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Abstract

Heart failure (HF) remains a leading cause of death in patient population with known cardiovascular disease.
Within last two decades there are evidences regarding decline to determine newel cases with HF with reduced
ejection fraction (HFrEF) in developed countries, whereas the frequency of newly-diagnosed HF with preserved
ejection fraction (HFpEF) exhibits dramatically rise. Epigenetic modification is considered a modification of the non-
DNA sequences related heritable changes in gene expression of target cells. Epigenetic modifications affect several
molecular mechanisms, i.e., DNA methylation and deactylation, ATP-dependent chromatin remodeling, histone
modifications, and microRNA regulation. The short commentary is clarified the implication of epigenetic
modifications in development of different HF phenotypes.
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Short Communication
Heart failure (HF) is a sufficient medical problem and social burden

that associates with increased morbidity/mortality rate and disability
rate in the developed countries [1]. Within last decades there is
progressively decrease of prevalence of HF with reduced left
ventricular ejection fraction (HFrEF) [2]. In opposite, the frequency of
newly-diagnosed HF with preserved left ventricular ejection fraction
(HFpEF) appears to be raised [3]. These changes in presentation of HF
phenotypes might relate to advance in contemporary of HF medical
care [4], impact of age-related comorbidities and socioeconomic status
[5-8]. Despite the implementation in routine clinical practice modern
pharmacological strategy and none-drug therapy including implanted
devices for mechanical support and pacing [8-10], the clinical
outcomes in subjects with HFrEF and HFpEF remain similar [11].

In this context, the discovery of several biomarkers reflecting
various pathophysiological stages of HF appears to be promised.
Currently available clinical guidelines have been recommended to use
a limited numerous of biomarkers for risk stratification of the patients
with of HF (brain natriuretic peptides, soluble ST2, galectin-3, and
higher sensitive cardiac troponins). However, not all these biomarkers
have exhibited higher predictive value of manifestation and
development of HFpEF [4,12,13]. Interestingly, the most biomarkers
are considered a prognosticators in symptomatic patients with known
HFpEF or HFrEF, but their role in concerning the risk of HF
development in individuals at higher risk of cardiac dysfunction is not
yet clear [14]. It is suggested that the age-related co- morbidities and
ischemic/non-ischemic etiology are the factors, which might
sufficiently limit both diagnostic and predictive utility of currently
used biological markers [15].

Recent studies have shown the pivotal role of cardiovascular
remodeling, immune dysfunction, low-grade microvascular

inflammation, hypercoagulation/thrombosis, endothelial dysfunction,
autonomic nervous system and neurohumoral abnormalities in the
pathogenesis of HF beyond initially occurred etiology factors [16,17].
However, both HF phenotypes may distinguish in etiological factors
(ischemic/none-ischemic), aging (older vs. younger) and sex
presentation, pre-existing co-morbidities (i.e., hypertension, lung and
rheumatic disease, diabetes, obesity), as well as predominantly
intracellular mechanisms, which are involved in the pathogenesis of
cardiac dysfunction. There is not only hypothetically possibilities, but
large body of evidence with respect to the tremendous impact of
epigenetic modifications (i.e., DNA and histone modifications, ATP-
dependent chromatin remodeling, and microRNA-related signals and
processes) on phenotypic response regarding failing heart and leading
to form either HFrEF, or HFpEF [18,19].

Theoretically, the post-translational modification of DNA may link
chromatin repair, transcription, translation, cell signaling, and cell
death in the failing heart specifically mediating phenotypic response
neither HFrEF, or HFpEF. Various reprogramming of gene expression,
including downregulation of the alpha-myosin heavy chain gene,
homeobox gene Pitx2c, angiotensin II gene, cardiac troponin T gene,
cardiac actin and myosin binding protein C genes, alpha-tropomyosin
and myosin light chains genes, sarcoplasmic reticulum Ca2+ ATPase
genes, estrogen receptor-alpha, estrogen receptor-beta and reactivation
of specific fetal cardiac genes including atrial and brain natriuretic
peptides are involved in the phenotypic response in failing heart
[19,20].

Recent animal studies have shown that histones acetylation/
methylation rather DNA modification could be the important
mechanisms of epigenetics determined failing heart response through
miRNA signaling [21,22]. Indeed, sirtuins have been involved into
DNA damage reparation, inhibition of inflammation and fibrosis [23].
Down-regulated sirtuin-1, sirtuin-2, situin-3 and sirtuin-6 have been
implicated in the cell death/survival process, oxidative stress,
sensitivity to ischemic injury, and they may induce cardiac
hypertrophy, accumulation of extra cellular collagens, microvascular
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inflammation [21]. All these factors contribute to failing heart
development and may mediate HFpEF [24]. The nicotinamide adenine
dinucleotide-dependent histone deacetylase (HDAC) was found as a
regulator of cellular processes, including gene silencing, longevity, and
DNA damage repair. In animals the inhibition of endogenous HDAC-
II has primarily caused cardiac myocyte hypertrophy and also induced
modest cell death [22]. In contrast, inhibition of class I HDACs
presented anti-hypertrophic effect [25]. Moreover, induced expression
of class II HDAC in cardiomyocytes mimics hypertrophic growth in an
Akt-dependent manner [26].

In clinical settings it has found a sufficient difference in DNA
methylation in promoters of up-regulated genes, but not down-
regulated genes in severe HF [27]. Xiao et al. [28] reported that
increased DNA methylation might have a causative role in
programming of heart hypertrophy and reduced global cardiac
contractility function. Probably epigenetic modifications identified in
failing heart might affect cardiac function directly through regulation
of structure protein synthesis and indirectly via increased activity of
cardiac fibroblasts. However, the role of DNA methylation in the
development of both phenotypes of HF beyond inhered forms is not
yet clear.

The ATP-dependent chromatin remodeling complexes are not able
to directly modify DNA or histones, whereas they may use energy of
ATP hydrolysis in processes regarding destabilize, eject or restructure
of nucleosomes and play a pivotal role in HF development [29]. Several
triggers including metabolic factors, aging, oxidative stress, and
hemodynamic stress may impact on the HF phenotype presentation
through ATP-dependent chromatin remodeling-depended
mechanisms.

Histone modification represents a dynamic process affected histone
proteins that are composed in the nucleosomes and mediated by
several enzymes [30]. Recent studies have shown that histone
modification predominantly methylation is closely regulates
inflammatory and metabolic disorders, as well as links CV disease and
vascular homeostasis [31]. There is evidence that altered redox
signaling might mediate trimethylation of histones and links an
oxidative stress pathway with biochemical mechanisms underlying
HFrEF development [32].

MicroRNAs (miRNAs) are small non-coding RNAs that exert their
function by both transcript degradation and translational inhibition,
resulting in changes in target genes and proteins’ expression [33]. It has
been suggested that reactivation of a fetal microRNA program
substantially contributes to alterations of gene expression in the failing
human heart. The recent studies have shown that the increased
expression of miRNA-1, miRNA-21, miRNA-29b, miRNA-129,
miRNA-133, miRNA-208, miRNA-210, miRNA-211, miRNA-212, and
miRNA-423, and miRNA-499 miRNA503 [34]. Theoretically, there is
well-described signature of cardiac-specific miRNAs, which may
involve in cardiac remodeling forming HF phenotypes [35]. On this
way, signature of miRNA expression (especially miRNA-7,
miRNA-123, miRNA-378) has been allowed to differ healthy and
failing hearts and depended on reactivation of a fetal gene program.
Indeed, these miRNAs have been displayed different expression levels
in HF at early and end stage failing hearts [36]. However, low number
of direct clinical evidence regarding specifically HF phenotypes’
development relating to miRNA signature remains a part of scientific
discussion [37].

Conclusion
In conclusion, the current available data preliminary clarify that

epigenetic modifications might be discussed as a key factor forming
different phenotypes in HF, whereas there is no strong evidence
regarding epigenetic signatures represent causal pathways leading to
specific forms of cardiac remodeling associated with HFrEF or HFpEF.
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