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Introduction
Antibiotics are natural, semisynthetic or synthetic drugs used as 

antibacterial, antifungal or antiparasitic. Antibiotics can be grouped by 
either their chemical structure or mechanism of action [1-3]. Antibiotics 
represent a major source of micro pollutants as they may as chemical 
mixtures that exhibit a wide range of mechanisms of action [4-9,1]. 
Moreover, they can undergo chemical and/or physical reactions leading 
different metabolites by the action of microorganisms, as well as by other 
physical or chemical means, resulting in mixtures with higher toxicities 
and risks to human health than those of the individual compounds 
[4,1,10-16]. In contrast to their therapeutic outcome, these antibiotics 
often disadvantageous for those target and non-target organisms. In 
addition to this, improperly disposal of unused antibiotics and non-
metabolized antibiotics excreted by humans can all enter the sewer 
system in low concentrations. However, the use of antibiotics is growing 
and their input to the aquatic environment is increasing making them 
of increasing environmental relevance. The increased awareness that 
synthetic drugs can lead to serious side effects in the environment has 
prompted researchers to launch several monitoring studies into the 
most commonly administered compounds in urban wastewater [17-
24]. In this work, we developed and validated ESI. LC-MS method for 
the determination of some antibiotics in hospital waste water.

Materials and Methods
Antibiotics Standards

Antibiotics reference standards tetracycline HCl, (Tetra) doxycycline, 
(Doxy), ampicillin trihydrate (Ampi), amoxicillin trihydrate (Amoxi) 
and cephalexin monohydrate (Cefalex) were kindly donated by Azal 
Pharmaceutical, Company, Khartoum Sudan.

Chemicals and reagents

 Acetonitrile, formic acid (HPLC grade), methanol 99% (analytical 
grade and HPLC grade), phosphoric acid (98%), acetone 99% triethylamine 
(analytical reagent grade) were purchased from Scharlu, Spain.

Samples

Three samples were collected from wastewater (sewerage system) 

and from different locations in Khartoum North Hospital. The samples 
were preserved and stored in 500 ml amber borosilicate glass bottles to 
prevent photo degradation. The samples collected were mixed before 
cleanup.

Samples pretreatment and clean up

The samples were filtered through 0.45 um filter paper, acidified to 
pH 3.0 by adding phosphoric (0.1 M) and then were passed through 
activated C18 cartridge which was activated with 5 ml methanol/water 
50:50 (v/v). The cartridge was washed further with 5 ml of acidified 
water (pH 3.) and then was eluted with 5 ml of triethylamine (5% 
v/v) in methanol. The eluted solution was evaporated at normal room 
temperature (28°C). Finally, sample was made to 1 ml by adding water/
acetonitrile 95:5 (v/v) and introduced to the LC-MS instrument where 
10 uL were injected. 

Instrument

LC-MS 2020 (Shimadzu Corporation, Kyoto, Japan) equipped with 
C18 column, (150 mm length x 4.6 mm inner diameter x5 um particle 
size). Pump mode binary gradient (LC-20AD), flow rate 0.5000 ml/min 
(Tables 1 and 2). 

The LCMS experimental parameters are shown in Table 3.

Preparation of standard solution stock

A weight of exactly 0.05 g of each antibiotic tetracycline HCl, 
(Tetra) doxycycline, (Doxy), ampicillin trihydrate (Ampi), amoxicillin 
trihydrate (Amoxi) and cephalexin monohydrate (Cefalex) was 
transferred into a 50 ml volumetric flask and the volume was completed 
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Abstract
For the last decade, significant attention has been paid to the occurrence, bioaccumaltion and fate of drugs in 

effluent hospital water. Therefore, the aim of this study was to develop and validate analytical method to identify 
and quantify the antibiotics tetracycline HCl, (Tetra) doxycycline, (Doxy), ampicillin trihydrate (Ampi), amoxicillin 
trihydrate (Amoxi) and cephalexin monohydrate (Cefalex). The LCMS instrument used was equipped with with C18 
column, (150 mm length x 4.6 mm inner diameter x5 um particle size). The mobile phase was acetonitrile/formic 
acid (1%) under gradient elution mode. The MS employs ESI unit and quadrupole mass analyzer. The analysis time 
was less than 15 minutes. The method was validated in terms of linearity, precision, accuracy, robustness, limit of 
detection and limit of quantitation, specificity, stability and excellent results were obtained.
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Results and Discussion
During the last two decades LCMS has been extensively used in 

the environmental research for identification and quantification 
of pollutants and this due to its performance characteristics such as 
accuracy reproducibility, low detection limit and sensitivity. The 
current study reports a novel and validated method for quantitative 
analysis of nine antibiotics commonly found in hospital effluents using 
LC-MS. Sample preparation and clean up was achieved by using solid-
phase technique as it is a powerful sample clean up method in various 
antibiotic matrices [25-27]. 

LC-MS soptimization
Several gradient programs were tried to achieve the optimum 

separation of the entire antibiotics standard. Gradient elution was 
necessary to avoid excessive retention. Well resolved peaks were 
obtained within short analysis time. 

The positive and the negative electrospray ionization (ESI) scan 
modes were investigated for attaining the highest sensitivity during the 
method development process. The full scan of the antibiotics mixture 
in positive mode showed that the signal-to- noise ratios obtained in 
this mode were higher than those of the in negative mode. Hence, 
positive mode was used to obtain the precursor ion [M+H] for the 
qualitative and quantitative analysis [9,17,28-31]. During the method 
development, the quadrupole mass analyzers operated in selected 
ion monitoring (SIM) mode where it monitors only a few mass-to-
charge ratios. By using electrospray ionization and subsequent analysis 
produced the chromatogram shown in Figure 1. 

Although all peaks were well resolved in this study, LC MS 
capability allows analysis of co-eluted analytes. This allows fast analysis 
time and minimal sample preparation. Table 4 shows the precursor ion 
and the retention time.

Method performances and validation
Developing and validation of a method for LC-MS involves 

demonstrating all the performance characteristics such as linearity, 
precision, accuracy, limits of detection and quantitation, solution 
stability and robustness [32]. The linearity of a test procedure is 
its ability (within a given range) to produce results that are directly 
proportional to the concentration of analyte in the sample. Acceptability 
of linearity data is often judged by examining the correlation coefficient 
(r2) and y-intercept of the linear regression line for the response versus 
concentration plot. Regression line equations are shown in Table 
5. Excellent correlation between the instrumental response and the 
concentration were obtained.

Time
In min Module command

Component A value 
(formic acid1%)

Pump A

Component A value 
(acetonitrile)

Pump B
0.01 pump Pump B conc. 0.00 100

20.00 pump Pump B conc. 70.00 30
22.00 pump Pump B conc. 0 100
25.00 pump Pump B conc. 0 100
25.10 pump stop 0  

Table 1: Gradient elution programme.

Auto sampler model SIL-20AC
Enable auto sampler Use

Sample rack Rack 1.5 ml 105 vials
Rinsing volume 500 ul
Needle stroke 52 mm

Control vial needle stroke 52 mm
Rinsing speed 35 ul/sec

Sampling speed 15 ul/sec
Purge time 25.0 min
Rinse mode Before/After

Rinse Dip time 0 sec

Table 2: Auto sampler settings.

Start time 0.00 min
End time 25.10 min

Acquisition mode Scan & SIM
Polarity Positive

Event time 1.00 sec
Detector voltage +1.20 kV

Start m/z 100.00
End m/z 1000.00

Scan speed 938 u/sec
Interface ESI

DL temperature 250°C
Nebulizing gas flow 1.5 L/min

Table 3: Common MS settings.
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Figure 1: Chromatogram of the antibiotics standard.

by the diluents which is acetonitrile and formic acid (1%), (1:1 v/v) and 
then ultrasonicated. 1 ml of this solution was transferred into a 10 ml 
flask and was completed to volume by using the same diluent. From 
this solution, 1 ml was pipettted into a 10 ml flask and was completed 
to volume by addition of the same diluent as above to obtain a solution 
of a concentration of 1 ppm. 
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recovery of the antibiotics at four concentration levels (80,100 and 130%). 
The accuracy of the method was determined by calculating recoveries of 
each standard. The results showed good recoveries (Table 8).

The limit of detection (LOD) and the limit of quantitation (LOQ) 
and for the analyzed samples were calculated using the standard 
deviation of the response (σ) and the slopes (s) i.e. LOD=3.3σ/s and 
LOQ=10 σ/s. Low detection and quantitation limits were obtained 
(Table 9).

The precision of the method (intraday) was examined by repeatedly 
injecting the antibiotic solutions. Precision criteria for an assay method 
are that the instrument precision and the intra-assay precision (RSD) 
will be ≤ 2%.0.28% RSD. The intraday precision was in the range of 
1.450-44% (Table 6). 

Excellent values were obtained for interday precision and the values 
range was 0.78-1.39 (Table 7).

The accuracy of the method was evaluated by determination of the 

Drug Regression line equation R2

tetra Y=86865x-14669 0.999
Doxy Y=1E06x+11923 0.999
Ampi Y=37168x-2454 0.998
Amoxi Y=41663x-1983 0.998

Cefalex 51884x+22985 0.999

Table 5: The linearity testing results.

Day 1 Day 2 Day 3
Drug SD RSD SD RSD SD RSD
tetra 34824.82 1.93428 20111.91 1.083573 14413.97 0.78
Doxy 33701.61 1.917657 32774.64 1.942115 15980.39 0.95
Ampi 1556.515 1.542105 918.1362 0.81053 964.5576 0.855
Amoxi 3936.037 0.642846 10674.47 1.702397 7980.729 1.27

Cefalex 10462.19 0.702811 15534.94 0.994861 12659.74 0.81

Table 7: The results of reproducibility testing.

    80% 100% 130%
tetra std con 101.9607 99.99998 101.8249
Doxy 1 101.6675 100 101.0471
Ampi 1 99.5806 99.87969 103.0607
Amoxi 1 99.17957 99.71749 104.4347

Cefalex 1 100.0237 99.87456 103.6223

Table 8: The accuracy test results.

Drug Retention time M/z
Tetra 12.034 445.15
Doxy 14.014 445.15
Ampi 10.862 350.1
Amoxi 8.773 366.15

Cefalex 10.858 348.1

Table 4: The ion peaks (M/z) and the retention times of the antibiotic standards.

Drug 1 2 3 4 5 6 AVG SD RSD
tetra 1756479 1759324 1781687 1759548 1793867 1753518 1767404 16391.91 0.93
Doxy 1685461 1650101 1679713 1621835 1652958 1639810 1654980 24072.5 1.45
Ampi 102656 103065 103160 103330 104035 103103 103224.8 455.1032 0.44
Amoxi 552041 551651 554843 561591 556520 571101 557957.8 7382.376 1.32

Cefalex 1429264 1428162 1431949 1434767 1442267 1425304 1431952 6001.813 0.42

Table 6: The results of repeatability testing.

Drug LOD LOQ
tetra 0.02 0.12
Doxy 0.02 0.18
Ampi 0.02 0.22
Amoxi 0.08 0.8

Cefalex 0.02 0.05

Table 9: The results of Limit of detection and quantitation testing.



Page 4 of 6

Citation: Elhag DE, Abdallah BS, Hassan M, Suliman A (2018) ESI-LC/MS Method Development and Validation for the Determination of Some 
Selected Antibiotics in Hospital Wastewater. Pharm Anal Acta 9: 578. doi: 10.4172/2153-2435.1000578

Volume 9 • Issue 2 • 1000578
Pharm Anal Acta, an open access journal
ISSN: 2153-2435

Specificity which is the ability of the method to accurately 
measure the analyte response in the presence of all potential sample 
components. The obtained results blank injection showed absence of 
any interferents. Solution stability of the antibiotics standards solution 
was also assessed after 6 h room temperature storage. For solutions to 
be considered stable, the results of the percentage difference between 
the mean response for the fresh and stored solutions should be ≤ 5.0% 
(Figure 2a, 2b and Table 10). 

Robustness which is the reliability of an analysis with respect to 
deliberate variations in method parameters of an analytical procedure 
should show the reliability of an analysis with respect to deliberate 
variations in method parameters. The evaluation of robustness should 
be considered during the development phase. The standard pH was 3.0 
and the room temperature was 28°C. These two parameters were varied 
in order to evaluate the robustness of the methods and excellent results 
are shown in Table 11.

Sample Analysis
The developed method was applied for the determination of antibiotics 

in hospital wastewater samples. The results of the sample analyses 
are tetracycline HCl, doxycycline, and cephalexin monohydrate with 

concentrations of 0.124, 0.134 and 0.084 ppm, respectively. Ampicillin 
trihydrate and amoxicillin trihydrate were not detected (Figure 3). 

Such findings necessitate the need for more efficient wastewater 
treatment plants and stricter quality control measures. However, 
there numerous routes by which the disposed of antibiotics and other 
drugs can reach aquatic environment. However, antibiotics persist and 
degrade slowly, pass through water treatment plants and thereafter 
transported to sediment or aquatic environment.

Chemical degradation includes hydrolysis oxidation, 
decarboxylation, isomerization and elimination. Hydrolysis spitting 
by water, is a potential degradation pathway for organic pollutants 
in the aquatic environment and it is probably the most commonly 
encountered mode of drug degradation. Examples of antibiotics 
that undergo hydrolysis include lactones, amide sand macrolides. 
The pH has a profound effect in hydrolysis reaction. For instance, at 
neutral pH, hydrolysis of sulphonamides is very slow whereas lactams 
hydrolyse under acidic conditions [33-37]. It is noteworthy that the 
environmental occurrence, persistence, fate and bioaccumulation 
ability of antibiotics differ depending on their chemical properties and 
on the environmental conditions [38,39]. 

Drug injection1 injection2 AVG area std area std con found con AVG RE %
tetra 1813011 1856073 1834542 1856073 1 0.9884 98.83997
Doxy 1788795 1687575 1738185 1687575 1 1.02999 102.999
Ampi 108434 113276 110855 113276 1 0.978627 97.86274
Amoxi 572373 627026 599699.5 627026 1 0.956419 95.64189

Cefalex 1502397 1561519 1531958 1561519 1 0.981069 98.10691

Table 10: The solution stability test results.
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Figure 2(a): Antibiotics standard chromatogram. 
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Figure 2(b): Antibiotics standard chromatogram after six hours from the first injection.



Page 5 of 6

Citation: Elhag DE, Abdallah BS, Hassan M, Suliman A (2018) ESI-LC/MS Method Development and Validation for the Determination of Some 
Selected Antibiotics in Hospital Wastewater. Pharm Anal Acta 9: 578. doi: 10.4172/2153-2435.1000578

Volume 9 • Issue 2 • 1000578
Pharm Anal Acta, an open access journal
ISSN: 2153-2435

Conclusion
A novel LC-MS method was developed for analysis of amoxicillin 

trihydrate, ampicillin trihydrate, cephalexin monohydrate, norfloxacin 
HCl, ciprofloxacin, tetracycline HCl, azithromycin, doxycycline and 
clarythromycin. The method proved to be accurate, precise linear, 
reproducible and robust. The method can be used conveniently for 
identification and quantification of these antibiotics in aqueous 
samples.
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