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Abstract

Epigenetics encompass all inheritable, although potentially reversible changes in the genome, that do not alter
the DNA code, but result from both developmentally (ensuring tissue specificity) and environmentally (resulting for
exposure to many factors) driven modification of the spatial conformation of the DNA through chemical modification
of the nucleotide chain itself or of the chromatin associated proteins. Epigenetic controls gene expression at a higher
level than transcription, imputing on the genome an environmental signature that is heritable through cell division
and reflects a life-long experience. These types of modification (particularly DNA methylation patterns) explain
phenotypic differences between identical twins. As opposed to genetic mutation, these modifications are reversible
and are controlled by groups of enzymes (the epigenetic machinery, DNA methyltransferases (DNMT), histone
deacetylases (HDACs) and histone acetyl transferases (HATs) and many more), hence, epigenetic marks include
DNA methylation, histone modification and nucleosome positioning resulting in higher structural organisation of the
chromatin regulating gene expression at the level of DNA accessibility for the transcriptional machinery to bind and
initiate transcription.

Introduction:
Over the past few years, epigenetics has become an important field

of research. Although epigenetic modifications to the genome do not
involve a change in the nucleotide sequence, such alterations are
important in all the processes that differentiate cells into several types
contributing towards developing different tissues and patterns of
epigenetic modification are transmitted to daughter cells with high
fidelity and even across generations [1-3].

Several diseases have been related to alteration in such patterns and
much research is now investigating how a variety of epigenetic
mechanisms can be perturbed. The field has advanced predominantly
in cancer, where perturbations include silencing of tumor suppressor
genes and activation of oncogenes through change of CpG island
methylation patterns, histone modifications, and dysregulation of
DNA binding proteins. Such alteration in the epigenetic patterns are
now considered as epigenetic mutations (epimutation) and are as
important in tumorigenesis as genetic mutations, to the point that
today cancer is thought to be the results of both genetic and epigenetic
modifications [4-6]. Autoimmune diseases share a common origin in
immunogenetic mechanisms. Epigenetic mechanisms are therefore
also thought to be of importance as well in the pathogenesis of such
complex diseases. DNA methylation has recently become the most
widely studied mechanism in autoimmune diseases, with findings
similar to those observed in cancer, notably in systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA) [7].

DNA methylation
DNA methylations regulate an essential status of the chromatin

(euchromatin or heterochromatin) by modulating nucleosomes spatial
distribution and controlling DNA packaging through the binding of
protein specifically recognizing methylated DNA and leading to
chromatin compaction [8]. In humans, transcriptionally active genes

globally present non-methylated CpG island (s) preceding their
promoter whereas the rest of CpG dinucleotides (50–70%) throughout
the genome primarily in the heterochromatin regions are methylated
towards silencing this part of the genome and contributing to
chromosomal stability [9,10]. In contract, in cancer or other diseases,
the "healthy" CpG methylation profile of a cell is often inverted, almost
mirrored [11] and tumor cells possess a globally hypomethylated
genome, while at the same time focal hypermethylation is increased in
specific places of the genome [4,12]. Islands preceding “anti-cancer”
genes promoters are “closed” through hypermethylation, while
oncogene promoters are “opened” by de-methylation. A number of
genes have notably been implicated in cancer both genetically and
epigenetically (the cyclin-dependent kinase inhibitor p16, the DNA
repair genes MutL-homolog-1, O-6-methylguanine-DNA
methyltransferase (MGMT) or breast cancer type 1 susceptibility
protein, the cell cycle regulator Adenomatous polyposis coli [11,13]).
On one hand, hypomethylation (which is estimated to be 20-50% less
than normal in cancer) by disrupting the normal state of the
chromatin, was shown to lead to chromosome instability by rendering
accessible regions often containing retro-transposons (such as LINE-1
repeats), satellite DNA, and moderately repeated DNA sequences,
whereas genes containing CpG clusters become hypermethylated,
rendering them transcriptionally silent [4,12,14,15]This often includes
promotor regions for genes themselves implicated in methylation (such
as DNA methyltransferases) as is also observed in an inflammatory
disease RA [16]. On the other hand, hypermethylation resulting in
gene silencing can become so extensive that it has been tagged as
addictive [17].

In SLE there is hypomethylation of promoter for genes
overexpressed in the disease (Integrin, alpha L (ITGAL), CD40-Ligand,
Perforin-1, CD70, Interferon gamma receptor 2, Matrix
metalloproteinase-14, Lipocalin-2 [18-22] causing T-cell hyperactivity
to perpetuate inflammatory responses [23-25], B cells to overexpress
CD5 promoting autoimmunity [26]. In RA, synovial fibroblasts are
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though to play a role in the initiation and perpetuation of the disease
[27]. These cells were found to be globally hypomethylated resulting in
the overexpression of inflammatory cytokines [28-30], similarly to
LINE-1 elements [31,32]. On the other hand, hypomethylation of CpG
islands in the IL-6 promoter gene resulting in overexpression
contributes to B-cell responses [33,34] Synovial cells resistance to
apoptosis was also associated with hypermethylation of death receptor
3 (DR-3) gene [32,35-37]. In type 1 diabetes mellitus (T1DM) there is
global hypermethylation related to altered metabolism of
homocysteine in T-cells modulating their maturation and cytokine
gene expression [38,39]. Multiple sclerosis (MS) is a unique case as the
autoantigen (myelin basic protein) is known. The promotor of the
peptidyl arginine deiminase type II (PAD2), the enzyme modifying
myelin, is hypomethylated [40,41]. Systemic Sclerosis (SSc) is
characterized by excessive collagen deposits in skin and other tissues.
Hypermethylation of the Fli1 promoter, the transcription factor
inhibiting collagen production is associated with this pathology
[42,43].

Histone modification
DNA packaging includes wrapping around nucleosomes which can

be more or less spatially tightened/loosen by post translational
modification of the chromatin (DNA and histones proteins), allowing
transcription to take place with more or less efficacy. Histones notably
serve as building blocks to package DNA into higher or lower order of
chromatin fibers and as such coordinate the changes between
heterochromatin (tightly packed DNA “closed” to transcription) and
euchromatin (exposed DNA, “open” for the binding of transcription
factors [44]. Again, histone modifications (methylation, acetylation,
phosphorylation, ubiquitination, sumoylation or biotinylation) follow
a very specific pattern in healthy situation which can be altered by
diseases. The loss of a particular modification (histone H4 lysine 16
acetylation (H4K16ac)) affects telomeres length during normal ageing
and is targeted in cancer towards immortalising cells [11,45]. Both
qualitative and quantitative changes in histone modifications are
observed in cancer (much literature available), including many
position and type of modification: H3K4me3, H3K4me2, H3ac are
heavily enriched genome wide while H3K4me1 and H4ac shown
reduced enrichment, H3K4me1 and H3K36me3 display aberrant
distributions whereas H3K9me1, H3K20me1 and H3K27me1 show
elevated levels of modification at specific gene loci and high levels of
H3K27me2, 3, H3K79me3 H3K9me2, 3 were linked to gene repression
or silencing). The expression of specific genes is also modulated at
individual levels through such mechanisms in advanced cancers and
metastasis either activating oncogenes (Myc) or silencing tumor
suppressors (p53) [46-49]. Again, the machinery involved in making/
erasing such modifications is often itself the target of dysregulation by
these mechanisms (histone acetyltransferases, histone deacetylase)
[11,50,51].

Nucleosomes are the primary inciting antigen in SLE. Histones are
rendered immunogenic by the introduction of modifications
(H3K4me3, H4K8, H3K27me3, H2BK12ac) during apoptosis, leading
to the development of auto-antibodies [38,50-55]. In RA, the activity of
HAT and HDAC is altered through histones acetylation resulting in
matrix metalloproteinases and their regulators mediating cartilage
destruction [56-58]. In mice models, histones hyperacetylation was
associated with the induction of cell cycle arrest via p16 and p21
cyclin-dependent kinase inhibitors and a decrease in tumour necrosis
factor- alpha synthesis the downregulation of hypoxia inducible factor
and vascular endothelial growth factor ameliorating arthritis [58-60].

In T1DM, a few genes associated with autoimmunity and
inflammation (cytotoxic T-lymphocyte-associated protein 4 (CLTA4),
transforming growth factor-beta, nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), mitogen-activated protein
kinase p38, toll-like receptors, and Ineterleukin-6) were shown to
exhibit dysregulated histone modification (H3K9me2) in lymphocytes
[61-63]. Cardiovascular complications were also associated with
Histone modifications (H3K4 and H3K9) [62-64]. In MS, increase in
histone acetylation in the white matter was observed as well as
hyperacetylation of histones in the promoter region of inhibitory genes
involved in oligodendrocyte differentiation (Transcription factor 7-like
2, DNA-binding protein inhibitor ID-2, and sex determining region Y-
box 2 (SOX2)) [65].

Nucleosome positioning
Nucleosome positioning patterns play an essential role in regulating

gene expression. Nucleosomes too close to a transcription start sites (as
small as 30 BP shit) may prevent transcription factors’ to access the
DNA hence, a nucleosome-free region need to allow the assembly of
the transcription machinery [66]. Nucleosome positioning is itself
regulated by as well as can influence DNA methylation [67]. This
mechanism is important but has been studied in less detail so far.
High-resolution genome-wide maps of nucleosome positions have so
far provided much information about the organization of gene
promoter and how this can facilitate or inhibit transcription [68].
Nucleosome position was notably shown to alter the pattern of
expression of different splicing forms of genes responding to
progesterone stimulation in breast cancer cells [69].

In RA, the binding of transcription factor NF-κB to target gene
appear altered by nucleosome positioning [70]. Difference in
nucleosome distribution was also associated with genetic susceptibility
to several autoimmune diseases (asthma, T1DM, Crohn’s disease,
cirrhosis) [70]. A polymorphism in region 17q12-q21 was associated
with changes in expression of 2 genes (gasdermin B and ORM1-like 3
(ORMDL3)) resulting in allele-specific change in nucleosome
distribution [70].

Technological advances
Analysing methylation at the genome level (epigenome-wide

EWAS) is now relatively accessible. DNA methylation arrays
technology is robust although it is dependent on the identification of
CpG islands across the genome. The Human Methylation-450K CpG
BeadChip kit has now been widely used, offering comprehensive
coverage (96% of the known islands/promoters) and an affordable
solution; however targeting only known promoters. The second
generation EWAS kit (850K CpG) will offer coverage of promoters and
enhancer, allowing more insight into to fine details of gene expression
regulation. Microarrays may be replaced in the future by next
generation sequencing technologies [71]; however, microarray are still
very useful to pilot project or for large-scale experiments. The
methylated DNA immunoprecipitation (MeDIP) technology [72]
allows to immunoprecipitate single-stranded DNA fragments
containing methylated DNA on a large scale for a chromosome or the
whole genome. Combined with next-generation sequencing, MeDIP-
Seq can stream down the analysis of the methylome by imputing
methylation enriched DNA. Despite databases such as the
GenomeStudio Browser displaying valuable information about
chromosomal coordinates, island, percent GC, location in the CpG
island allowing the analysis of the differential methylation between
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samples of interest; it still remains quite difficult to analysed genome
wide epigenetic data [73,74]. Tools are available; however they are
much less advanced than in the genetics or gene expression filed
[75-77]. One the main issue is that tissues are formed of different types
of cells and each will have a different epigenetic signature, and unlike
genetic information (static), epigenetics is changing with time
(dynamic). New bioinformatics tools are also trying to combine GWAS
data with EWAS data, to integrate genetic and environmental exposure
information into disease context, however no publicly available
databases for EWAS data have been set-up yet. The metyhylation
profile of repeated element (ALU, LINE SINE) mobile elements has not
been fully completed and the impact of the repeat sequences has not
been incorporated into the available tools to analyze EWAS.

Chromatin Immunoprecipitation (ChIP) represents the gold
standard for analyzing protein based epigenetic marks [78]. It offers
very specific information on proteins (histone or transcription factors
(TF)) associated with a particular genomic region, such as a promoter.
Due to the immunoprecipitation step, it looks at one particular
modification or TF (targeted by the antibody) but can be coupled to
PCR for one specific gene (as for biomarker development) or next
generation sequencing to assess the overall role of that
modification/TF. Histone profiling also requires high-quality
monoclonal antibodies of which few are commercially available. A
major effort by the NIH Epigenome Roadmap has launched a
programme towards generating antibodies against all major histone
modifications to be made readily available to investigators.

Epimutations: cause or consequences?
Distinct defect associated with epigenetic mechanisms are now

widely reported in cancer (and start to be described in other diseases).
Furthermore, many factors with long lasting association with diseases
(mostly cancer); do not have mutagenic ability despite being classified
as carcinogens (arsenite, chlorobenzene, nickel). These (as well as
teratogens) were shown to exert their effect through epigenetic
mechanisms [79, 80] providing further links between such mechanism
and the occurrence of diseases.

These often target genes implicated in DNA repair as much as the
epigenetic machinery itself. The question then arises whether they
were an early event leading to carcinogenesis or a later consequence of
the overall genetic instability. Point or larger size mutation are unlikely
to be causing major cell function disruption if not associated with a
mechanism allowing the development of the phenotype (cancer, other
diseases) associated with the expression of these defective genes. DNA
repair mechanisms are also challenged by the presence of methylated
cytosine, creating a “lesion” that cannot easily be discriminated and
resulting in an increase in G:T mismatch mutation. A conceptual
argument was therefore made for an early involvement as a mean to
lower the “proof reading” capability of cells, allowing DNA damage to
persist unchecked. Accumulation of DNA damage thereafter can cause
further increase in epimutation and vice versa [81]. Similar
epimutations were also found in the area surrounding tumors
suggesting a wider local perturbation possibly being the cause of an
initial epigenetic event. If much descriptive work has demonstrated the
presence and effect of such alterations, the precise nature of an original
epigenetic switch is still elusive, in cancer as well as on other diseases
although in the case of autoimmune disorders, inflammation appears a
likely candidate. Nonetheless, the development of aberrant
epigenomics was associated with all phases of cancer from initiation,

promotion, invasion, metastasis, and chemotherapy resistance
[5,8,82-89] both at the genome wide and gene specific levels.

Epigenetic biomarkers
Since epigenetic marks are non-permanent, it was hypothesized that

epigenomic profiles or specific epigenetic changes could be used to
diagnose diseases, establish stages or predict response to treatment.
Profiling methylation and acetylation with high accuracy is now a
relatively “easy” approach thanks to recent advances in epigenomic
analysis technologies. Epigenetic marks being defined as hallmarks of
certain diseases, specific methylated CpG sites were investigated as
biomarkers for diagnosis, staging, prognosis, and prediction of
response to therapy [90]. For example hypermethylation silencing of
certain loci (cadherin-13 (CDH13), myogenic regulator MYOD1,
MGMT, cyclin-dependent kinase inhibitor p16-INK4b, glutathione S-
transferase P, Ras association domain-containing protein 1, retinoic
acid receptor RARB2, APC,) was specific to several cancer types
[8,91,92] providing diagnostic value. Similarly, the hypermethylation
of p16 and CDH13 has been associated with higher death risk and
relapse [93]. Repetitive or mobile DNA elements (SINEs and LINEs)
are hypomethylated in cancers [94], although to date the clinical utility
of this remains unclear. Certain histone acetylation were also
associated with poor prognosis [95,96], while other had diagnostic
value [97]. Several chemotherapy drug are attacking the genome
although for cancer cell to dye (by apoptosis), methylation and
silencing of DNA repair mechanism must not have taken place yet
hence, investigating these provides a means to predict response to
treatment [98-101]. These observations still need to be reproduced and
validated in large patient cohorts but implementation may not be far
from clinical practice [96,102,103].

Epigenetic biomarker assay have therefore been developed by
several companies. A test for the loci specific analysis of DNA-
methylation levels was developed (Cygenia) for the complement
component 1 subcomponent R (C1R) gene which is indicative of
overall survival in acute myeloid leukemia (AML) [104]. Metastatic
colorectal cancer patients with a lack of response to certain drug
combination was associated with hypermethylation of the decoy
receptor 1 (DCR1) gene [105]. Based on this a predictive biomarker
test was introduced measuring levels of hypermethylation of the DCR1
gene. Further test will soon offer the possibility to measure the global
methylation level at the DNA-methyltransferase 3A (DNMT3A) locus
(epimutation) as a prognostic factor for AML [106]where both
mutation and epimutations were associated with an elevated risk score
and poor prognosis (patent pending)). Another will quantify the
abnormal shortening of telomeres epigenetically controlled at the PR
domain containing-8 (PRDM8) gene in association with ageing and
aplastic anemia or dyskeratosis congenital [105] Episona. The field is
less advanced in other diseases although, the role Th17 cells in
autoimmune diseases has been established and quantifying these cells
in the blood of patients with RA using a commercial assay detecting an
epigenetic mark on the IL-17 gene was recently proposed as a
diagnostic marker for RA [107].

Therapy targeting epigenetic mechanisms
Treatment (and prevention) strategies nowadays must take in

consideration the role of epigenetic changes in the pathogenesis as well
as progression of diseases. On the other hand, epigenetic changes are
not permanently imprinted but result from enzymatic modifications of
the DNA or histones. As such a therapeutic rational was developed to
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target such reversible changes. The epigenetic enzymes are the target of
drug design for activity inhibitors mostly of the DNMT or HDAC. 5-
azacytidine and 5-aza-2′-deoxycitidine are both nucleoside analogs
and DNMT inhibitors. They showed much promises in in vitro model
but due to the fact that these drugs affect the epigenome widely, that
they cannot penetrate deeply inside solid cancer mass and have severe
toxic side effects, they are now being replace by other means of
targeting DNMT, which are more specific and less toxic (anti-sense
and small molecule) [108,109]. In clinical trials, HDAC inhibitors
(butyrate, trichostatin A (TSA), depsipeptide, oxamflatin, MS-275)
showed better tolerability and more activity with objective tumor
regression [110,111]). They appear to induce the expression of
regulators of the cell-cycle, causing cell-cycle arrest [110,112]. A
combination of DNMT and HDAC inhibitors has been proposed as a
novel approach for therapeutic intervention as it showed a synergistic
reactivation of tumor suppressor genes and an enhanced antineoplastic
effect against tumor cells [95]. Procainamide and hydralazine are two
drugs used in SLE that are ultimately result in the inhibition of DNA
methylation through different pathways [113-119].

Epigenetic is often associated with the quote “We are what we eat
and breath” as a recognition of the impact of our diet and environment
on our health [120]. Relationships between these factors and cancer
and other diseases have been clearly established [94,121,122]. Glucose
and insulin levels are factor regulating methylation by modulating the
activity of DNMT [123-125]. Several component of our diet were
shown to have inhibitory activity on the epigenetic machinery such as
dietary chemopreventive agents (butyrate, diallyl disulfide,
sulforaphane) on HDAC [126], a plant molecule (resveratrol) on
Sirtuin-1 [127] and green tea (polyphenols and phenethyl
isothiocyanate) on both DNMT and HDAC [128,129]. On the other
hands, transposons and other mobile genetic elements can be activated
by different types of environmental stress including dietary stress
[130-131].

Conclusion
The underlying goals for most epigenetic research is both to

understand the role of epigenetic mechanisms in health and diseases
and ultimately, to developed biomarkers or therapeutic interventions.
Epigenetic has certainly delivered many new insights into the
understanding of the initiation, progression and response to therapy
for diseases such as cancer and autoimmune conditions. Recent
advances in technologies are with no doubts an important factor in this
and will certainly continue to contribute novel development in the
biomarker field. The therapeutic potential of novel HDAC and DNMT
inhibitors is promising and following from the genetic and then the
transcriptomic and proteomic eras, epigenetic may now offer the
missing link allowing the integration of our life experience into our
health.
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