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ABSTRACT
The aim of this exploratory study was to examine the content of Bromine (Br), Calcium (Ca), Chlorine (Cl), Iodine

(I), Potassium (K), Magnesium (Mg), Manganese (Mn), and Sodium (Na) in the normal and adenomatous Thyroid

(TA). Thyroid tissue levels of eight Chemical Elements (ChE) were prospectively evaluated in 19 patients with TA and

105 healthy inhabitants. Measurements were performed using non-destructive instrumental neutron activation

analysis with high resolution spectrometry of short-lived radionuclides. Tissue samples were divided into two

portions. One was used for morphological study while the other was intended for ChE analysis. A reduced content of

I and Mg, as well as an elevated content of Br, Cl and Na in TA in comparison with normal thyroid was found. The

study showed that the adenomatous transformation was accompanied by considerable changes in ChE contents of

affected thyroid tissue.
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ABBREVIATIONS
TA: Thyroid Adenoma; ChE: Chemical Element; NG: Nodular 
Goiter; TC: Thyroid Cancer; INAA-SLR: Instrumental Neutron 
Activation Analysis with high resolution spectrometry of Short-
Lived Radionuclides; BSS: Biological Synthetic Standards; CRM: 
Certified Reference Material; IAEA: International Atomic 
Energy Agency

INTRODUCTION
Thyroid adenomas (TA) are homogenous, solitary, encapsulated 
benign tumors, more common in females, and have a good 
prognosis [1]. However, because there is a 20% possibility of 
malignant transformation, TA should be differentiated from 
other thyroid nodular diseases such as Nodular Goiter (NG) and 
Thyroid Cancer (TC). The distinguishing between the TA and 
TC is tricky, therefore new differential diagnostics and TA 
biomarkers are needed [2,3].

For over 20th century, there was the dominant opinion that NG, 
including TA, is the simple consequence of Iodine (I) deficiency.

However, it was found that NG is a frequent disease even in
those countries and regions where the population is never
exposed to I shortage [4]. Moreover, it was shown that I excess
has severe consequences on human health and associated with
the presence of thyroidal disfunctions and autoimmunity,
nodular and diffuse goiters, adenomas and malignant tumors of
gland [5-8]. It was also demonstrated that besides the I deficiency
and excess many other dietary, environmental, and occupational
factors are associated with the NG incidence [9-11]. Among
them a disturbance of evolutionary stable input of many
Chemical Elements (ChE) in human body after industrial
revolution plays a significant role in etiology of thyroidal
disorders [12].

Besides I involved in thyroid function, other ChE have also
essential physiological functions such as maintenance and
regulation of cell function, gene regulation, activation or
inhibition of enzymatic reactions, and regulation of membrane
function [13]. Essential or toxic (goitrogenic, mutagenic,
carcinogenic) properties of ChE depend on tissue-specific need
or tolerance, respectively [13]. Excessive accumulation or an
imbalance of the ChE may disturb the cell functions and may
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result in cellular degeneration, death, benign or malignant
transformation [13-15].

In our previous studies the complex of in vivo and in vitro
nuclear analytical and related methods was developed and used
for the investigation of I and other ChE contents in the normal
and pathological thyroid [16-22]. Level of I in the normal thyroid
was investigated in relation to age, gender and some non-
thyroidal diseases [23,24]. After that, variations of many ChE
content with age in the thyroid of males and females were
studied and age- and gender-dependence of some ChE was
observed [25-41]. Furthermore, a significant difference between
some ChE contents in normal and cancerous thyroid was
demonstrated [42-47].

To date, the etiology and pathogenesis of TA has to be
considered as multifactorial. The present study was performed
to clarify the role of some TE in the TA etiology. The aim of this
work was to assess the Bromine (Br), Calcium (Ca), Chlorine
(Cl), Iodine (I), Potassium (K), Magnesium (Mg), Manganese
(Mn), and Sodium (Na) contents in TA tissue using
instrumental neutron activation analysis with high resolution
spectrometry of short-lived radionuclides (INAA-SLR) and also
to compare the levels of these ChE in the adenomatous thyroid
with those in intact (normal) gland of apparently healthy
persons.

All studies were approved by the Ethical Committees of the
Medical Radiological Research Centre, Obninsk. All procedures
performed in studies involving human participants were in
accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical
standards.

MATERIALS AND METHODS
All patients suffered from TA (n=19, 16 females and 3 males,
mean age M ± SD was 41 ± 11 years, range 22-55) were
hospitalized in the Head and Neck Department of the Medical
Radiological Research Centre. Thick-needle puncture biopsy of
suspicious nodules of the thyroid was performed for every
patient, to permit morphological study of thyroid tissue at these
sites and to estimate their TE contents. For all patients the
diagnosis has been confirmed by clinical and morphological
results obtained during studies of biopsy and resected materials.
Histological conclusion for all thyroidal lesions was the TA.

Normal thyroids for the control group samples were removed at
necropsy from 105 deceased (mean age 44 ± 21 years, range
2-87), who had died suddenly. The majority of deaths were due
to trauma. A histological examination in the control group was
used to control the age norm conformity, as well as to confirm
the absence of micro-nodules and latent cancer.

All tissue samples were divided into two portions using a
titanium scalpel [48]. One was used for morphological study
while the other was intended for ChE analysis. After the
samples intended for ChE analysis were weighed, they were
freeze-dried and homogenized [49]. The pounded samples

weighing about 10 mg (for biopsy) and 100 mg (for resected
materials) were used for ChE measurement by INAA-SLR.

To determine contents of the ChE by comparison with a known
standard, Biological Synthetic Standards (BSS) prepared from
phenol-formaldehyde resins were used [50]. In addition to BSS,
aliquots of commercial, chemically pure compounds were also
used as standards. Ten sub-samples of Certified Reference
Material (CRM) of the International Atomic Energy Agency
(IAEA) IAEA H-4 (animal muscle) weighing about 100 mg were
treated and analyzed in the same conditions as thyroid samples
to estimate the precision and accuracy of results.

The content of Br, Ca, Cl, I, K, Mg, Mn, and Na were
determined by INAA-SLR using a horizontal channel equipped
with the pneumatic rabbit system of the WWR-c research
nuclear reactor (Branch of Karpov Institute, Obninsk). Details
of used nuclear reactions, radionuclides, gamma-energies,
spectrometric unit, sample preparation, and the quality control
of results were presented in our earlier publications concerning
the INAA-SLR of ChE contents in human thyroid, scalp hair,
and prostate [19,51-53].

A dedicated computer program for INAA mode optimization
was used [54]. All thyroid samples were prepared in duplicate
and mean values of ChE contents were used in final calculation.
Using Microsoft Office Excel, a summary of the statistics,
including, arithmetic mean, standard deviation, standard error
of mean, minimum and maximum values, median, percentiles
with 0.025 and 0.975 levels was calculated for ChE contents.
The difference in the results between two groups (normal
thyroid and TA) was evaluated by the parametric Student’s t-test
and non-parametric Wilcoxon-Mann-Whitney U-test.

RESULTS
Table 1 depicts our data for eight ChE (Br, Ca, Cl, I, K, Mg,
Mn, and Na) in ten sub-samples of CRM IAEA H-4 (animal
muscle) and the certified values of this material.

Element Certified values This work
results

Mean 95%
confidence
interval

   Type          Mean ± SD 

I

K 0 3800
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Mean: Arithmetical mean; SD: Standard Deviation; C: Certified
values; N: non-certified values

Table 1: INAA-SLR data of chemical element contents in the 
IAEA H-4 (animal muscle) reference material compared to 
certified values (mg/kg, dry mass basis).

0.08 -

15800 15300-1640 ±

Br                    4.1                 3.5-4.7 N 5.0 ± 0.9

N 238 ± 59Ca 188 163-213

N 1950 ± 230Cl 1890 1810-1970

N <1.0

C 16200 

C 1100 ± 190990-1110Mg 1050

C 0.55 ± 0.11Mn 0.52 0.48-0.55

C 2190 ± 140Na 2060 1930-2180



Tissue Element Mean SD SEM Min Max Median P
0.025

P
0.975

Nor
mal

Br 16.3 11.6 1.3 1.90 66.9 13.6 2.57 51.0

n=10
5

Ca 1692 1022 109 414 6230 1451 460 3805

Cl 3400 1452 174 1030 6000 3470 1244 5869

I 1841 1027 107 114 5061 1695 230 4232

K 6071 2773 306 1740 14300 5477 2541 13285

Mg 285 139 16.5 66.0 930 271 81.6 541

Mn 1.35 0.58 0.07 0.510 4.18 1.32 0.537 2.23

Na 6702 1764 178 3050 13453 6690 3855 10709

Aden
oma

Br 286 330 104 3.2 871 133 5.09 841

n=19 Ca 1143 1135 342 52 3582 650 110 3353

Cl 7722 3785 1262 1757 13824 9085 2043 13179

I 961 1013 232 131 3906 476 170 3591

K 5137 2474 686 797 8436 5741 937 8216

Mg 200 131 36 15.0 397 269 15.0 376

Mn 1.60 1.77 0.51 0.100 5.54 9.65 0.210 5.08

Na 9072 3952 1096 2319 16414 9100 2728 15822

M: Arithmetic mean; SD: Standard Deviation; SEM: Standard Error 
of Mean; Min: minimum value; Max: Maximum value; P 
0.025:Percentile with 0.025 level; P 0.975:Percentile with 0.975 level

Table 2: Some statistical parameters of Br, Ca, Cl, I, K, Mg, Mn, 
and Na mass fraction (mg/kg, dry mass basis) in normal and 
adenomatous thyroid.

The comparison of our results with published data for Br, Ca, 
Cl, I, K, Mg, Mn, and Na mass fraction in normal and 
adenomatous thyroid [9,55-70] is shown in Table 3.

Tissue Element
 Published data [Reference] This

work

Median
of means

Minimum Maximum M ± SD

(4) [58]
8000(-)
[59]

3400±1452

(23) [60]
5772±
2708 (50)
[61]

1841± 1027

K 4400 (16) 46.4 ± 4.8
(4) [58]

6090 (17)
[62]

6071± 2773

[64]
285 ± 139

Mn 1.62 (40) 0.076(83)
[65]

69.2 ± 7.2
(4) [58]

1.35 ± 0.58

[66]
10000 ±
5000 (11)
[67]

6702±1764

[69]
286 ± 330

[57] [57]
1143 ±1135

(4) [58]
864 ± 84
(4) [58]

7722± 3785

[68]
2800 (1)
[70]

961 ± 1013

K 3650 (3) 72,8 ± 7,2
(4) [58]

5600 (1)
[68]

5137± 2474

Mg - -] - 200 ± 131

[9]
57,6 ± 6,0
(4) [58]

1.60 ± 1.77

Na - - - 9072± 3952

M:Arithmetic mean; SD:Standard deviation; (n)*:number of all
references; (n)**:number of samples

Table 3: Median, minimum and maximum value of means 
Br, Ca, Cl, I, K, Mg, Mn, and Na contents in normal 
and adenomatous thyroid according to data from the 
literature in comparison with our results (mg/kg, dry mass 

basis).

The ratios of means and the difference between mean values 
of Br, Ca, Cl, I, K, Mg, Mn, and Na mass fractions in normal 
and adenomatous thyroid are presented in Table 4.

Ratio

Norm

n=105

Adenoma

n=19

Student’s
t-test
p

U-test
p

Adenoma

to Norm

Br 16.3 ± 1.3  286 ± 104  0.0295
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M or M ±
SD, (n)**

of means
M or M ±
SD, (n)**

Table 2 presents certain statistical parameters (arithmetic mean, 
standard deviation, standard error of mean, minimal and 
maximal values, median, percentiles with 0.025 and 0.975 levels) 
of the Br, Ca, Cl, I, K, Mg, Mn, and Na mass fraction in normal 
and adenomatous thyroid.

109 1143± 342

174 7722±1262[55]
284±44(14) 16.3± 11.6

2.270.00�9� 0.01≤ 

17.5≤ 0.01

80.139 >0.05 0.6

8

(n)*
of means

Ca 3800±
[57]

1692±1022

Element Thyroid tissue

Ca 1692±

Cl 3400±

≤ 

Normal Br 18.1 (11) 5.12 (44)

Normal Br 18.1 (11) 5.12 (44)

1600 (17) 840 ± 240
(10) [57]

[56]

320 
(29)

804 ± 80Cl 6800 (5)

I 1888 (95) 159 ± 8

Mg 390 (16) 3.5(-) [63] 1520 (20)

Na 8000 (9) 438 (-)

Adenoma Br 38 (4) 11 (5) [68] 777 (1)

Ca 2298(4) 900 (1) 3500 (1)

I 640(13) 80 (1)

Cl 864 (1) 864 ± 84

Mn 1.28 (4) 0.40 (46)

natasha-h
Highlight
do not split tables and check remaining tables



107

± 306 5137± 686 0.231 >0.05 0.85

± 0.07 1.60± 0.51

± 1785 9072±1096

M: Arithmetic mean; SEM: Standard Error of Mean; Significant
values are in bold

obtained mean for Br was approximately 7.5 times higher than

the median of previously reported means, but within the range
of means (Table 3). The obtained mean for Cl was 8.9 times
higher than the only reported result (Table 3). No published
data referring Mg and Na contents of adenomatous thyroid
tissue were found.

The range of means of levels of Br, Ca, Cl, I, K, Mg, Mn, and
Na reported in the literature for normal and adenomatous
thyroid vary widely (Table 3). This can be explained by a
dependence of ChE content on many factors, including
“normality” of thyroid samples (see above), the region of the
thyroid, from which the sample was taken, age, gender, ethnicity,
mass of the gland, and the adenoma stage, histology and
functional activity. Not all these factors were strictly controlled
in cited studies. However, in our opinion, the leading causes of
inter-observer variability can be attributed to the accuracy of the
analytical techniques, sample preparation methods, and inability
of taking uniform samples from the affected tissues. It was
insufficient quality control of results in these studies. In many
scientific reports, tissue samples were ashed or dried at high
temperature for many hours. In other cases, thyroid samples
were treated with solvents (distilled water, ethanol, formalin etc).
There is evidence that during ashing, drying and digestion at
high temperature some quantities of certain ChE are lost as a
result of this treatment. That concerns not only such volatile
halogen as Br, but also other ChE investigated in the study
[73,74].

Effect of adenomatous transformation on ChE
contents

From Table 4, it is observed that in adenomatous tissues the
mass fractions of I and Mg are 48% and 30%, respectively,
lower, whereas mass fractions of Br, Cl, and Na are
approximately 17.5, 2.27, and 1.35 times, respectively, higher
than in normal tissues of the thyroid. Thus, if we accept the
ChE contents in thyroid glands in the control group as a norm,
we have to conclude that with an adenomatous transformation
the Br, Cl, I, Mg, and Na contents in thyroid tissue significantly
changed.

Role of ChE in adenomatous transformation of the
thyroid

Characteristically, elevated or reduced levels of ChE observed in
adenomatous tissues are discussed in terms of their potential
role in the initiation and promotion of adenoma. In other
words, using the low or high levels of the ChE found in
adenomatous tissues, researchers try to determine the role of the
deficiency or excess of each ChE in the adenomatous
transformation. In our opinion, abnormal levels of many ChE
in TA could be and cause, and also effect of adenomatous
transformation. From the results of such kind studies, it is not
always possible to decide whether the measured decrease or
increase in ChE level in pathologically altered tissue is the
reason for alterations or vice versa.

Bromine: This is one of the most abundant and ubiquitous of
the recognized ChE in the biosphere. Inorganic bromide is the

Zaichick V

Table 4: Differences between mean values (M ± SEM) of Br, Ca, 
Cl, I, K, Mg, Mn, and Na mass fraction (mg/kg, dry mass basis) 
in normal and adenomatous thyroid.

DISCUSSION

Precision and accuracy of results

Good agreement of the Br, Ca, Cl, I, K, Mg, Mn, and Na 
contents analyzed by INAA-SLR with the certified data of CRM 
IAEA H-4 Table 1 indicates an acceptable accuracy of the results 
obtained in the study of ChE of the thyroid samples presented 
in Tables 2-4.

The mean values and all selected statistical parameters were 
calculated for eight ChE (Br, Ca, Cl, I, K, Mg, Mn, and Na) 
mass fractions (Table 2). The mass fraction of Br, Ca, Cl, I, K, 
Mg, Mn, and Na were measured in all, or a major portion of 
normal and adenomatous thyroid samples.

Comparison with published data

In general, values of means obtained in present study for Br, Ca, 
Cl, I, K, Mg, Mn, and Na contents in the normal human thyroid 
(Table 3) agree well with median of means reported by other 
researchers [55-67]. A number of values for ChE mass fractions 
were not expressed on a dry mass basis by the authors of the 
cited references. However, we calculated these values using 
published data for water (75%) and ash (4.16% on dry mass 
basis) contents in thyroid of adults [71,72].

Data cited in Table 3 for normal thyroid also includes samples 
obtained from patients who died from different non-endocrine 
diseases. In our previous study it was shown that some non-
endocrine diseases can effect on ChE contents in thyroid [24]. 
Moreover, in many studies the “normal” thyroid means a visually 
non-affected tissue adjacent to benign or malignant thyroidal 
nodules. However, there are no data on a comparison between 
the ChE contents in such kind of samples and those in thyroid 
of healthy persons, which permits to confirm their identity.

In adenomatous tissues (Table 3) our results were comparable 

with published data for Ca, I, K, and Mn contents. The
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961 ± 232 0.52

0.70

0.05 1.350.053 ≤ 

Mg ≤ 0.049� 0.05

0.0020� 0.01≤ ±I 1841 

K 6071

285 ± 17   200 ± 36

Mn 1.35

Na 6702

0.647 >0.05 1.19



ionic form of bromine which exerts therapeutic as well as toxic
effects. An enhanced intake of bromide could interfere with the
metabolism of iodine at the whole-body level. In the thyroid
gland the biological behavior of bromide is more similar to the
biological behavior of iodide [75]. Moreover, many studies
indicate that bromate (BrO3-) and potassium bromate (KBrO3)
are carcinogens [76-82]. Bromate is formed as a drinking water
ozone disinfection by-product and also used in some food and
consumer product [76]. Potassium bromate is a chemical
oxidizing agent that used extensively in food and cosmetic
industries [77,78]. Potassium bromate is also found in drinking
water as a disinfection by-product of surface water ozonation
[76].

In our previous studies it was found a significant age-related
increase of Br content in human thyroid [25-28]. This finding
correlated with a significant age-related increase of thyroid
cancer incidents. Furthermore, elevated levels of Br in cancerous
thyroid and malignant tumor of prostate were indicated
[42,43,46,79].

Thus, on the one hand, the accumulated data suggest that Br
might be responsible for TA development. But, on the other
hand, Br compounds, especially Potassium Bromide (KBr),
Sodium Bromide (NaBr), and Ammonium Bromide (NH4Br),
are frequently used as sedatives in Russia [80]. It may be the
reason for elevated levels of Br in specimens of patients with TA.
Anyway, the accumulation of Br in adenomatous thyroids could
possibly be explored for diagnosis of TA.

Chlorine: Cl is a ubiquitous, extracellular electrolyte essential to
many metabolic pathways. Cl exists in the form of chloride in
the human body. In the body, it is mostly present as sodium
chloride. Therefore, as usual, there is a correlation between Na
and Cl contents in tissues and fluids of human body. It is well
known that Cl mass fractions in samples depend mainly on the
extracellular water volume in tissues [81]. TA tissues contain
probably more colloid that normal thyroid. Because colloid is
extracellular liquid, it is possible to speculate that TA, and
particularly follicular adenomas, are characterized by an increase
of the mean value of the Cl mass fraction because the relative
content of colloid is higher than that in normal thyroid tissue.
Overall, the elevated levels of Cl in adenomatous thyroids could
possibly be explored for diagnosis of TA.

Iodine: Compared to other soft tissues, the human thyroid
gland has higher levels of I, because this element plays an
important role in its normal functions, through the production
of thyroid hormones (thyroxin and triiodothyronine) which are
essential for cellular oxidation, growth, reproduction, and the
activity of the central and autonomic nervous system.
Adenomatous transformation is probably accompanied by a
partial loss of tissue-specific functional features, which leads to a
reduction in I content associated with functional characteristics
of the human thyroid tissue. Almost half lower mean of I
content in adenomatous thyroids in comparison with normal
level could possibly be explored for diagnosis of TA.

Magnesium: Mg is abundant in the human body. This element
is essential for the functions of more than 300 enzymes (e.g.
alkaline phosphatases, ATP-ases, phosphokinases, the oxidative

phosphorylation pathway). It plays a crucial role in many cell
functions such as energy metabolism, protein and DNA
syntheses, and cytoskeleton activation. Moreover, Mg plays a
central role in determining the clinical picture associated with
thyroid disease [82]. Thus, the modest reduced levels of Mg in
adenomatous thyroids could possibly be explored for diagnosis
of TA.

Sodium: Na is mainly an extracellular electrolyte and its elevated
level in adenomatous thyroid might link with a higher content
of colloid in TA (see Chlorine). Anyway, it seems that the
elevated levels of Na in adenomatous thyroids could possibly be
explored for diagnosis of TA.

CONCLUSION
In this work, ChE analyses were carried out in the tissue samples
of normal and adenomatous thyroid using INAA-SLR. It was
shown that INAA-SLR is an adequate analytical tool for the
non-destructive determination of Br, Ca, Cl, I, K, Mg, Mn, and
Na contents in the tissue samples of human thyroid gland,
including core needle biopsies. It was observed that in
adenomatous tissues the mass fractions of I and Mg are 48%
and 30%, respectively, lower, whereas mass fractions of Br, Cl,
and Na are approximately 17.5, 2.27, and 1.35 times,
respectively, higher than in normal tissues of the thyroid. In our
opinion, the abnormal decrease in level of I and Mg, as well as
the increase in levels of Br, Cl, and Na in adenomatous tissue
might demonstrate an involvement of these elements in etiology
and pathogenesis of TA. It was supposed that the elevated levels
of Br, Cl, and Na, as well as the reduced levels of I and Mg in
the affected thyroid tissue can be used as the TA markers.

LIMITATIONS
This study has several limitations. Firstly, analytical techniques
employed in this study measure only eight ChE (Br, Ca, Cl, I, K,
Mg, Mn, and Na) mass fractions. Future studies should be
directed toward using other analytical methods which will
extend the list of ChE investigated in normal and adenomatous
thyroids. Secondly, the sample size of TA group was relatively
small and prevented investigations of ChE contents in TA group
using differentials like gender, histological types and functional
activity of TA, stage of disease, and dietary habits of healthy
persons and patients with TA. Lastly, generalization of our
results may be limited to Russian population. Despite these
limitations, this study provides evidence on adenoma-specific
tissue Br, Cl, I, Mg, and Na level alteration and shows the
necessity to continue ChE research of TA.
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