

Commentary

Epigenetic Reprogramming in Cancer with Novel Biomarkers and Targets

Marco Salvatore*

Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong

DESCRIPTON

Epigenetics is an evolving field that explores heritable changes in gene function that occur without alterations in the DNA sequence. These modifications act as an additional regulatory layer that determines how and when genes are expressed. In the context of cancer, epigenetic alterations have emerged as critical players in tumor initiation, progression, and metastasis [1]. They influence the activation or silencing of key oncogenes and tumor suppressor genes, ultimately shaping the cellular environment that favors malignancy.

Histone modifications represent another major layer of epigenetic control. Histone proteins, which package DNA into chromatin, can undergo chemical changes such as acetylation, methylation, phosphorylation, and ubiquitination. These modifications influence chromatin structure and accessibility of transcriptional machinery. For example, histone acetylation is generally associated with gene activation, whereas histone deacetylation leads to gene repression. Aberrant activity of histone-modifying enzymes, including Histone Deacetylases (HDACs) and histone methyltransferases, has been reported in several cancers and contributes to uncontrolled cellular proliferation and resistance to apoptosis.

Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), add a further layer of complexity to epigenetic regulation. miRNAs can bind to messenger RNAs, blocking their translation or inducing degradation, thereby modulating the expression of oncogenes and tumor suppressors. Dysregulation of specific miRNAs, such as miR-21 and let-7, has been linked to cancer progression and metastasis. Similarly, lncRNAs can interact with chromatin-modifying complexes to influence gene expression and chromosomal stability, highlighting their importance as both biomarkers and therapeutic targets [2-6].

Epigenetic changes are reversible, which makes them attractive for therapeutic intervention. Drugs targeting epigenetic enzymes such as DNA methyltransferase inhibitors (azacitidine, decitabine) and HDAC inhibitors (vorinostat, romidepsin) have

already been approved for the treatment of hematological malignancies. Ongoing clinical trials are exploring the potential of epigenetic therapies in solid tumors, often in combination with chemotherapy, immunotherapy, or targeted therapy. These strategies aim to restore normal gene expression patterns, resensitize resistant cancer cells, and enhance immune recognition of tumor antigens.

Moreover, epigenetic signatures have become valuable tools for cancer diagnosis and prognosis. Aberrant methylation patterns and altered histone marks can serve as early detection biomarkers, even before genetic mutations become evident. Liquid biopsy techniques that analyze circulating tumor DNA (ctDNA) or exosomal RNA are increasingly being used to detect these epigenetic alterations non-invasively, offering promising prospects for personalized cancer management [7-10].

Recent advances in next-generation sequencing and single-cell analysis have deepened our understanding of the epigenetic landscape in tumors. These technologies reveal that epigenetic reprogramming occurs at multiple stages of cancer development and that tumor heterogeneity is partly driven by distinct epigenetic profiles among cancer cells. Understanding these dynamic changes is essential for developing precision medicine approaches that target both genetic and epigenetic vulnerabilities.

In conclusion, epigenetics provides profound insights into the molecular complexity of cancer. By regulating gene expression without altering DNA sequence, epigenetic mechanisms orchestrate key cellular processes that determine cancer behavior. As research continues to unravel the interplay between epigenetic and genetic factors, the potential for novel diagnostic, prognostic, and therapeutic applications will expand. Epigenetic therapy holds particular promise because of its reversible nature and capacity to restore normal gene function. Continued exploration of the epigenetic landscape will not only enhance our understanding of carcinogenesis but also pave the way toward more effective and personalized cancer treatments.

Correspondence to: Marco Salvatore, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, E-mail: marco@salvatore.hk

Received: 01-Jul-2025, Manuscript No. JCM-25-30112; Editor assigned: 03-Jul-2025, PreQC No. JCM-25-30112; Reviewed: 17-Jul-2025, QC No. JCM-25-30112; Revised: 24-Jul-2025, Manuscript No. JCM-25-30112; Published: 31-Jul-2025, DOI: 10.35248/2157-2518.25.16.001

Citation: Salvatore M (2025). Epigenetic Reprogramming in Cancer with Novel Biomarkers and Targets. J Carcinog Mutagen. 16:001.

Copyright: © 2025 Salvatore M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

- Santangelo G, Pellino G, De Falco N, Colella G, Amato DS, Maglione MG, et al. Prevalence, diagnosis and management of ectopic thyroid glands. Int J Surg. 2016;28:S1-6.
- Karim F, Inam H, Choudry UK, Hasnain Fatimi S. Ectopic follicular variant of papillary thyroid carcinoma in anterior mediastinum with a normal thyroid gland. A case report. Int J Surg Case Rep. 2018;51:213-217.
- Nguyen D, Htun NN, Wang B, Lee B, Johnson C. An anaplastic thyroid carcinoma of the giant-cell type from a mediastinal ectopic thyroid gland. Diagnostics. 2023;13:2941.
- Qi Y, Liu J, Liu Y, Shen Z, Hu N. Ectopic papillary thyroid carcinoma mimicking distant metastatic tissue. J Int Med Res. 2022;50(9):1-6.
- Cabibi D, Cacciatore M, Guarnotta C, Aragona F. Immunohistochemistry differentiates papillary thyroid carcinoma arising in ectopic thyroid tissue from secondary lymph node metastases. Thyroid. 2007;17(7):603-607.

- Shafiee S, Sadrizade A, Jafarian A, Zakavi SR, Ayati N. Ectopic papillary thyroid carcinoma in the mediastinum without any tumoral involvement in the thyroid gland A Case report. Asia Oceania J Nucl Med Biol. 2013;1(1):44-46.
- Huang NS, Wei WJ, Qu N, Wang YL, Wang Y, Ji QH. Lingual ectopic papillary thyroid carcinoma: two case reports and review of the literature. Oral Oncol. 2019;88:186-189.
- Nambiar G, Eshwarappa H, Kini H, Chidanand D. Isolated thyroid carcinoma in an ectopic thyroid tissue. BMJ Case Rep. 2021;14(2): 1-4.
- 9. Sturniolo G, Violi MA, Galletti B, Baldari S, Campenni A, Vermiglio F, et al. Differentiated thyroid carcinoma in lingual thyroid. Endocrine. 2016;51(1):189-98.
- Toda S, Iwasaki H, Suganuma N, Okubo Y, Hayashi H, Masudo K, et al. Occult thyroid carcinoma without malignant thyroid gland findings during preoperative examination: report of three cases. Case Rep Endocrinol. 2020;1-6.