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Introduction
Flow cytometry with recording of mean cellular fluorescence 

(MCF) after eosin-5’-maleimide (EMA) staining is a valuable tool in 
the work-up of patients with direct antiglobulin test (DAT) negative 
anemia [1,2]. EMA binds predominantly to band 3, but also to 
CD47 and Rhesus (Rh)-related glycoproteins, together leading to the 
markedly reduced EMA binding in hereditary spherocytosis [3,4]. 
EMA binding appears to be normal in most common anemias such 
as DAT positive hemolytic anemia and iron deficiency as well as in 
hemoglobinopathies such as thalassemia [5]. Normal MCF after EMA 
staining has also been reported in anemias due to enzymopathies such 
as glucose-6 phosphate dehydrogenase deficiency and pyruvate kinase 
deficiency [6]. Reduced binding of monoclonal antibodies against 
the glycosylphosphatidylinositol anchor proteins CD55 and CD59 to 
erythrocytes and myeloid cells forms the basis of the flow cytometric 
diagnosis of paroxysmal nocturnal hemoglobinuria (PNH) [7]. 

Congenital dyserythropoietic anemias (CDA) constitute a group of 
rare anemias with DAT-negative hemolysis, dysplastic and ineffective 
erythropoiesis. Three major types, I, II, and III, and several subgroups 
have been identified [8]. MCF after EMA staining is reduced in CDA II 
and pyropoikilocytosis [2,9]. CD59 also seems to be slightly reduced in 
pyropoikilocytosis, albeit only studied in a few cases [10]. 

CDA III is the rarest form of CDA. At least two forms of CDA III 
exist, one familial which is inherited in an autosomal dominant manner, 
and one sporadic that might be inherited as an autosomal recessive trait 
or arising as de novo spontaneous mutation [11-13]. The largest known 
family with CDA III originates from the Swedish county of Vasterbotten 
[11]. The detection of the mutated gene linked to CDA I, Codanin-1, 
and the mutated gene SEC23B in CDA II, has facilitated the diagnosis 
in these two subtypes of CDA [14-16]. We have recently found that a 
mutation in KIF23 is associated with CDA III in two unrelated families, 
so a genetic diagnostic approach is now available for the three major 
types of CDA [17].

We have previously studied the erythrocyte membrane in two 
patients with CDA III [18]. The study, which was based on monoclonal 
antibodies and gel electrophoresis, did not reveal any gross alteration 
of the erythrocyte membrane concerning CD44, CD47, CD59 and 
Rh-related proteins, but there was a slight reduction of glycosylation 
of band 3. The osmotic fragility test appeared normal in 10 CDA III 
patients from the Västerbotten family [11].

The aim of this study was to examine the erythrocyte membrane in 
CDA III with flow cytometry using EMA-binding test and monoclonal 
antibodies against CD55 and CD59. These assays are routinely 
performed in the diagnostic workup of DAT-negative hemolytic 
anemia. It is unknown if flow cytometry with EMA and monoclonal 
antibodies against CD55 and CD59 can be used to identify samples 
from CDA III patients. 

The study was approved by the Regional Ethical Review Board in 
Umea, Sweden, dnr: 2010-8-31.

Materials and Methods
To our knowledge, there are 59 known persons alive with CDA 

III or with one parent diagnosed with CDA III, in the Västerbotten 
family. Seven affected and one unaffected person, living abroad, was 
not contacted for the study. Because of mental retardation, two adults 
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Results
Mean EMA MCF was higher (1.08) in the CDA III positive group 

than in their normal controls (1.0) but did not differ between CDA III 
negative siblings (0.99) and their normal controls (1.0) (Table 2 and 
Figure 1). The slightly increased EMA fluorescence in CDA III patients 
was significant (p<0.001). There was a significant correlation between 
EMA-MCF and MCV (r=0.72, p=0.01) (Figure 2). The expression of 
CD55 and CD59 did not differ between the CDA III positive patients 
and their controls (0.99 and 1.01, respectively), nor between the CDA III 
negative siblings and their normal controls (1.04 and 0.99, respectively) 
(Table 2 and Figure 3). Correlation analysis between MCV and CD55 or 
CD59 could not be performed due to the small study sample. 

with unknown CDA-status were also excluded. The remaining 49 
family members were contacted and informed of the study by mail. A 
few days after mail correspondence the family members were contacted 
by phone and asked if they wanted to participate. Concerning children 
under the age of 18, their parents were contacted. Children between 15 
to 18 years of age were given information specially designed for this 
age group. 30 out of 43 adults but none of the 6 children wanted to 
participate. The p.P916R mutation of KIF23 was confirmed in all CDA 
III positive cases and absent in all CDA III negative cases. Study sample 
characteristics are shown in (Table 1).

Ten ml peripheral blood, divided into 2 tubes, was obtained at the 
nearest hospital or in the nearest district health care centre. One sample 
was sent to the nearest hospital to be analysed the same day concerning 
hemoglobin (Hb) and erythrocyte cellular volume (MCV). The other 
tube was sent to the Hematopathology Laboratory in Umeå for flow 
cytometric assays. Flow cytometry was performed within 24 hours.

Flow cytometry 

Flow cytometric assays were performed on a BD Biosciences FACS 
Calibur flow cytometer. Mean channel fluorescence (MCF) levels were 
determined by Cellquest software. All assays were performed by one 
and the same biomedical scientist. 

EMA-labelling of red cells and flow cytometry was performed as 
previously described by King et al. [3]. 16 CDA III positive and 14 
CDA III negative individuals were analyzed. In each assay, the study 
sample from a subject of the Västerbotten family was set up with 
three normal controls, randomly selected from the hospital routine 
laboratory, provided that they had hemoglobin, MCV, leukocytes, 
and platelets within the normal range for our laboratory. Fluorescence 
intensity in MCF units was determined for 30000 events. Mean-MCF 
was determined for the study sample as for the three normal controls.

The expression of CD55 and CD59 on erythrocytes was analysed 
in 12 CDA III positive subjects and 7 CDA III negative siblings. 
Erythrocytes were prepared and analysed for CD55 and CD59 as 
described by Sutherland et al. [19]. In each assay the study sample 
was set up with one normal control. 15000 events were recorded. A 
threshold for populations of erythrocytes expressing CD55 and CD59 
in the normal controls was identified and set at the same level in the 
study sample. 

Statistical analysis

Ratios of MCF in study samples and control(s) in each assay were 
calculated. Study sample MCF and control MCF values were normally 
distributed according to Kolmogorov-Smirnov test. Results are 
presented as MCF ratios, standard deviation, and range. The Sign test 
was used to compare MCF of study samples and their normal controls. 
p<0.05 was regarded as significant. Pearson correlation test was used 
for analysis of correlation between EMA fluorescence and MCV. 
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Figure 1: Fluorescence histograms for two patients with CDA III. Three 
normal controls in each assay. Erythrocytes incubated with EMA. Green areas 
constitute the CDA III patients. Flourescence is slightly increased in CDA III 
compared to normal controls.

 
Figure 2: Positive correlation between MCV and EMA MCF was established, 
r=0.715, p=0.01.

Values are presented as median and range
1Erythrocyte mean corpuscular volume
2Hemoglobin

Table 1: Study sample characteristics.

CDA III positive subjects  CDA negative relatives
No. 16 14
Males/Females 8/8 6/8
Age, years 55 (21-72) 51 (27-82)
Ery-MCV1 (fL) 99 (94-109) 88,5 (70-94) 
Hb2 (g/L) 119 (105-157) 145,5 (94-150)

*** p<0.001
Table 2: Summary of flow cytometry results.

n CDA III pos./controls
ratios and (range) n 

CDA III neg. relatives/
controls

ratios and (range)
EMA MCF 16 1.08*** (1.01-1.17) 14 0.99  (0.89-1.08)
CD55 11 0.99       (0.96-1.00) 7 1.04  (0.99-1.32)
CD59 11 1.01        (0.96-1.15) 7 0.99  (0.97-1.02)
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Discussion
Reduced fluorescence intensity of intact red cells after incubation 

with EMA has been reported in patients with CDA II by King et al., 
and we have previously found indications of an abnormality in band 
3 in patients with CDA III [3,18]. In the present study, we performed 
flow cytometry of erythrocytes from members of a family with CDA 
III. Unexpectedly, we found that the fluorescence intensity of red blood 
cells after EMA incubation is higher in samples from patients with CDA 
III than in normal controls, but this difference was correlated to higher 
MCV in the patients compared to the normal controls. This finding 
motivated us to perform an analysis of EMA fluorescence and MCV 
in 22 random hospital patient samples that were analysed by us at the 
same time period. We found a significant (r=0.5, p=0.02) correlation 
between EMA fluorescence and MCV also in this cohort. 

EMA MCF was normal in samples from normal siblings of the 
CDA III patients. 

The flow cytometric profiles of CD55 and CD59 did not differ 
between patients with CDA III and normal controls. 

The affinity of EMA to the membrane protein band 3 is high, which 
is the main cause of lower fluorescence in hereditary spherocytosis. 
To a minor extent EMA also interacts with CD47 and Rh-antigen, 
also reduced in hereditary spherocytosis, contributing to the reduced 
fluorescence after EMA staining in this disease [4]. The reduced 
fluorescence in CDA II is probably not due to a quantitative reduction 
of band 3 in the erythrocyte membrane but rather an affected 
configuration leading to a decreased affinity to EMA [6]. The increase 
in EMA fluorescence in CDA III is probably due to the slight increase of 
erythrocyte volume (MCV) exposing a larger surface per cell to binding 
of EMA to band 3, Rhesus-antigen and CD47 on the erythrocyte 
membrane. A correlation has been confirmed in individuals with high 
MCV due to overconsumption of alcohol, but in DAT-positive hemolytic 
anemia no correlation between MCV and MCF was observed [3]. Low 
MCV due to iron deficiency does not affect EMA MCF [3,6,20]. The 
results of the present study indicate no abnormality of the erythrocyte 
membrane in CDA III and show that standard flow cytometry cannot 
be used to discriminate between CDA III and normal controls.
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Figure 3: Similar expression of CD 55 and CD 59 in one patient with CDA III 
and one normal control. 
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