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How DNA methylases target genomic sequences is a poorly
understood, yet vital component in growth homeostasis in mammals.
One mechanism of epigenetic targeting in animals has been shown to
involve homology directed repair of double strand DNA breaks. This
process leaves behind a methylation scar, which is a source of selective
pressure that may promote carcinogenesis. Lessons from the plant
reveal that small RNAs direct DNA methylation; however, in animals,
RNA based methylation targeting is not understood. A recent report
that RNA gene products regulate the DNA-damage response in animal
cells, makes a strong imperative for a rigorous search for RNA based
targeting mechanisms in humans.

Cytosine methylation is a post-replicative covalent modification
of the genome associated with silencing of underlying genes [1]. The
extent of cytosine methylation varies considerably among eukaryotes.
In vertebrates, approximately 70-80% of cytosines in CpG dinucleotides
are methylated. Invertebrates display a wide range of DN A methylation,
from very limited methylation in Drosophilia melanogaster and
Caenorhabditis elegans to a mosaic pattern of methylation in the sea
urchin (Strongylocentrotus purpuratus).

Significant progress has been made in understanding DNA
methylation in the model plant Arabidopsis thaliana. DNA methylation
in plants differs somewhat from that of mammals. DNA methylation in
mammals mainly occurs on the cytosine nucleotide, in a CpG site. In
plants, the cytosine can be methylated at CpG, CpHpG, and CpHpH
sites (H represents any nucleotide but guanine). In both plants and
animals, there are currently two types of DNA methylation: 1) a de
novo type, using enzymes that create new methylation marks on the
DNA; and 2) a maintenance type, acting on hemimethylated DNA
and linked to DNA replication. The maintenance methylases in plants
and mammals are MET1 and DNMT1, respectively, while de novo
methylation events are mediated by DNMT3 in mammals, and DRM2
in Arabidopsis [2]. Current evidence suggests that for many (though
not all) locations, RNA-directed DNA methylation (RADM) is involved
in targeting de novo action of DRM2. In RADM, specific 24 nucleotide
long RNA transcripts are produced from a genomic DNA template,
and this RNA guides methylase action [3]. This sort of mechanism is
thought to be important in cellular defense against endogenous RNA
viruses and latent transposons, both of which are mutagenic to the host
genome. By methylating their genomic locations, they are shut off and
are no longer active in the cell. A relationship between DNA damage
protection and RADM is therefore well established in plants.

In mammalian somatic cells, methylation marks are heritable
and stable. Moreover, their placement and removal is important in
homeostatic growth control and in genome protection [4]. DNA
methylation in somatic cells is layered at two levels. The first is stable
methylation, also called imprinting, which is inherited in a sex-specific
fashion and tends to be invariant between cells in different tissues [5].
The second level is somatic methylation, which tends to be variable
between individuals and cell types. The second type of methylation
affects all cells in the body, and impacts biological controls that direct
growth versus no-growth decisions in the cell. Specifically in cancer,
silencing by hypermethylation of a single growth suppressor pathway
gene, can result in the loss of homeostatic controls. Another key

feature in cancer is hypomethylation and genome instability, so the
pendulum swings both ways. These findings define an important nexus
linking epigenetics (DNA methylation) and growth control; however,
we do not have a sound mechanistic understanding of this process
since paradoxically, cancer cells display both genomic hyper- and
hypomethylation epi-genotypes.

The process of DNA methylation is not sequence specific; therefore,
an important over-riding issue remains unsolved. Specifically, how
are genomic segments destined for methylation selected? In plants,
RdADM is used to guide methylation enzymes to the site (see above);
however, in higher eukaryotes the question is still open. We have
been pursuing the idea that DNA damage may leave behind a scar,
which is methylated DNA. We designed an experimental approach, to
conclusively prove that this was the case. Using the system developed by
Maria Jasin’s lab [6], we analyzed expression patterns of GFP reporters
derived from homologous recombination-DNA repair (HDR), after
endogenous breakage by the homing endonuclease I-Scel. Expression
patterns of the GFP positive cells generated by HDR are bimodal,
with two expression classes (in contrast, transfected wild type GFP
expression is uniform in all cells). Roughly, half of these HDR cells are
hypermethylated and under-express GFP, with the remainder being
hypomethylated and over-expressed [7]. These results suggest that
DNA methylation patterns are reprogrammed during HDR. This was
confirmed by bisulfite sequence analysis that show the exact placement
of 5 methyl cytosine in each repaired DNA [7,8]. The sequencing data
further revealed the presence of distinctively different, but still related
epi-alleles in the population of repaired cells. Moreover, the epigenetic
changes map precisely to a region several hundred base pairs 3’ of the
DSB, (viz., the site of the end resection). More is now known about this
mechanism of epigenetic reprogramming. For instance, key mediators
(Gadd45a, Np95) are required, and the process is orchestrated by the
maintenance methylase DNMT1 [9]. That the maintenance enzyme
DNMT1 mediates this process was unexpected, since it is acting in a de
novo capacity [7]. One explanation is that both HDR and DNMT1 are
tightly coupled to S phase.

Biological relevance of these findings, especially in light of the
cancer growth defects are important; however, little is known about the
frequency or penetrance of these events, as we age. On the other hand,
even if HDR dependent epigenetic resets are rare events, their evolution
may still hold physiological significance because growth positive
phenotypes are selected, and retained. Since DNA damage is more or
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less randomized across the genome, the entire process is stochastic and
resulting growth phenotype depends largely on the genomic context of
the epigenetic revision. Epigenetic revisions would be tolerated if the
repaired segments do not impact critical growth regulatory genes. On
the other hand, a tumor suppressor gene may occasionally be silenced
which would lead to a cell with a growth advantage. The process then
defines a potentially powerful evolutionary force, since rare alterations
in the epigenetic landscape can lead to amplification of a sub-population
of growth promoted cells. The recent and surprising evidence from the
ENCODE Project that a large fraction (76%) of the human genome
is transcribed into RNA [10], suggests that repair based methylation
revisions are more likely to target genes that produce RNA as the gene
product (as opposed to protein encoding genes). In fact, RNA based
regulation and targeting in chromatin is an important topic, under
intense study [11,12]. Further support for RADM-like mechanisms
in somatic cell HDR comes from recent work showing that the DNA
damage response is directed by non-coding RNA, working at sites
of DNA damage in human and zebrafish models [13]. A connection
between methylation revisions in HDR through an RdDM type of
mechanism seems logical and likely.

Future research will improve the veracity of the model. Other
questions remain open. In animal cells, for example, non-homologous
end joining (NHE]) represents a second major DS break repair pathway,
which operates outside of S/G2 phases. NHE] is highly error prone (in
contrast to HDR), since it involves simple trimming and religation
of free DNA ends. It would be interesting to search for epigenetic
revisions, following NHE], that leave behind a historical record in
the form of a methylation scar. Finally, epigenetic revisions may have
predictive value in epigenomic profiling of tumors. Specifically, in
cancers with silenced tumor suppressor genes, one could reconstruct
the precise location of DS DNA breaks, based on bisulfite sequence
profiles in tumors from patients. Bioinformatic rendering of these data
(ClustalW), in fact, reveals the relatedness of epi-alleles and should
help define an epigenetic evolutionary process of carcinogenesis [7].
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