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Abstract

C

Aberrations in the epigenetic machinery of the genome may results the inactivation of critical genes and the
epigenetic changes are important mechanisms in the evolution of malignancies that not only contributes to
tumorigenesis but may also precede genetic changes. Several epigenetic mechanisms have been observed in
glioblastomas including DNA hyper-methylation of genes, histone modifications including methylation and
acetylation, nucleosomal rearrangement and dysregulation of noncoding RNA expression have been shown to play
a critical role in the biology of glioblastomas and to contribute to the clinical outcome. This review examines the
general role of epigenetic changes in the malignant process and focuses on the known epigenetic changes and
development of new therapeutic strategies against these malignancies.
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Introduction

Glioblastoma multiforme (GBM) is the most malignant forms of
astrocytoma [1,2]. It is the most common primary brain tumour in
adults, accounting for 80% of all high-grade primary central nervous
system (CNS) neoplasms [3,4]. GBM can be sub-classified into
multiple groups, indistinguishable by histological appearance, but
correlating with molecular-genetic factors as well as key clinical
variables such as patient age and tumour location. The gliomagenesis
is multistep process and the combination of acquired genetic
abnormalities plays a crucial role in the progression of the tumour.
The glioblastoma has been preceded by a number of recognizable
lesions and the timing of these changes has been documented to be
associated with the occurrence of abnormalities in different tumour
suppressor genes.

Median survival of GBM is approximately 12 to 14 months and the
prognosis and survival of patients remains poor [1,3,4]. The current
treatments of these tumours are surgical resection, irradiation and
conventional chemotherapy generally inadequate and unable to
overcome the malignant biology of the tumour [5,6]. The currently
used drugs are nonspecific and non-targeted nature (e.g., alkylating
agents, DNA topoisomerase inhibitors, spindle poisons) [7,8] so the
result of conventional chemotherapy is poor. The conventional forms
of treatment for GBM are not predicated on the biology of the
malignant phenotype. Due to the insufficiency of conventional
therapeutic approaches for GBM, new treatment modalities must be
developed that have a more molecular, “targeted” mechanism of action
[9-14].

The genome of glioblastoma cells shows global hypo-methylation
with specific areas of hypermethylation. Hypermethylation mostly
occurs at the promoter CpG islands of genes that are associated with
tumour suppression. This pattern has been associated with increased
genetic instability, silencing of tumour suppressor genes such as TP53
and PTEN, and activation of oncogenes. The Cancer Genome Atlas
project has identified a glioma CpG island methylation phenotype that

correlated with younger age, a proneural gene expression profile, and
longer overall survival in glioblastoma patients [15].

The remarkable advances in defining the GBM cell of origin have
been paralleled by insights into the genetic and epigenetic
underpinnings of this disease.

EGFR, PDGFR, PI3K, NF1, TP53, Rb, IDH1/IDH2 and FGFR are
only a few GBM mutational “drivers,” these are important mutations
to understand the genomic networks misregulated in GBM. The
Cancer Genome Atlas (TCGA) Research Network proposed
“proneural” “mesenchymal” “classical” and “neural” as a four subtypes
of GBM based on genomic profiling of hundreds of human samples.
Proneural GBMs show altered expression of PDGFRA, IDHI, TP53,
PTEN mutation and CDKN2A loss. Mesenchymal GBMs have
deletion of NF1, mutation of TP53 and PTEN, and loss of CDKN2A.
Classical GBMs carried EGFR amplification and lack of PTEN, and
CDKN2A and the neural GBMs show a strong expression of neuron
markers and genes associated with neuron projection and axon and
synaptic transmission.

microRNAs and long non-coding RNA are affect gene expression
through regulation of mRNA stability and transcription regulation.
MicroRNAs are non-coding RNAs, which bind to microRNA response
elements (MREs) in target mRNAs. miRNA is bind to the RISC
complex (RNA-induced silencing complex), the miRNA/RISC
complex binds the target mRNA, thereby modulating its stability.
miRNAs dysregulated in glioma include miR10b, which is expressed in
glioma tumours and stem cells and miR10b controls GBM cell and
stem cell cycle traverse and is correlated with poor prognosis (http://
tcga-data.nci.nih. gov/tcga) [16].

Long non-coding RNAs (IncRNAs), which are control global gene
repression. IncRNAs control multiple tumour suppressor proteins,
oncogenes and modulate transcription, regulate post-transcriptional
RNA processing, influence translation, alter DNA methylation and
chromatin architecture through local (cis) and long distance (trans)
mechanisms. IncRNAs may play a crucial role in GBM development
and progression. IncRNA MEG3 has been implicated in glioma cell
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proliferation and MEG3 expression is associated with differential
methylation[16].

Genetic changes are well recognized in GBM and include
alterations in the Rb/p16 pathway (>90%) loss of heterozygosity of 10q
(70%), EGFR amplification (34%) and TP53 mutations (31%) [17].
Epigenetic changes, also known to occur in GBM, are less well
characterized and their relation to clinical outcome is as yet uncertain.

There are several different components for genetic and epigenetic
alterations that may be required for driving the unmitigated
proliferation of glioblastoma cells.

Epigenetic Alterations and Glioblastoma Progression

Cancer progression is the current concept of cancer epigenetics.
Epigenetics is the mitotically heritable changes in gene expression that
are not due to changes in the DNA sequences. One of the best
characterized epigenetic markers is DNA methylation. The initial
finding of global hypo-methylation/hypermethylation in tumours [18]
and the more recent discovery of induced inactivation of microRNA
genes [18-20].

The DNA methylation occurs in cytosines that precede the
guanines and these are commonly called dinucleotide CpGs. CpGs are
not randomly distributed in the genome, but instead are present as
CpG-rich regions referred to as CpG islands, which occur at the 5’ end
of the genes. These islands are usually not methylated in the normal
tissues. DNA methylation occurs due to the chemical modifications of
the histone proteins. Histones not only package DNA but also act as
regulators of gene expression.

Locus-specific hypermethylation is frequent in GBM. The
hypermethylation status of tumour suppressor genes is contributed to
the pathogenesis of glioblastoma. In GBM, CpG island promoter
hypermethylation occurs at genes to tumorigenesis and tumour
progression, including tumour suppressors (RB1, EMP3, RASSF1A
and BLU) [21], cell cycle regulation (p16INK4a and p15INK4b), DNA
repair (MGMT, MLHI1), apoptosis (DAPK, TIMP3 and CDHI),
angiogenesis, invasion and drug resistance [22]. Patterns of DNA
methylation in primary GBM specimens have been catalogued and
include disruptions at many novel candidate tumour suppressors, such
as the cell motility regulator 7ES (testis-derived transcript) as well as
many polycomb repressor complex 2 (PRC2) target genes [23].

Hypermethylation of the tumour suppressor Rb [24] was soon
followed by the discovery that this mechanism also contributed to the
suppression of other genes such as VHL [25], p16INK4a [24], and
BRCAL (breast cancer susceptibility gene 1) [26].

Increased expression of EZH2 correlates with poor prognosis in
GBM. The EZH2 genetic inhibition or pharmacologic inhibition can
prevent self-renewal and tumourigenicity of glioblastoma cancer stem
cells [21]. Caren et al was shown that the BMPR1B down-regulated in
about 20% of primary glioblastoma tumours, and this is correlated
with increased promoter DNA methylation [21].

The hypermethylation of genes might act as a predictor to
treatment response and the MGMT (O6-methylguanine DNA
methyltransferase) is the most studied DNA repair gene for the
methylation-associated suppression of the DNA repair protein in
glioblastomas [27]. MGMT essentially reverses addition of alkyl
groups to the guanine base of the DNA making it prone to attack by
alkylating agents [28]. Two studies showing that the hypermethylation

of MGMT is an independent predictor for favorable prognosis in
glioblastomas treated with either carmustine [29] or temozolomide
[30].

Methylation of MGMT promoter was a correlative marker for
response to alkylating agents; a recent clinical trial by Stupp et al. was
established a new standard using chemoradiation with concurrent and
adjuvant temozolomide for treatment of patients with newly
diagnosed GBM, and the methylation status of MGMT promoter was
correlated it with outcome [31].

Hegi et al. showed that methylated MGMT patients had an
improved survival after chemoradiation than those with unmethylated
MGMT, suggesting a direct predictive relationship between MGMT
function and sensitivity to alkylating agents [30]. If improved outcome
is seen in MGMT promoter methylated patients but who do not
receive treatment with alkylating agents, this result suggest that a
mechanism independent of MGMT-mediated resistance to alkylating
agents could be responsible for this effect. Recent studies were showed
MGMT methylation is not predictive marker in primary GBMs
without any treatment applied patients [32].

Sato et al demonstrated that in stem-like glioblastoma cells the
MGMT expression contributes to temozolomide resistance and a
signalling pathway, MEK-ERK-MDM2-p53-MGMT, is operative in
stem-like glioblastoma cells and plays a key role in the regulation of
their MGMT expression. The temozolomide treatment combination
with MEK targeting is effectively reduces tumorigenic potential of
stemlike glioblastoma cells. This combination could also contribute to
prevention of tumour recurrence [33].

Oberstadt et al showed significantly increased MGMT and ABCB1
promoter methylation in GBM tissues, but no significant association
between overall survival of glioblastoma patients and MGMT or
ABCBI promoter methylation [34].

PTEN is the another critical tumour suppressor gene, the protein
product for the PTEN is the functions as an inhibitor of PI3-kinase
and inhibits the PI3K-Akt survival pathway, is associated with de novo
GBM and less commonly with secondary GBM [35]. PTEN gene is
inactivated by mutation in 20-40% of these tumours; loss of PTEN
expression can occur in the absence of mutations, suggesting an
epigenetic means of silencing. Baeza et al. reported PTEN promoter
methylation in 35% (22/77 tumors) of primary GBM [36]. Weincke et
al. reported methylation of a region approximately 2.4 kb upstream of
the start site of PTEN which was frequently seen in secondary GBM
but not in de novo GBM [37]. This finding was seen in low-grade
astrocytoma and suggesting that PTEN promoter methylation was an
early event in the evolution of these tumors progression to
glioblastoma.

Hypermethylation of TMS1/ASC (target of methylation-induced
silencing-1), an adaptor protein that transduces death receptor
apoptosis signals and has a role in inflammation, has been reported in
21% of GBM by Martinez et al; the particular significance is the
observation that 57% of long-term survivors (>3 years) had promoter
methylation of TMS1/ASC [38].

Stone et al. also reported TMS1/ASC promoter methylation in 43%
of GBM but did not report association with survival [39]. Folz et al.
were identified BEX1 and BEX2 as tumour suppressor genes, the
promoters of which are hypermethylated in GBM but not in non-
tumor brain tissue and demonstrated that overexpression of these
genes in glioma xenografts suppressed tumor growth [40].
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Knobbe et al. reported epigenetic silencing of carboxyl-terminal
modulator protein (CTMP) gene, the products of the CTMP acts as a
negative regulator of Akt, in 40% of GBMs tested, and the aberrant
expression of CTMP in dysregulation of survival pathways in GBM
[41]. The SLIT gene family is important in migration and axonal
guidance and the the epigenetic inactivation of this genes were
reported by Dallol et al. the promoter hypermethylation of the SLIT2
in 59% of glioma tissue samples tested, whereas in non-tumour brain
tissue, the promoter was fully unmethylated [42]. This did not
correlate with clinical outcome, but in a subset of tumours, the
methylated tumours also had lower protein expression.

Watanabe et al. reported promoter methylation of the P73 in 5 of 28
(18%) GBM patients but not in low-grade or anaplastic astrocytoma
[43].

The analysis of the methylation status of cytokine signalling
(SOCS)1-2-3 in GBMs showed methylation of SOCS3 promoter to be
significantly associated with an unfavorable clinical outcome [44].
Zhou et al showed SOCSI, but not SOCS3 that was epigenetically
silenced in GBM [45]. The N-myc downstreamregulated gene 2
(NDRQG2) is a repressor of tumour cell proliferation, was found %62
hypermethyleted in primary GBM, but not in secondary or lower
grade astrocytomas [46].

Schwatzentruber et al. showed that somatic mutations in the H3.3-
ATRX-DAXX chromatin-remodelling pathway frequently occur in
paediatric GBMs and are associated with alternative lengthening of
telomeres and genomic instability [47]. Another approach to discovery
is to consider the epigenetic drivers of gliomagenesis. Strum et al.
incorporated the mutational status of H3F3A and IDHI with
differences in global methylation patterns in GBMs to identify 6
distinct epigenetic subgroups, which correlate with distinct clinical
characteristics [48].

Doxorubicin (DOX) is a chemotherapeutic drug for cancer
treatment. DOX acts as a topoisomerase I poison by preventing DNA
replication and also DOX can be involved in epigenetic regulation of
gene transcription through downregulation of DNA methyltransferase
1 (DNMT1) then reactivation of DNA methylation-silenced tumour
suppressor genes in glioblastoma (GBM) [49].

Glioma pathogenesis-related protein 1 (RTVP-1) has oncogenic
features in glioblastoma (GBM; World Health Organization class IV)
and highly expressed in GBMs [50]. The RTVP-1 promoter was
hypomethylated in GBM. Hypermethylation of the RTVP-1 promoter
was associated with improved overall survival in GBMs and the
overexpression of this gene was associated with increased
proliferation, enhanced invasion and inhibition of apoptosis [51,52].

microRNA-137 (mir-137) was described as a regulator of RTVP-1
gene. Downregulation of mir-137 contributes to the high expression of
RTVP-1 in glioblastoma. The current study describes further loss of
regulatory control of RTVP-1 in GBM by promoter methylation.
Unlike GBM, RTVP-1 was hypermethylated in oligodendroglioma,
another astrocytic tumor. While this may indicate specificity of
RTVP-1 hypomethylation in GBM, it may also reflect general
hypermethylation observed in oligodendrogliomas [53-55].

Besides inactivation of DNA repair genes, DNA methylation
analyses showed that silencing of negative regulators of mitogenic
pathways or activators of apoptosis is common in cancer showing
tumor type-specific patterns. In GBM the WNT pathway may be
activated through promoter methylation of negative regulators such as

the WNT inhibitory factor 1, the family of secreted frizzled-related
proteins (sFRPs), dickkopf (DKK), and naked (NKDs) [56,57].
Another example is the Ras pathway that in a subset of GBM is
deregulated by silencing of the negative regulators Ras association
(RalGDS/AF-6) domain family members RASSF1A and RASSF10
[58,59].

GBMs showed low levels of NPTX2 transcripts and the
overexpression of NPTX2 gene induced apoptosis, inhibited
proliferation and anchorage-independent growth, and rendered
glioma cells chemosensitive. Furthermore, NPTX2 repressed NF-kB
activity by inhibiting AKT through a p53-PTEN-dependent pathway,
thus explaining the hypermethylation and downregulation of NPTX2
in NF-xB-activated high-risk GBMs. Prosurvival NF-kB pathway
activation characterized high-risk patients with poor prognosis,
indicating it to be a therapeutic target [60].

Global hypomethylation occurs at a high frequency (80%) in
primary glioblastomas and the level of hypomethylation varies
between GBMs, ranging from near normal brain levels to
approximately 50% of normal [22].

Somatic Mutations Causes DNA Methylation

Promoter-associated CpG islands DNA hypermethylation of
tumour suppressor and DNA repair genes, has been the most studied
epigenetic alteration in human neoplasia [61,62]. Improvement of
technology in the last few years allows comprehensive analysis of
genome-wideDNA methylation on high-throughput platforms. Large-
scale analysis in GBM on aberrant DNA methylation at CpG sites has
unraveled a plethora of genes that are affected [55]. Widespread CpG
island promoter methylation, also referred to as the CpG island
methylator phenotype (CIMP), was first identified by Toyata et al [63]
and has been extensively studied in many cancer types. The first two
studies by Noushmehr et al [55] and Turcan et al [64] showed that
glioblastomas with a hypermethylator phenotype are associated with
somatic mutations in isocitrate dehydrogenase-1 [55,64] and that
somatic mutations in IDH1, IDH2, as well as loss-of-function
mutations in ten-eleven translocation (TET)-methylcytosine
dioxygenase-2 (TET2) establish a hypermethylation phenotype in
leukemia [65]. As we know about that the glioblastomas have a two
distinct subtypes which are primary and secondary GBM. These are
the two distinct disease entities which are the genetic and the
epigenetic background of these tumors are highly variable. From a
clinical and biological perspective, two main subtypes of this
malignancy can be distinguished: primary (or de novo) glioblastoma
develops without the presence of any precursor neoplastic lesion and
manifests after a short clinicalhistory; secondary glioblastoma develops
from lower grade tumors [66]. Mutations of IDHI are rare in primary
GBM (10%) and frequent in secondary GBM (80%) [67]. Than the
primary glioblastomas which are showed low frequencies of IDH1
mutations and G-CIMP have a different pathogenetic/epigenetic
origin than secondary glioblastoma and should be classified separately.
The correlation of the neomorphic IDH1/2 mutants with a DNA
methylator phenotype was also observed in acute myeloid leukemia
(AML). This provided an important mechanistic link, together with
the fact that IDH1/2 mutations in leukemia were exclusive with tet
oncogene family member 2 ( TET2 ) mutations [65,68]. Moreover, a
high frequency of IDHI mutations indicates a link between metabolic
alterations and epigenetic modification in these tumors [15]. A
mutation in IDHI inhibits DNA demethylation and causes
accumulation of the methylated DNA. IDH are NAD+ and NADP+-
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dependent enzymes that catalyze the tricarboxylic acid (TCA) cycle,
and mutations in IDHI produce a metabolite called 2-
hydroxyglutarate (2-HG) to accumulate. The accumulated 2-HG
impairs the activity of ten-eleven translocation (TET) methylcytosine
dioxygenase, which results in DNA hypermethylation. IDHI1 mutation
may result in G-CIMP through inhibition of the TET-mediated
production of 5-hydroxymethylcytosine (5ShmC), which is a primary
mode of DNA demethylation [69].

Exome sequencing studies showed that at least one somatic
mutation in genes which are DNA methylation (isocitrate
dehydrogenase [IDH] 1, IDH2), histone modification (mixed lineage
leukaemia 2 [MLL2], MLL3, MLL4, Enhancer of zeste 2 [EZH2] and
histone deacetylase 2 [HDAC2]) and chromatin remodelling (a-
thalassaemia/mental retardation syndrome X-linked [ATRX], death-
domain associated protein [DAXX], CREB binding protein [CREBBP]
and SWI/SNF-related matrix-associated, actin-dependent regulator of
chromatin A2 [SMARCAZ2]) associated with chromatin modification
[70]. These mutations result in the impairment of DNA methylation,
histone modification and nucleosome positioning, and are associated
with aberrant gene expression [71,55]. The crosstalk between the
genome and epigenome might suggest new molecular targets and
possibilities for the treatment of GBM [69].

Methylation of K27 and K36 is also disrupted by elevated levels of
the onco-metabolite 2-hydroxyglutarate (2-HG) resulting from gain-
of-function mutations in /DH1 [68,72], Which was previously shown
to be associated with a distinct Glioma-CpG-Island Methylator
Phenotype (G-CIMP) [55].

Are Epigenetic-based therapies possible for GBM?

Epigenetic modifications by its nature are reversible; therefore
changes in the epigenome associated with cancer are potentially
reversible. It opens up the possibility of using epigenetic drugs which
may have a powerful impact on various cancers, including
glioblastomas and the major unresolved problem for epigenetic
therapy of cancer is target specificity [22]. Two demethylating agents,
i.e., inhibitors of DNA methyltransferase (5-azacytidin and decitabin)
were approved by the Food and Drug Administration (FDA) in the
treatment of myelodysplastic syndrome and a few inhibitors of histone
acetylases (vorinostat, romidepsin and panobinostat) are approved in
the treatment of hematological malignancies, particularly in refractory
or relapsed cutaneous T-cell lymphoma [73]. Other compounds are
presently in clinical trials and the hypomethylating agents are also one
of the few epigenetic therapies that have gained FDA approval for
routine clinical use. Small-molecule inhibitors of histone demethylases
are at various stages of development and emerging preclinical data
show the therapeutic potential of compounds [74].

The DNMT inhibitor Decitabine (5-aza-2’-deoxycytidine) and the
HDACi suberoylanilide hydroxamic acid (SAHA; Vorinostat) are the
epigenetic-based therapies and only HDACi are in trials for GBM [22].
HDACi are hydroxymates (SAHA, TSA), «cyclic peptides
(depsipeptide), aliphatic acids (valproic acid, butyrate), and
benzamides. No single HDACIH is effective against all HDACs. HDACi
cause increased acetylation of histone and non-histone proteins and
can reactivate p2l, which contributes to cell-cycle arrest. Non-
cancerous cells are more resistant to the effects of HDACi [75,76].

Epigenetic therapies approved by FDA for leukemia and DNA
demethylating agents and HDAC inhibitors, and combinations have
been tested in clinical trials [77]. In glioblastoma HDAC inhibitors

have entered clinical trials (http://clinicaltrials.gov), while
demethylating agents have not been considered [78]. Demethylating
agents such as 5-Aza-cytidine or 5-Aza-2 ¢ - deoxcytidine lock DNMT
enzymes on to the DNA, thereby inhibiting further DNA methylation.
Consequently, demethylating agents require cell division for activity,
hence targeting rapidly dividing cells. Due to their unspecific
mechanism, demethyling agents may lead to reexpression not only of
tumor suppressor genes but also of oncogenes. The HDAC inhibitor
vorinostat (SAHA) has shown modest benefit as single agent in a
phase II trial for recurrent GBM [79]. The other treatment choise was
TMZ and the methylated MGMT promoter sensitizes the tumors to
alkylating agents and that the alkylating agent TMZ is part of the
current standard of care for GBM [78]. The treatment of GBM patients
with valproic acid as antiepileptic drug has shown a survival advantage
in combined chemoradiotherapy [80]. Valproic acid is considered to
have weak HDAC inhibitor properties and is currently tested in a
phase 2 trial for newly diagnosed GBM in combination with standard
chemoradiotherapy  (NCT00302159). Entinostat, panobinostat
phenylbutyrate are the other HDAC inhibitors which are in clinical
evaluation for recurrent high-grade gliomaor refractory pediatric brain
tumors and neuroblastoma [77]. The AGI-5198 inhibitor identified
through a high-throughput screen as a selective R132H-IDHI1
inhibitor, induced demethylation of histone H3K9me3 and expression
of genes associated with gliogenic differentiation. Blockade of a
mutant IDH1 impaired the growth of IDHI-mutant, but not IDH1-
wild-type, glioma cells [81].

Conclusion

Necrotic or apoptotic cancer cells releasing genomic DNA and the
blood plasma in cancer patients contains DNA derived from these cells
and aberrantly hypermethylated genes found in plasma could be one
such type of biomarker. This is a less invasive method for biomarker
detection in cancer patients. This type of analysis may provide
clinically useful information about diagnosis, prognosis and follow-up
post-therapy. There is a significant amount of tumour DNA in the
plasma of high-grade glioma patients, and in 60% of patients the same
methylated promoters (p16INK4a, MGMT, p73, and RARbeta) could
be detected in both tumour and plasma DNA [82].

Primary and secondary glioblastoma is a distinct disease subtypes
and affecting patients of different age and developing through
different genetic pathway. Based on these two subgroups of GBM we
may use this different methylation pattern of genes to distinguish
between subtypes and aberrant DNA methylation of tumour
suppressor genes and oncogenes reported in GBM. The summerized
studies mentioned emphasize the relevance of epigenetic gene
silencing as a mechanism by which critical biologic pathways are
altered in GBM. Several genes discussed above have been identified
singly or by genome-wide methylation studies to be epigenetically
inactivated. The relationship of aberrant hypermethylation of
promoters to the biology of GBM and the prognosis of patients with
these tumours is complex and remains to be fully elucidated; it is
possible that a more fundamental defect in the epigenetic machinery
that regulates promoter methylation may be responsible for the
epigenetic changes that cause inactivation of several cancer-related
genes and the identification of IDH1/2 mutations in GBM suggests
that metabolic pathways may be attractive targets for GBM.
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