been indicative of poor prognosis, failure of anti-
cancer therapies and reduced patient survival. This has been amply 
demonstrated by several studies. CD133 positive CSCs in glioblastomas 
are associated with worse progression-free and overall survival [18]. 
ALDH1 positive CSCs indicate poor clinical outcomes in breast [31] 
and pancreatic adenocarcinomas [37]. CD44 positive and CD24 

negative breast CSCs are associated with increased distant metastasis 
[38], worse overall and metastasis-free survival in patients with 
localized disease and are linked to a panel of 186 genes of ‘invasiveness’ 
[39]. Similar ‘invasive gene signatures’ associated with poor prognosis 
are also seen in lung and prostate cancers and medulloblastomas [6]. 
Gene expression studies using microarrays have also demonstrated 
a similar association with poor prognosis with CD44 positive CD24 
negative breast CSCs [40]. Here will now discuss the role of CSCs and 
therapeutic resistance.

CSCs in radioresistance

Breast and glioblastoma CSCs are relatively radioresistant as 
compared to the bulk of the tumor cells. This is primarily due to the 
ability of breast CSCs to enhance handling of reactive oxygen species to 
minimize DNA damage [41]. In glioblastoma CSCs there is increased 
activation of the DNA damage checkpoint response [42]. These reports 
are some of the examples; however, further research in this area is on-
going.

CSCs in chemotherapeutic resistance

An increase in CSCs (enrichment of CSCs) has been demonstrated 
after conventional chemotherapy in clinical studies [43] as well as in 
xenograft models [44] indicating their role in therapeutic resistance, 
which has been documented in previous paragraphs. Spheroid cultures 
are mechanisms by which one can enrich CSCs. This is done to evaluate 
stem cell activity in normal tissue and putative CSC, Non-adherent 
spheroid cultures are increasingly being used in this regard. In this the 
cells are grown on non-adherent surfaces and give rise to spheroids 
that have the capacity for self-renewal and can in principal generate all 
the cell types of the cell of origin. The capacity for repeated generation 
of spheres from single cells is generally viewed as evidence of self-
renewal. Recently, it was described that spheroid-derived cells (SDC) 
from malignant cell lines possess CSC capacity.

Currently most chemotherapeutic agents target the rapidly 
proliferating cells and spare the relatively quiescent CSCs. Due to this 
biological phenomenon, the bulk of the tumor cells are destroyed but 
the remaining CSCs are untouched and/or further enriched, which 
eventually leads to tumor re-growth. It has been observed that when 
drug sensitivities are tested for cancer cell progeny, often the therapeutic 
protocols fail to take into consideration the ability of the drugs to target 
the CSCs, and more importantly CSC-targeted drugs are not currently 
available. These observations clearly suggest that novel strategies must 
be devised for selective eradication of CSCs, which should be the most 
urgent objectives toward achieving cure for cancer, and such strategies 
must be devised focusing on overcoming therapeutic resistance. 
Although the molecular mechanism of therapeutic resistance is multi-
faceted, in the following sections we will briefly discuss some of the 
known molecular mechanism(s). 

Mechanisms of Therapeutic Resistance by CSCs

The presence of CSCs in a tumor mass causes therapeutic 
resistance by several mechanisms including reducing the intracellular 
level of cytotoxic agents or by increasing the capacity to repair the 
effects of cytotoxic injury. This has been exemplified in several tumors. 
The multiple myeloma CSCs increase the membrane-bound drug 
transporters and increase the intracellular detoxification enzymes that 
mediate drug efflux and metabolism [45]. CML and NHL (mantle cell 
type) CSCs either decrease the expression of proteins or lead to drug 
resistance as a result of their quiescent nature, which leads to resistance 
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especially for drugs that are dependent on cell cycle progression for 
their actions [46,47]. 

Some CSCs induce mutations in the cancer cells due to long-term 
exposure to drug, cause over-expression of drug transporters and 
DNA repair enzymes and many of these processes are regulated via 
dysregulation of miRNAs [1,48-50], and are further discussed below. 

The Role of Mirnas and their Relevance to Cscs

As indicated previously that miRNAs are recently identified novel 
small non-coding RNAs investigated in the last ten years which are 
known to be critically involved in CSC regulation. Despite their small 
size of only 19-25 nucleotides, these molecules have revolutionized the 
molecular paradigm of gene regulation [51]. They are actively involved 
in post-transcriptional regulation and control several key physiological 
and pathological processes including cancer [52]. In normal physiologic 
states miRNAs are expressed normally but in pathologic conditions 
like cancer, their expressions are altered. Thus miRNAs may provide a 
targeted approach in treating cancers. The therapeutic decision-making 
in clinical oncology is currently undergoing a transition towards 
personalized pharmaco-therapeutics and the treatment archetype 
is being driven more by molecular characteristics than the anatomic 
site of tumor origin, and thus miRNAs are gaining momentum in the 
clinical arena. Specific miRNAs have been identified to play important 
roles in the formation and regulation of CSCs [53] including many 
different cellular processes like differentiation, proliferation and 
apoptosis. Despite their small size (about 22 nucleotides) these non-
coding RNAs have revolutionized the current paradigm of cancer gene 
regulation as summarized below. 

Mechanistically, the miRNAs act via the messenger RNAs 
(mRNAs). The 5`end of miRNA binds to complementary regions 
in the 3` untranslated region (UTR) of the target messenger RNAs 
(mRNAs) leading to either the degradation of mRNA or inhibition of 
its translation to proteins. 

Several miRNAs have a prime role in the regulation of CSCs. For 
example, miRNA-200c suppresses the formation of ducts and tumors 
by breast CSCs [54] whereas miR-125b makes the CSCs insensitive to 
chemotherapy [1] and regulates the proliferation of glioma CSCs [55]. 
It has been reported that ZEB1 could directly control the expression of 
miR-200, miR-203 and miR-183 and that knockdown of ZEB1 reduces 
pancreatic CSCs [56]. Several other miRNAs are very important in 
certain cancers; for example miR-34 is involved in pancreatic CSCs 
self-renewal [57], and miR-30 is known to inhibit self-renewal of 
breast CSCs [58]; and thus its over-expression reduces tumorigenesis 
and lung metastasis in mice, and by blocking its expression enhances 
tumorigenesis and metastasis [58]. Another example is the miR-17-
19 family where increased miR-17-19b has been shown to reduce 
differentiation and increased proliferation of leukemia CSCs [58] 
whereas miR-181 is important for the maintenance of hepatic CSC’s 
[57]. The target information for each miRNA may be accessed by 
the readers from the link http://www.targetscan.org/  http://www.
microrna.org/microrna/home.do. The role of miRNAs in relation 
to CSCs and cancer has become an emerging area of active research, 
which is highly likely to bear fruits in the targeted treatment of human 
malignancies and other chronic diseases. In the next section, we further 
catalogue some important observations as to the role of miRNAs in 
CSCs (summarized in Figure 1).

The Role of Specific Mirnas in Human Malignancies 
Associated with CSCs

It has been well described that miRNAs are aberrantly expressed in 
human malignancies and regulate cancer progression [52], metastasis 
[59] and tumor aggressiveness, in addition to forming and regulating 
CSC’s [53]. These molecules are clinically significant since miRNAs 
have the potential to be clinically useful as biomarkers for early 
diagnosis and predictors of prognosis, and for monitoring response to 
therapies. Additionally, due to their role in the formation of CSCs and 
their maintenance, they could serve as novel targets for treating cancers 
by novel approaches focused on overcoming therapeutic resistance as 
discussed earlier. 

Different types of miRNAs involved in cancer

Over 1100 miRNA sequences have been recognized in humans 
[60]. Some of these are deregulated in cancers. miRNAs are either 
oncogenic miRNAs or tumor suppressor miRNAs depending upon 
their effect on the tumors. Cellular signaling can be regulated by major 
miRNAs that have tumor suppressor or oncogenic activity. Oncogenic 
miRNAs are up-regulated in cancer, which down-regulates suppressor 
genes. The typical example of oncogenic miRNAs among others is miR-
21 which is over-expressed in cancers {Ali 7 /id; [61] Slaby, 2007 9 /id}. 
Other oncogenic miRNAs include miR-17-92, miR-155, miR-221 and 
miR-222. Tumor suppressor miRNAs are down-regulated in cancer, 
resulting in the activation of oncogenes causing tumor aggressiveness. 
For example, let-7 family of miRNA is a tumor suppressor oncomiR 
which is under-expressed in malignancies [62-64]. Other tumor 
suppressor miRNAs include miR-15, miR-16, miR-17-5p, miR-29, 
miR-34, miR-124a, miR-127, miR-143, miR-145 and miR-181 among 

Figure 1: A simplified example on the relationship between CSCs and 
miRNAs with tumor aggressiveness. The miRNA miR-21 is over-expressed 
in cancers contributing to increased tumor aggressiveness while let-7 miRNA 
has tumor suppressor effect leading to reduction in tumor aggressiveness, and 
accumulation of let-7 is prevented by Lin28B, which is over-expressed in many 
cancers. Moreover, p53 activates miRNA miR-200 to suppress EMT related 
CSC properties, ultimately leading to reduced tumor aggressiveness whereas 
natural agents target CSCs and reduce tumor aggressiveness by down-regulat-
ing miR-21 and up-regulating miR-200 and let-7. 

http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
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many others [65]. The list of specific miRNA that either functions as 
oncogenic or suppressor miRNAs is growing rapidly and it is becoming 
hard to keep-up with the rapid pace of our research advances.

Alterations in the expression of miRNAs in cancer and 
therapeutic resistance 

It has been documented earlier in this article that altered expression 
of specific miRNAs is associated with therapeutic resistance. In 
docetaxel-resistant NSCLC cells, miR-192, miR-424 and miR-98 are 
over-expressed and miR-194, miR-200b and miR-212 are under-
expressed [66]. Over-expression of miR-140 makes tumor cells more 
resistant to 5-FU [1]. Because deregulated miRNAs contribute to 
therapeutic resistance, miRNAs are attractive therapeutic targets for 
overcoming resistance. Thus, miRNAs are being used to restore the 
sensitivity of drug-resistant cells to chemotherapy and preventing 
tumor recurrence. For example, blocking endogenous miR-140 has been 
shown to sensitize resistant cancer cells to 5-FU treatment. Moreover 
re-expression of miR-200 increases the sensitivity to microtubule-
targeting chemotherapeutic agents [67] whereas knock-down of miR-
221 and miR-222 has been shown to sensitize breast cancer cells to 
tamoxifen-induced apoptosis [68]. Another great example is that the 
suppression of miR-21 led to increased cytotoxicity of a semisynthetic 
podophyllotoxin derivative (VM-26) against glioblastoma cells [63]. 
These results are exciting and provide preliminary evidence that 
miRNAs could function as novel targets for overcoming therapeutic 
resistance (summarized in Figure 1).

Clinical Relevance of miRNAs 

In normal development, miRNAs have an important physiologic 
role. The accumulation of let-7 miRNA is prevented by Lin28, a 
promoter of pluripotency [69] Pluripotency refers to the ability of 
stem cells to differentiate into any of the three germ layers: endoderm 
(interior stomach lining, gastrointestinal tract, the lungs), mesoderm 
(muscle, bone, blood, urogenital), or ectoderm (epidermal tissues 
and nervous system).In the similar context the cancer stem cells have 
the potential to undergo differentiation into the tumor cell type e.g. 
squamous or adenocarcinoma. The miRNA let-7 and Lin28 which 
maintain the delicate balance between pluripotency vs. differentiation 
during development may have potential use in tumor therapeutics as 
discussed further in this section. 

Tumor specific miRNAs have potential clinical use as markers for 
accurate and early diagnosis, predicting prognosis and can serve as 
targets for future novel targeted therapies for malignancies as indicated 
above. Over-expression of oncogenic miRNAs and low expression of 
tumor suppressor miRNAs can serve as biomarkers for the identification 
of tumors either at the earliest stages of tumor development or in cases 
where there is a diagnostic dilemma. For example, miR-21, miR-17-
92, miR-155, miR-221 and miR-222 are over-expressed in cancers 
[61,62,70]whereas Let-7 [62-64], miR-15, miR-16, miR-17-5p, miR-
29, miR-34, miR-124a, miR-127, miR-143, miR-145 and miR-181 are 
under-expressed in malignancies [65].

Likewise, over-expression of oncogenic miRNAs and low expression 
of tumor suppressor miRNAs has been demonstrated to predict the 
clinical course of the disease in different cancers. It is well documented 
that cases in the same clinical stage do not always behave in the 
similar manner despite similar treatment protocols. Hence prognostic 
biomarkers are important to determine the survival of patients in the 
clinical context. Moreover, miR-21 over-expression predicts poor 
prognosis in breast cancers [71] and tumor aggressiveness in pancreatic 

cancers [62] whereas reduced expression of tumor suppressor 
oncomiR let-7 is associated with increased tumorigenicity and poor 
patient prognosis [69]. In breast cancer cells, reduced let-7 expression 
correlates with greater tumor forming capacity [72], and in NSCLC, it 
is associated with poor post-operative survival [64]. In ovarian cancer 
patients, reduced let-7 expression indicates shorter progression free 
survival [73]. The accumulation of let-7 miRNA is prevented by Lin28, 
a promoter of pluripotency [69]. Lin28B is a homolog of Lin28 that 
is over-expressed in many human cancers including prostate cancer 
(PCa), and is associated with advanced tumor stage [74]. Over-
expression of Lin28B leads to the acquisition of invasive and metastatic 
capabilities in PCa cells. This happens via down-regulation of miR-
200b and miR-200c [74] or through repression of let-7. The repression 
of mature let-7 family leads to increased expression of EZH2 thereby 
maintaining the stem cell characteristics in PCa [74]. 

Cancers are a common cause of patient mortality and morbidity. 
This is mainly due to the lack of curative therapies and inherent 
complex heterogeneity of the tumors, making it difficult to predict 
which patient would respond to anticancer therapies. Therefore, 
exploiting the expression of miRNAs to identify which patients would 
benefit from targeted anticancer therapies provide a novel approach in 
the treatment of cancers. To that end, recent studies have proposed that 
the identification of plasma miRNA expression levels can be potentially 
used as molecular indicators of aggressive pancreatic cancer [75]. 

Reducing the expression of oncogenic miRNAs and enhancing the 
expression of tumor suppressor miRNA appears to be a novel approach 
in developing targeted pharmaco-therapies for cancer. Expression 
levels of oncogenic and tumor suppressor miRNAs can predict drug 
resistance in different tumors as well. For example, miR-21 over-
expression predicts chemoresistance in pancreatic cancers [76,77] 
and drug resistance in glioblastomas [63] whereas in ovarian cancer 
reduced let-7 expression indicates resistance to chemotherapy [73]. In 
the next paragraphs we will discuss novel avenues by which one could 
deregulate the expression of miRNAs which could become a novel 
therapeutic strategy.

Using miRNAs to overcome drug resistance 

Specific miRNAs can be targeted to overcome drug resistance and 
prevent tumor recurrence after chemotherapy. Re-expressing miR-200 
increases the sensitivity to microtubule-targeting chemotherapeutic 
agents [67] whereas knock-down of miR-221 and miR-222 sensitizes 
breast cancer cells to tamoxifen-induced apoptosis [68]. Suppression 
of miR-21 also increases the cytotoxicity of a semisynthetic 
podophyllotoxin derivative, VM-26, against glioblastoma cells [63].

CSC-targeted therapies and implication of developmental 
signaling

Since targeting CSCs appears a promising therapeutic strategy for 
malignancies, several mechanisms have been postulated to destroy these 
self-renewing cells. For example, salinomycin reduces the proportion 
of CSCs by more than 100-fold when compared to paclitaxel, and 
inhibits mammary tumor growth in mice [78]. Moreover, Nigericin 
and abamectin can also inhibit the growth of CSCs [79]. The standard 
anti- diabetic drug, Metformin, selectively kills CSCs in breast cancer 
and when combined with doxorubicin killed both CSCs as well as non-
CSCs [80]. In HER2-positive carcinomas, it acts synergistically with 
the anti-HER2 monoclonal antibody, trastuzumab, to suppress self-
renewal and proliferation of CSCs [81]. 
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Isolating a pure CSC population for molecular analysis remains a 
challenge [6], and thus recent clinical trials have utilized developmental 
signaling pathways like Hedgehog [82], Notch and Wnt pathways 
and tested novel agents for the inhibition of these pathways to target 
CSCs [83,84] without isolating CSCs. Recent studies are also targeting 
telomerase which is an important cell process for the maintenance of 
CSCs [85,86]. Another strategy is to induce terminal differentiation 
of the CSCs to modulate their function using interferon-alpha 
[87]. Interferon can eradicate CML CSCs in vitro unlike the drug 
imatinib which acts only against differentiated tumor cells and their 
progenitors [88]. Clinically, this is important as patients who receive 
imatinib alone relapse upon discontinuation of the drug [89]. Hence 
it has been recommended that to maintain molecular remission of the 
disease, CML patients should receive induction with both imatinib 
and interferon [90]. Since HER2/neu plays a role in breast CSCs self-
renewal [91], its inhibitor, lapatinib has been used in combination with 
cytotoxic agent capecitabine to increase the overall survival of breast 
cancer patients [92] However, targeted killing of CSCs by targeted 
activation or inactivation of miRNAs has been challenging.

P53, a tumor suppressor gene, transcriptionally activates 
microRNA miR-200c to regulate the EMT related CSC properties 
[93]. It directly binds to the miR-200c promoter. When p53 is lost, the 
expression of miR-200c is decreased resulting in activation of the EMT 
program accompanied by an increased cancer stem cell population. By 
re-expressing miR-200c we can suppress genes that mediate EMT and 
stemness properties and thereby revert the mesenchymal and stem-
cell-like phenotype caused by loss of p53 to a differentiated epithelial 
cell. This concept has relevance as a novel therapeutic approach for 
treating tumor aggressiveness.

Role of Natural Agents in the Killing of CSCs by Targeting 
Mirnas

Recently, natural agents have been shown to target CSCs in 
gemcitabine-resistant pancreatic cancer by up-regulation of miR-200 
and let-7 [53]. Natural agents have the capacity to alter the expression 
of miRNAs (Figure 1) that are known to regulate cellular signaling 
and biological behavior in a safe manner with almost no toxicities 
(94). Curcumin, isoflavone, 3,3-diinodolylmethane (DIM), indole-3-
carbinol (I3C), epigallocatechin-3-gallate (EGCG) are typical examples 
of natural agents which have been demonstrated to regulate miRNAs 
[94-98]. DIM and isoflavone treatments has been shown to increase 
the level of miR-200 family in MiaPaCa-2 cells [53]. Curcumin up-
regulates the miR-22 expression [97]. Moreover, curcumin and piperine 
separately and in combination inhibited breast CSC self-renewal 
without causing toxicity to differentiated cells [99]. In pancreatic 
cancer, curcumin down-regulated the miR-21 and up-regulated the 
expression of miR-200 [75]. Indole-3-carbinol has been shown to 
down-regulate the expression of miR-21 and thereby up-regulates 
the miR-21 target gene PTEN in mouse lung tumors [96] whereas 
EGCG, another natural agent, up-regulates miR-16 expression in 
human tumor cells [98]. Sulforaphane derived from broccoli eradicates 
pancreatic CSCs-like cells in a synergistic manner when combined 
with the kinase inhibitor sorafenib [100]. Curcumin or its analogue 
CDF has been shown to induce gemcitabine sensitivity in pancreatic 
cancer cells by modulating miR-200 and miR-21 expression in our 
recent study [75]; summarized in Figure 1. In prostate cancer cells, 
miR-200 has been shown to regulate PDGF-D-mediated adhesion, 
invasion and epithelial-mesenchymal transition (EMT) [101], which 
was mechanistically linked with stem cell signatures [101,102] in 

prostate cancer cell model. Moreover, up-regulation of miR-146a has 
been shown to inhibit invasion of pancreatic cancer cells in our recent 
study [95]. Although natural agents could serve as an important agent 
for the deregulation of miRNAs, further in-depth research is certainly 
warranted.

Perspectives and Concluding Remarks
In conclusion, as a paradigm shift occurs in our understanding 

of CSCs, research continues in the field and the clinical relevance of 
the miRNAs continues to evolve in cancer diagnosis, prognosis as well 
as treatment. The role and therapeutic implications of miRNAs and a 
targeted approach in the context of CSCs and therapeutic resistance 
is certainly a promising and an active area of research (Figure 1), 
and their success is already on the horizon as we evaluate their use 
from the bench to bedside. Innovatively identifying CSC-specific hot 
spot oncogenic and tumor suppressor miRNAs have the potential 
to improve diagnostic accuracy, refine prognostic and predictive 
capabilities and serve as novel therapeutic targets. Elucidating the 
mechanisms by which miRNAs affect CSCs would fulfill an unmet need 
for understanding the pathobiology of CSCs in cancer recurrence, drug 
resistance and metastasis. Identifying clinically relevant CSC specific 
miRNA signatures would have potential translational application. 
It will help to develop a clinical algorithm, which will ultimately 
benefit the patients by improving diagnosis, predicting prognosis, 
and identifying patients who would benefit from anticancer therapies, 
those who would develop chemoresistance or those who already have 
de novo resistant cells to conventional therapeutics. Overall, it is our 
belief that in-depth mechanistic understanding of the role of miRNAs 
in CSCs would allow us to improve clinical decision making, which 
will further facilitate the discovery of novel therapies and therapeutic 
targets for personalized medicine. 
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