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Abstract

Purpose of review: Curcumin (CUR), an active polyphenol extracted from the rhizome of Curcuma longa, is a
highly pleiotropic molecule having diverse biological activities. The purpose of this review is to present the facts that
would assist to understand the Curcumin in regulation of epigenetics and future applications.

Recent findings: The recent growth in the understanding of the epigenetics is leading to a medical revolution
that assures a new age of health and disease management. Compounds that have the potential to regulate
epigenetics are of great pharmacological importance. Curcumin is one of the best-studied natural bioactive
compounds known to interact with several molecular targets inside the cell and influences a range of biological
processes. We have analyzed the findings of recent studies on effects of CUR on biological pathways. Accumulating
studies suggest that CUR might be a promising agent to treat various human diseases that can occur due to
alterations in epigenetics.

Summary: This review summarizes the actions of CUR on different chromatin modifiers, including, histone
acetyl-transferases, histone deacetylases, and DNA methyl-transferases. Taking together, we have discussed the
novel therapeutic potential of CUR, and we strongly believe that through future studies we will be able to effectively
use CUR to improve the human health.

Keywords: Curcumin; Epigenetics; Drug-response; Histone
modifications; Signaling pathways

Introduction
Chromatin is a dynamic structure and dynamicity is facilitated by

altering the covalent modifications of histones [1]. This is carried out
by a wide variety of chromatin modifying enzymes [2,3]. The
combination of modifications (“marks”) produced by chromatin
modifying enzymes represents a code that controls downstream
processes, such as, transcription, DNA repair, and apoptosis [4-7]. It is
well established that mutations in chromatin-modifying machineries
that disturb the spatial-temporal patterns of gene expression can
contribute to the pathogenesis of human diseases. As a result, the
scientific community has focused on identifying the small molecular
inhibitors for many of the histone-modifying machineries and using
them for targeted therapeutics. Hence, a number of bioactive dietary
components are of particular interest in the field of epigenetics [8],
including, curcumin (CUR).

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione), chemical structure shown in figure 1, is the
major bright yellow color pigment extracted from turmeric [9]. Owing
to its wide range of epigenetic targets, CUR has been extensively
studied to better understand its diverse pharmacological activities and
it has been used in several worldwide clinical trials [10]. This review
summarizes the epigenetic targets of CUR and we discuss how CUR
can be effective in treating various ailments by targeting epigenetic
machineries and associated factors.

Figure 1: Chemical structure of Curcumin (1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,6-heptadiene-3,5-dione

Effect of curcumin on Epigenetics
Over the past decade, knowledge regarding CUR biochemistry and

its targeted pathways has grown tremendously, and it has been
considered as a promising epigenetic modifier. Here, we will focus on
how CUR alters post-translational modifications in histone proteins
along with DNA methylation.

Histone acetylation
CUR attenuates histone acetylation levels causing histone

hypoacetylation [11-14]. CUR is an inhibitor of p300/CREB-1 binding
protein (CBP) HAT activity. It was established in vitro, that CUR
covalently inhibited the acetylation of histones H3 and H4 by
p300/CBP [15]. Moreover, the binding site on p300/CBP led to a
conformational change, resulting in a reduction of binding efficiency
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of histones H3 and H4, and acetyl CoA [14,16], leading to a decrease
in acetylation levels of these histones. Similarly, CUR inhibited the
acetylation of histones and p53 in vivo through specific inhibition of
p300/CBP in cervical cancer cells [17]. The inhibition of p300 by CUR
also decreased acetylation on RelA protein causing defect in
downstream nuclear processes [18]. Furthermore, CUR induced
hypoacetylation of histones H3 and H4, leading to suppression of
differentiation in astrocytes and has been implicated in determining
stem cell fate through modulation of acetylation levels [19]. CUR not
only affects the protein factors that are involved in histone acetylation
but also regulates their expression. A study has revealed that, in mouse
spermatids, the expression levels of several HATs, such as, CBP, Cdyl,
and Myst4 [20-22] were significantly downregulated in response to
CUR exposure [23]. The decrease in expression of HATs led to
reduction in acetylation levels of histone H4 [23] in mouse spermatids.

Histone deacetylation
It has been demonstrated that CUR treatment causes a decrease in

the mRNA expression of several HDACs including HDAC 1, 3, and 8
in Raji cells, thereby leading to significantly higher levels of histone H4
acetylation. Furthermore, western blots confirmed that CUR exposure
significantly reduced the protein levels of HDAC 1, 3, and 8 in a dose-
dependent manner [24]. Although little is known about the molecular
mechanisms behind the inhibitory action of CUR on HDACs, it has
been suggested that CUR can modulate HDAC activity by regulating
their expression. Reports suggest that in monocytes, CUR exposure
causes decrease in the expression of HDAC2 [25]. Similarly in
medulloblastoma cells, CUR blocks HDAC activity by decreasing
HDAC4 expression [26]. However, through molecular docking
experiments, it has been suggested that CUR can stably bind to human
HDAC8 toward the entrance domain [27], and thereby, also affect the
enzymatic function of HDACs.

Histone phosphorylation
It has been shown that CUR treatment increases the

phosphorylation of histone H3 at Ser 10 residue in a dose-dependent
manner [28] in mouse models. CUR exposure causes down-regulation
of Aurora A transcript levels, which has been correlated with the
reduction in histone H3 phospho-Ser10 levels [29] of human bladder
cancer cells. Furthermore, CUR treatment has been proposed to alter
the activity of histone phosphatases and/or kinases. We have also
shown that CUR reduces the global levels of histone H3 acetylated at
lysine-9 (H3K9ac) S10 phosphorylation in yeast cells [30]. There are
reports suggesting that CUR can effectively target different signaling
pathways, including MAPK, Akt, p53, androgen receptor (AR), Ras,
and estrogen receptor (ER) pathways [31,32] in different human cell
lines. Although not much is known about the effect of CUR on histone
phosphorylation, we propose that because CUR interferes with various
kinase pathways of the cells, it might regulate the phosphorylation
state at several other residues of histone proteins [31,32].

DNA methylation
CUR has been shown to have the potential to inhibit DNMT1,

leading to hypomethylation of various genes [33-35] in various human
cell lines. It has been shown that CUR makes covalent interaction with
DNMT1 and blocks the catalytic thiolate of C1226 of this enzyme to
exert its inhibitory effect [35]. Another study demonstrated that CUR
reduces global DNA methylation levels in a leukemia cell line at very
low concentrations. CUR also inhibits enzymatic activity of M.Sss1

(methyltransferase Sss1, an analog of DNA methyltransferase I) in
vitro [36,35]. Through genome wide studies, it has also been suggested
that curcumin-induced changes in methylation occur only in a subset
of partially-methylated genes [37] in colorectal cancer cells. CUR also
reduces the hypermethylation of FANCF gene promoter, leading to an
increase in the expression of FANCF in SiHa cells [39]. It was found
that CUR causes the reversal of the methylation status of the first 5
CpGs in the upstream of Nrf2 gene with subsequent induction of Nrf2
[36]. CUR is also able to restore the expression of Nrf2 via promoter
CpGs demethylation in TRAMP C1 prostate cancer cells treated at a
concentration of 2.5 μM. Furthermore, another study revealed that
CUR exposure led to demethylation of the first 14 CpG sites of the
CpG island in Neurog1 gene, which consequently led to the
restoration of its expression in human prostate LNCaP cells [39].

Effect of CUR on Various Biological Processes
CUR can influence a wide range of molecular targets by either

directly interacting with different molecules or indirectly modulating
the signaling pathways. This section will illustrate the biological effects
of CUR on various cellular pathways.

DNA Repair
It has been demonstrated that CUR can inhibit the DNA repair

process in different model systems. CUR exposure causes impaired
activation of ATR-Chk1 signaling [40] different cancer cell lines.
Furthermore, the detailed study revealed that CUR could effectively
induce histone hypoacetylation at the DNA double-strand break
(DSB) sites by inhibiting specific HATs, thus inhibiting the
recruitment of key repair factors at the DSB sites [40]. It was also
demonstrated that CUR suppresses homologous recombination in
DNA repair by inhibiting the expression of BRCA1 gene through
impairing histone acetylation at its promoter [40]. We have also found
that CUR activates DNA damage response in yeast cells [30].
Interestingly, Lu et al. discovered that CUR has the potential to cause
DNA damage in combination with reducing the expression levels of
DNA damage response genes, such as, BRCA1, ATM, ATR, 14-3-3σ,
and DNA-PK, leading to impaired DNA damage response [41] in
mouse-rat hybrid retina ganglion cells.

Signaling pathways
CUR displays promising pharmacological activities that are believed

to be mediated through the regulation of cell signaling pathways,
including, MAPK, JAK/STAT, Wnt/β-catenin, and AMPK pathways
[42-45] in human cells. Curcumin has been demonstrated to modulate
the MAPK signaling pathway by decreasing p38 MAPK activation and
reducing inflammation [46] in a murine model. CUR has been shown
to inhibit the activation of JAK-STAT pathways through the inhibition
of JAK1 and JAK2 phosphorylation in microglia cells [47]. Another
study revealed that CUR can also inhibit the phosphorylation of Akt
and the activation of mTOR (mammalian target of rapamycin) in
human prostate cancer PC-3 cells [48]. In esophageal cancer cell lines,
CUR has been shown to inhibit the activation of Notch-1 signaling by
downregulating the expression levels of Notch-1 specific micro-RNAs,
including, miR-21 and miR-34a [49]. Interestingly, CUR can activate
AMPK pathway by down-regulating Erk1/2, p38, and COX-2 in colon
cancer cells [50]. Furthermore, CUR exposure, together with
radiotherapy, has been shown to enhance tumor cell death and reduce
radio-resistance in mice with fibro-sarcomas through the inhibition of
radiation-induced Erk and NF-κB expression [51].
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Apoptosis
CUR has been shown to reduce the expression of anti-apoptotic

factors of the Bcl-2 family, including, Bcl-2 and Bcl-XL, as well as
increase the expression of pro-apoptotic factors, such as, Bax, and
procaspases-3, -7, -8, and -9, leading to the induction of apoptosis [52]
in various human cell lines. Furthermore, CUR can also induce
apoptosis by mitochondrial pathway via cytochrome C release in
different cancer cells including mantle cell lymphoma [53] and
multiple myeloma cells [54]. CUR promotes apoptosis by inhibiting
the Akt signaling pathways in cancer cells [55-57]. Another study has
revealed that CUR induces apoptosis in various human melanoma
cells through the Fas receptor/caspase-8 pathway [58]. CUR has also
been shown to activate the TNF-related apoptosis-inducing ligand
(TRAIL)-mediated apoptosis [59]. Due to the ability of CUR to target
apoptotic pathway, it acts as an effective anti-cancer agents.

Therapeutic Potential of Curcumin
CUR has been consumed as a dietary supplement for centuries and

has been widely used in Indian Ayurveda medicines [60]. Due to the
diverse cellular targets, CUR is being used to treat as mentioned below.

CUR is an effective agent against various human diseases
CUR has been demonstrated to possess numerous pharmacological

activities against a broad range of human diseases due to its anti-
microbial [61,62], anti-cancerous [63,64], hepato-protective [65,66],
anti-thrombotic [67], cardio-protective [68,69], and anti-arthritic
properties [70]. Furthermore, CUR is also protective against
neurodegenerative diseases, including, Parkinson’s and Alzheimer’s
diseases [71,72]. Additionally, CUR pretreatment has been associated
with a considerable decline in liver fibrosis and injury in response to
external stimuli [73,74]. CUR is effective in reducing blood glucose
levels by increasing pancreatic β-cell function in diabetes mouse model
[75]. The anti-diabetic effects of curcumin have also been attributed to
its ability to decrease macrophage infiltration [76], increase
antioxidant capacity, decrease IL-1β, VEGF, and NF-κB activities
[77,78], and through enhancing the PPAR-ϒ ligand-binding activity
[79] in various mouse models of diabetes. Several studies
demonstrated that CUR is effective against diabetes for example, in
type 2 diabetic KK-A(y) mice; dietary turmeric extract reduced the
blood glucose levels [79]. In diet-induced obesity mice and ob/ob male
mice, dietary curcumin (3%) for 6 weeks improves glycemic status and
insulin sensitivity [76]. In another mouse diabetes model, dietary
curcumin (0.2%) for 6 weeks was beneficial in improving glucose
homeostasis and insulin resistance [80].

The high efficacy of CUR in inhibiting cell proliferation and
inducing cell death in different cancer cell lines makes it a promising
anti-cancer drug [81-83]. Several studies conducted on patients with
cancer, show that CUR has anti-proliferative and pro-apoptotic effects
on pancreatic carcinoma, liver carcinoma, and leukemia [83,84].
Aberrant p300/CBP activity has been implicated in cancer progression
and CUR inhibits p300/CBP HAT activity [85]. Moreover, CUR also
reduces the cardiac ischemia-reperfusion injury by decreasing the
expression of key molecules such as toll-like receptor 2 (TLR2),
MCP-1, and CD68 [86]. Genome wide microarray study indicated that
CUR mediates differential expression of genes involved in the
protection of cardiac hypertrophy and inflammation [87-89].

Anti-parasitic effect of Curcumin
CUR exhibits anti-parasitic effect through modulating cellular

histone acetylation levels [90]. One study demonstrated that CUR
specifically hampers the in vivo PfGCN5 HAT activity in Plasmodium
falciparum [90]. It has been observed that CUR also regulates the
defense pathways of Salmonella typhimurium [91]. CUR strongly
inhibits the proliferation of Helicobacter pylori that is a causative
agent of gastric ulcers and also implicated in gastric cancers. CUR also
effectively blocks the H. pylori-induced mitogenic response, leading to
the inhibition of NF-κB activation and subsequent downstream
processes [92]. An interesting study demonstrated that the deleterious
effects of the fecal parasite, Eimeria maxima, were significantly
reduced by CUR in chickens [93]. Another animal study showed that
the dermatophyte- and fungi-infected guinea pigs were relieved from
disease symptoms upon CUR treatment [94]. Furthermore, CUR also
possesses anti-leishmanial activity by exhibiting cytotoxic effect on its
causative agent Leishmania donovani [95,96].

CUR in Clinical Trials
Since CUR possesses promising therapeutic potential [97,98],

several clinical trials have already been conducted to investigate its
effects on the prevention and/or treatment of various diseases
[99-102]. There was no significant treatment-related toxicity was
observed in doses up to 8 g/day for 3 months [103,104] on human
patients. CUR treatment also effectively revert the general health status
of patients with colorectal cancer [105]. In several human clinical
trials, CUR has been administered in combination with other agents.
For example, when curcumin was used with piperine, the pain was
significantly reduced [106]. Similarly, CUR sensitized the effect of
gemcitabine in gemcitabine-resistant pancreatic cancer when used at 8
g/day in combination with gemcitabine [107]. Furthermore, CUR
increased the efficacy of prednisone in patients with ulcerative colitis
[107] and ultraviolet B against skin disorder to yield significant
improvements [108]. Interestingly, one clinical trial revealed that CUR
was very effective against type 2 diabetes treatment [109].

Future directions and conclusions
Exploring epigenetic properties of CUR in humans will potentially

enhance our understanding of its medicinal values. CUR also shows
reduced bioavailability issue. Hence, it will be interesting to discover
and characterize novel CUR derivatives that are more stable or more
readily absorbed upon administration. For example, curcumin-
encapsulated/curcumin-derived exosomes are more stable and can be
directed towards target sites. Moreover, CUR can directly bind and
alter multiple cell signaling cascades, which can be harnessed to
combat selected pathologies including cancer. Future research in this
area will provide further insights into the use of CUR and its analogues
as efficacious agents to target different diseases. CUR is also shown to
be effective on age-related symptoms. Interestingly, CUR has been
reported to enhance the lifespan in Caenorhabditis elegans and
Drosophila spp., but its efficacy on humans warrants future
exploration. The efficacy of different drugs has been shown to improve
significantly when they were administered in combination with CUR.
Hence, new drug combinations with CUR can be explored in the near
future. Existing reports strongly suggest that CUR is an effective
therapeutic agent but its efficacy on animals and humans are not
completely understood. Hence, it is essential to learn more about the
pharmacodynamics and pharmacokinetics of CUR in the near future
to assess its medicinal values.
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Conclusions
In summary, we have reviewed recent experimental evidences

regarding the biology of CUR. It has been clearly demonstrated that
CUR targets various signaling pathways that eventually affects
epigenetics. This property of CUR has motivated researchers for
developing therapeutic strategies by targeting different epigenetic
factors including HDACs, HATs, and DNMTs. Further examination
of CUR as an epigenetic agent is required to fully explore its potential
for treating various diseases including cancer. We believe that
continuous research on CUR and well-controlled human studies will
address the biology as well as the therapeutic potential of this
micronutrient.
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