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Abstract

The epigenome refers to the complete set of heritable chemical modifications made to DNA and histone proteins.
Certainly, the most well characterized epigenetic mark is the covalent addition of a methyl group to a CpG
dinucleotide site in the genome. The DNA methylome—a collection of methyl marks established during
embryogenesis—creates a complex regulatory network involved in cell type differentiation, homeostasis and
regulating gene expression in response to environmental stimuli and stress throughout life. Collectively, an
increasing body of research supports the notion that over time, diverging methylomes may account for substantial
phenotypic discordance in monozygotic-twins and explain disparate susceptibilities to age-related disease. We
review this evidence and discuss how a greater insight into the mechanisms of age-related epigenetic dysregulation
may inform strategies for molecular diagnostics and therapeutic intervention.

Keywords: Methylome; Epigenome; Age-related disease; Epigenetic
drift; CpG island; Methylome wide association study (MWAS);
Monozygotic twins (MZ); Hutchinson-Gilford progeria syndrome
(HGPS); Alzheimers disease (AD); Rheumatoid arthritus (RA); Type-2
diabetes (TD2); Stem cell exhaustion; Histone deacetylase (HDAC);
Reactive oxygen species (ROS).

Introduction
The term epigenetics first arose to describe heritable changes in

gene expression that did not involve changes to the base pair coding
sequence of DNA, and to explain, in part, how cells with an identical
genetic make-up can give rise to completely different tissue types [1].
A central effector involved in this process is DNA methylation,
established by the covalent addition of a methyl group to cytosine
residues in the context of cytosine-guanine di-nucleotides (so called
“CpG sites”) by DNA methyltransferase (DNMT) enzymes [2,3]. CpG
sites are often not in isolation: rather, they are embedded in the
genome as discrete clusters of CpG sites (termed CpG islands) that
range in size from 0.5 to 2 kilobases and are frequently located in the 5’
adjacent regions of transcriptional start sites [3]. With the advent of
improved genome-wide methods to interrogate the methylome,
discrete functional CpG sequences are continually being defined, for
example CpG sites adjacent (within 2 kb) to CpG islands called “CpG
islands shores”, which are closely associated with somatically heritable,
tissue-specific methylation patterns [4].

More than half of the genes in the genome contain CpG islands
within their promoter and these islands are usually unmethylated in
normal cells [3,5]. Methylation of CpG islands, however, can be
detected at small subgroups of autosomal genes (<10%) in a tissue-
specific manner. The functional role of CpG island [6] and CpG sites is
context and loci specific and has been reviewed recently by Jones et al
[7].

The establishment of the neonate methylome during embryogenesis
is critical to development. Shortly after fertilization, the paternal and
maternal genomes combine in the same cell and DNA methylation

patterns are nearly completely erased [8-10]. Remarkably, select genes
remain “imprinted” with methyl marks corresponding to the parent of
origin and these imprinted genes are often maintained throughout the
life of the offspring [10]. Genomic imprinting results in the restriction
of gene expression to either the maternal or paternal allele [11].

Figure 1: (A) Epigenetic maintenance of methylation at CpG
dinucleotides. (A) Schematic illustration of the classical
maintenance model for the propagation DNA methylation marks.
After each round of replication, DNA is in a hemi-methylated state,
with the daughter strand bearing nascent unmethylated CpG sites
and the parent harboring the original CpG methylation status.
Hemi-methylated DNA may undergo passive demethylation with
another round of replication diluting out remaining methyl-CpG
sites or hemi-methtylated DNA can be restored to its original
methylation state through the activity of DNA methyltransferase 1
(DNMT1) maintenance enzymes. Ten-eleven translocation
methylcytosine dioxygenases (TET) enzymes actively demethylate
DNA.

Methylation marks are established throughout embryological
development by de novo methyltransferases DNMT3a and DNMT3b
[12]. Until recently, it was thought that as lineage specificity is
established, DNMT3 enzymes were shut off and DNMT1 was
expressed in order to maintain tissue specific methylation patterns in
differentiated cells. However, there is increasing evidence that
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DNMT3a is active in regulating gene expression in adult somatic cells,
for example in mature neurons related to learning and memory
[13,14]. The hypothesized first step in active cytosine demethylation is
thought to be mediated by the recently discovered TET enzymes (ten-
eleven translocation methylcytosine dioxygenases), which are able to
catalyze the conversion of 5-methylcytosine (5mc) to 5-
hydroxymethylcytosine (5hmc) [15,16]. Together, active methylation
and demethylation events offer a model for the dynamic regulation of
the genome (Figure 1A).

In combination with covalent modifications to histone (chromatin
proteins) tails, somatic heritability of DNA methylation marks
established during development leads to the persistence of highly
tissue and cell type specific patterns of methylation [4,17-19]. For
example, hypo methylation of the SRY (Sex-determining region on the
Y chromosome) gene, encoding the master regulator of testis
differentiation, results in transcriptional initiation of this gene
exclusively in the gonads. In other tissue types, SRY is hyper
methylated at the promoter region [20]. Additionally, differential
methylation seems to be a critical mechanism involved in tissue
reprogramming during the establishment of induced pluripotent stem
cells (iPS) from somatic cells [21,22]. Because epigenetic events are
dynamic and may be established in the absence of cell division, they
can give rise to functional advantages that can be preferentially
selected at much higher rates than somatic mutations and as such, are
often early events in disease development [23,24]. There are a
multitude of large-scale coordinated efforts to catalogue DNA cytosine
methylation patterns and histone marks in the human epigenome [25],
with additional efforts focused on the cancer epigenome [26].

In addition to DNA methylation marks, much of the functionality
of the genome is dictated by the secondary structure of chromatin. At
the smallest scale, the cell’s genome is made up of two meters of helical
DNA approximately 2 nm in width [27,28]. Helical DNA is further
compacted by being wrapped in 1.65 superhelical turns around histone
octamers forming a 10nm fibre, resembling “beads-on-a-string”
[29,30]. Histone tails throughout the genome are subject to post-
translational modifications, most commonly: acetylation, methylation,
phosphorylation and ubiquitinylation. These modifications serve as
binding sites for effector proteins, which read, write and erase histone
marks and alter the degree of chromatin compaction accordingly [31].
In this way, the “histone code”—defined by combinations of distinct
histone tail modifications—regulates dynamic transitions between
transcriptionally active and silent chromatin states [32].

Aging is characterized by a gradual loss of tissue function,
physiological integrity, reduced fidelity of cellular processes and
functions, such as DNA repair, and ultimately an increased
susceptibility to cell death. Disruptions of epigenetic processes are risk
factors in several age- related human pathologies such as Hutchinson-
Gilford Progeria Syndrome (HGPS), Alzheimer’s disease (AD),
Rheumatoid Arthritis (RA), Type-2 diabetes (TD2) and cancer. Aging
research has experienced an explosive growth over recent years and
many of the hallmarks of aging are now being elucidated (reviewed in
[33]); however, a greater understanding of the epigenetic pathways
contributing to age-related disease and the control of the rate of aging
is needed. Here, we review the current state of knowledge of how the
epigenome changes with age, and therefore may be involved in age-
related diseases, and we further summarize plausible mechanisms
mediating methylation drift.

Epigenetic Changes in the Aging Cell
At the whole genome level, aging is associated with a global loss of

DNA methylation [34-36] and a concurrent, site-specific, increase in
DNA methylation [37-40]. The positive correlation between increased
methylation of CpG islands and shores with age was confirmed by a
recent MWAS (methylome-wide association study) conducted on
blood DNA from 718 men and women ranging in age from 25–72
[41]. In this study age-related methylation changes mapped to
multiple genes, including: protocadherin genes (implicated in neural
circuit development), homeobox genes (associated with aging and
cellular senescence), ryanodine receptor genes (linked with aging and
senescence) and mitogen-activated protein kinase genes (involved in
regulating senescence) [41]. To define intra-individual methylation
changes associated with aging, a longitudinal study compared global
DNA methylation patterns of blood sampled from the 126 subjects, 16
years apart and found time-dependant marks of aging, including
among others, Absent In Melanoma (AIM2) and Colony-Stimulating
Factor 3 Receptor (CSF3R) [42]. Interestingly, AIM2 is an
immunological mediator promoting the release of pro- inflammatory
cytokines in senescent cells that contribute to age-associated
inflammatory diseases [43,44].

Changes to the epigenome are thought to contribute to the
physiological, and even behavioural, changes that arise through the
process of aging [45]. A classic system in which to study the role of
non-genetic factors in aging are monozygotic twins (MZ). A study by
Manel Esteller’s group showed that MZ twins, though they share
virtually identical DNA sequences, display significant epigenetic
differences that could account for phenotypic discordance between
them [46]. The epigenomes of young MZ twins are very similar but
patterns of methylation in MZ pairs diverge as they age. Epigenetics
represents the crucial link between the genome and the environment;
thus, epigenetically distinct landscapes in older twins can be explained,
in part, by exposure to different environmental factors. Lifestyle
choices, such as smoking habits, physical activity and diet, all
contribute to the formation of age-accumulated epigenetic layers that
modulate patterns of gene expression [46]. Further, it was shown that
MZ twins who had spent more time apart had significantly different
epigenomes and concomitant gene expression profiles than MZ twins
who had lived together and shared a similar environment [46,47].
Indeed, epigenomic analysis of a rare pair of MZ twins discordant for
Alzheimer’s disease (AD) revealed substantial differences in DNA
methylation in the temporal neocortex [48].

Clearly the phenotype of an organism is dependent upon both
genetic and environmental variance; however, there is a noteworthy
third factor that contributes to phenotypic discordance and that is
biological stochasticity. A study performed in clonal crayfish found
that there was significant developmental variability of the crayfish, at
all life stages, despite having identical genomes and being raised in the
same environment [49]. Therefore, contributions to epigenetic and
phenotypic variability may also arise from a combination of genetic,
environmental, and ill- defined “stochastic” factors [37].

Another epigenetic layer of the histone code is also known to have a
distinctive profile in aging and in cancer. Generally, open or
euchromatic chromatin structures are associated with acetylation of
histone tail residues and de-acetylation of these residues are associated
with closed or heterochromatic chromatin states; however, the
establishment of a combinatorial pattern of multiple types of histone
post-translational modifications ultimately directs chromatin
compaction and guides gene expression. It has been well documented
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that modulation of the histone code has profound effects on a
multitude of nuclear processes, such as DNA damage repair,
heterochromatin maintenance, gene expression and telomere attrition,
which are linked with aging. For example, the histone mark
H4K20me3 (i.e., tri methylation of the lysine (K) that is the 20th amino
acid on histone 4) is prevalent in differentiated tissues [50] and is
known to increase with age [51]. Further, independent studies
corroborate that methylation of H4K20 increases progressively with
age in murine models and the abundance of this mark is positively
associated with senescence [38,51]. While histone modification maps
are likely relevant to aging phenotypes, exactly how changes in
patterns of histone modifications contribute to the pathophysiology of
aging remains to be elucidated.

Epigenetic defects acquired throughout life are believed to affect the
behaviour of adult tissue-specific stem cells [52]. The declining
function of these somatic stem cells, a process known as stem cell
exhaustion, contributes to reduction in repair capacity, tissue
homeostasis and loss of physiological integrity [33]. This attrition of
stem cell activity can arise due to age-related accrual of genetic lesions
(reviewed in [53]) and epigenetic alterations (reviewed in [52]).
Studies in murine models show that nascent haematopoietic stem cells
(HSCs) undergo asymmetric cell division more frequently than aged
HSCs [54]. Although the number of stem cells does not necessarily
decrease with age, their functional regenerative capacity (ability to
make more progenitors) diminishes, leading to a loss of proliferative
potential and tissue reconstitution [54]. Thus, older individuals, whose
stem cells have undergone successive rounds of DNA replication and
have been subjected to a greater degree of genetic and epigenetic
instability, are more prone to stem cell exhaustion, loss of tissue
homeostasis (one of the hallmarks of aging) and development of age-
related disease, such as cancer [53,55]. Some have hypothesized that
the secrets of youthfulness and age are inextricably linked to the
epigenetic states of adult stem cells and their capacity for quiescence
and self-renewal (reviewed in [56]).

Epigenetic Changes in Age-related Diseases
Since epigenetic systems normally modulate profound expression

and phenotypic changes throughout a cell’s life, it follows that
dysregulation of epigenetic patterns, as observed with aging, may
contribute to age-related disease. The information contained in the
epigenetic state of DNA and chromatin influences the expression of
well-documented oncogenes, such as cMYC, TERT (regulators of
proliferation and replicative immortality), and tumour suppressor
genes, such as P53 and RB1 (regulators of senescence, among other
features) [57]. Abnormal expression patterns of oncogenes and
tumour suppressor genes have profound effects on the initiation and
development of many cancer types [58]. Interestingly, many of the
epigenetic alterations and chromatin changes that are hallmarks of
aging [33], are also closely linked to cancer susceptibility and
tumorigenesis [58-60]. For example, in cancer, DNA hypomethylation
occurs globally frequently at repetitive DNA elements, which is
thought to contribute to increased chromosomal instability [61,62]
and the activation of transposons [63] (Figure 1B). Further, in
malignant cells, tumor-type-specific transcriptional silencing of
tumour suppressor genes (TSGs) is strongly correlated with
hypermethylation of their associated promoters [64-76]. The same
trend—widespread DNA hypomethylation and focal CpG island
hypermethylation—is also observed in epigenome of human senescent
cells [57]. Hypomethylation of interspersed repetitive sequences, such

as Long Interspersed Elements (LINEs), Short Interspersed Elements
(SINEs) and LTR retrotransposons, occurs progressively with age and
is linked to a decline in organ function [77-81]. Additionally, an age-
dependant hypermethylation signature can be seen in the promoter
regions of genes normally targeted by Polycomb Group (PcG)
proteins, which are proteins involved in transcriptional silencing [82].
Interestingly, this age-PcG target methylation profile can be used to
distinguish normal cells from pre-invasive cancer cells [82].
Methylation changes associated with aging have also been observed in
the transformation of a normal cell into a cancer cell (reviewed in
[35]), thus some have suggested these changes may contribute to the
increased risk for cancer with age [59].

Figure 1: (B) Pattern of DNA methylation marks during aging and
cancer. CpG sites in the promoter regions of genes undergo focal
hyper methylation in aging and cancer; while, intra and extragenic
repeat regions as well as transposable elements show an increased
propensity for demethylation, leading to genomic instability. TSG:
Tumour Suppressor Gene.

One disease that might reveal clues about the physiological
mechanisms of aging is Hutchinson-Gilford Progeria Syndrome
(HGPS)—a rare disorder causing affected individuals to age at ten
times the normal rate [83]. Patients with HGPS usually manifest
symptoms of aging, such as limited growth, hair loss, wrinkled skin
and lipodystrophy, at a very early age [83-86], and typically die from
cardiovascular disease or atherosclerosis at around 13 years of age
[83]. Progeria is caused by a mutation in the LMNA gene, encoding
for nuclear lamina, which is present on the inner side of the nuclear
membrane (reviewed in [87]). Nuclear lamin are fibrous proteins
which form a highly dynamic meshwork between the inner nuclear
membrane and chromatin [88]. Mutations or aberrant splicing of
lamin-A results in the accumulation of a dominant negative form of
lamin-A, called progerin, that becomes constitutively farnesylated and
anchored in the nuclear membrane [86]. Progerin accumulates
gradually as a physiological consequence of normal aging; however, in
HGPS patients, progerin agglomerates at an accelerated rate. Increased
levels of nuclear progerin have been linked to many age-related
phenotypes including: telomeric aberrations, defective DNA repair,
mitochondrial dysfunction, altered cell cycle regulation and cellular
senescence [86,89,90]. Interestingly, the epigenetic architecture of
HGPS mimics the epigenetics of normal aging [86].

Nuclear lamins play a crucial role in higher order chromatin
organization and the regulation of gene expression (reviewed in [91]).
Recently, it has been shown that epigenetic modifications known to
regulate the dynamics of chromatin organization might be involved in
the underlying physiology of HGPS [86,92,93]. In HGPS cells, the
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non-random arrangement of chromosomes into discrete territories is
perturbed due to the presence of abundant progerin. The
consequences of such distortion are a loss of peripheral
heterochromatin, rampant nuclear disorganization and nuclear
lobulation or blebbing [89,94]. Of note, several proteins involved in
maintaining nuclear architecture, such as barrier-to-autointegration
factor (BAF) [95], inhibitor of growth protein 1 (ING1) [96] and D4Z4
[97], are also frequently lost in progeroid cells. In addition to
aberrations in nuclear architecture, HGPS patients display a
substantial down regulation of the histone variant γH2AX, an
important marker of DNA repair. This down regulation of γH2AX
likely contributes to the accumulation and persistence of DNA damage
in HGPS cells [98]. As is the case with cellular senescence, fibroblasts
from individuals with HGPS display a loss of two histone marks
associated inactive chromatin, H3K27me3 and H3K9me3 [93,99,100].
In support of these findings, it has been shown that pericentric regions
(genomic regions normally embedded in silent chromatin) are
transcriptionally active in HGPS cells that lose H3K27me3 [99]. In
addition to loss of H3K27me3 and H3K9me3, loss of H4K16
acetylation, a mark important in the DNA damage response, has also
been reported in an animal model of this disease [101]. Interestingly,
treatment of mice with sodium butyrate, a compound that inhibits
histone deacetylase enzymes, revived levels of H4K16 acetylation and
rescued mice from the progeroid phenotype [101].

Other non-oncogenic diseases, such as Alzheimer’s disease (AD),
are strongly associated with aging and can also be linked to specific
epigenetic alterations [102,103]. AD is a progressive
neurodegenerative disorder that can occur in old age and is often
characterized by accumulation of amyloid β peptides and abnormally
phosphorylated tau proteins [104,105]. The altered methylation state
of the AD brain typically results in gene expression alterations in two
primary pathogenic pathways: amyloid precursor protein (APP)
processing and tau hyper phosphorylation [102,106]. For example, one
study found that glioblastoma cells which express 2.6-fold higher levels
of APP display a global reduction DNA methylation and this
hypomethylation resulted in the ectopic expression of several AD-
associated genes such as PS1, BACE1 and APP itself [107]. In the rat
model of AD, increased H3 acetylation and decreased promoter
methylation in the region of cyclin dependant kinase 5 (cdk5), lead to
increased hippocampal cdk5 activity, tau phosphorylation, synaptic
dysfunction and memory loss [104].

It has been shown that DNA methylation in the forebrain, which is
maintained by Dnmt1 and Dnmt3a, is intricately involved in
regulating synaptic function and memory formation [108-110] Indeed,
both aging and cognitive impairment are associated with global DNA
hypomethylation and widespread down regulation of Dnmt1 and
Dnmt3a in the hippocampus [111,112]. This finding is exacerbated in
individuals with AD [113-115]. Thus, aging-associated defects in
hippocampal DNA methylation might underlie the spatial memory
deficits characteristic of AD. Interestingly, a genome-wide brain DNA
methylation study found that many differentially methylated genes
identified in late-stage AD brains also occurred in presymptomatic AD
brains, raising the possibility that these DNA methylation alterations
may be an early feature of AD pathology. Early DNA methylation
alterations at ankyrin 1 (ANK1), disco-interacting protein 2 (DIP2A),
rhomboid family member 2 (RHBDF2), ribosomal protein L13
(RPL13), SERPINF1 and SERPINF2 are connected to a network of
known AD susceptibility genes and may have a role in the onset of AD
[116]. In another study, two genes, SORBS3, involved in cell adhesion,
and S100A2, a calcium binding protein, have been found to become

progressively more methylated with age and their methylation
becomes accelerated in patients with AD [95]. However, not all genes
implicated in AD pathogenesis are associated with age-related changes
in DNA methylation. One gene involved in β-amyloid post-
translational processing, TMEM59, is hypermethylated in AD patients
but remains relatively unaffected in elderly controls [117].
Additionally, in other age-related diseases, such as rheumatoid
arthritis (RA) and type 2 diabetes (TD2), methylation changes have
been implicated–an MWAS identified characteristic methylome
signatures in RA [118,119] and work by Ronn et al. showed that age-
related promoter hypermethylation of COX7A1, a gene important for
glucose metabolism, might contribute to the onset of TD2 [120].

Mechanism of Age-related Methylation Drift
Since epigenetics is the interface between environmental agents and

genomic programming, it follows that the accumulation of
environmental damage correlates with epigenetic dysregulation and
with the pathogenesis of age-related disease [121]. One mechanism of
epigenetic dysregulation occurs through methylation drift— the
stochastic change in DNA methylation patterns at certain loci,
reflective of the imperfect maintenance of epigenetic machinery
[55,66]. Considering the accuracy of DNA methyltransferase enzymes
(95% for DNMT1), methylation patterns is bound to become
inaccurate with numerous passages through the cell cycle (Figure 2A)
[122-124].

Figure 2: (A) Mechanisms of epigenetic drift. External/endogenous
factors such as ROS, inflammation, diet and other environmental
stresses can cause lesions in epigenetic maintenance systems. Loss
of fidelity of methylation transferase enzymes (left) or
demethylation enzymes (right) leads to aberrant propagation of
CpG methyl marks and methylation drift. Disruption of enzymes
that modify the histone code (middle) can result in a rearranged
chromatin secondary structure and subsequent aberrant CpG
methylation. ROS: Reactive Oxygen Species; Dnmt1: DNA
methyltransferase 1; Dnmt 3a/b: DNA methyltransferase 3a/b;
HDAC: Histone Deacetylase; CRC: Chromatin Remodeling
Complex; TET: Ten-Eleven Translocation Methylcytosine
Dioxygenases; HMT: Histone Methyltransferase.

Stochastic differential methylation patterns that arise in aging
individuals create an epigenetic mosaicism that may allow for the
selection of biological defects leading to cancer and other age-related
diseases (Figure 2B) [2,55,66,125]. Generally, methylation drift
(differential site specific hypo- or hypermethylation) occurs in all
individuals past a certain age [41]; however, rates of methylation drift
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vary depending on local transcriptional activity [126], the methylation
state [127], histone tail modifications [128-130], polymorphisms in
gene sequence [131-133] and activity of trans-acting factors such as
DNMTs, TETs [134], DNMT3L [135], CTCFs [136] and long-
noncoding RNAs [137].

Figure 2: (B) Epigenetic changes may initiate cancer phenotypes by
priming cells in such a way as to make them more susceptible to
subsequent pathological genetic or epigenetic changes. Young stem
cell populations, after successive rounds of replication and greater
accrual of epigenetic drift, become a mosaic population of stem
cells with epigenetically different landscapes. Continued replication
and epigenetic drift leads to stem cell exhaustion and/or selection of
cells with a proliferative advantage.

In addition to the dysregulation of enzymes that write the DNA
methylome, a critical regulatory mechanism of methylation drift lies in
the fidelity of enzymes that erase the methylome (Figure 2A). As
previously mentioned, the recently discovered TET family of
dioxygenases is believed to mediate the oxidation of 5mC thereby
priming it for removal by the Base Excision Repair pathways (BER)
[92]. Disruption of the epigenetic machinery responsible for active
demethylation can lead to age-specific 5hmC profiles [138] and/or
DNA demethylation profiles [139]. Interestingly, methylation drift is
associated with promoter hypomethylation of PSEN1 and APOE-
genes important in the age-dependant onset of neurodegenerative
diseases such as AD [139]. A major source of sequence mutations in
the human genome is spontaneous deamination of methylated
cytosines which occurs when methylated cytosines undergo hydrolysis
and subsequent conversion into thymine, resulting in a T:G base pair
mismatch [140]. This mismatch, leads to the general depletion of CpG
dinucleotides from mammalian genomes [141] and the accumulation
of sequence mutations which may be deleterious over time [142].

Chemical modifications to DNA are not isolated events, but occur
as part of a complex chromatin network that is mediated by extensive
cross talk between different post-translationally modified histone
structures and proteins, thus disruption of any one of these
components can lead to deleterious epigenomic effects [3,73,143-145].
One enzyme which modifies the histone code to regulate specific
biological process is Sirtuin1 (SIRT1)—an NAD+-dependant, class III
Histone Deacetylase (HDAC) that plays a role in senescence, aging
and cancer development [146,147]. HDACs, such [120] as Sirtuins,
can regulate gene expression by removing acetyl groups from lysine
residues on histone tails causing chromatin to re-order into a more
condensed transcriptionally inactive state [148]. Early studies of the
sirtuin homologue, silent information regulator 2 (SIR2), in multiple
organisms have shown that SIR2 can the increase life span [149-151].
Over the past years, studies in mammals have shown that SIRT1 is
expressed in most tissues and its expression is reduced in senescent
cells [152] and during aging [153]. Caloric restriction [154], cellular
stress [155-157] and polyphenols (such as resveratrol) [147] stimulate

the activity of Sirt1, which leads to cell survival and longevity by
increasing transcriptional silencing and genome stability, fat
metabolim and stress resistance [158]. The oncogenic potential of
Sirtuins stems from their role in controlling several central molecular
pathways, many of which are directly involved in cancer. For example,
Sirt1 directly deacetylates and inactivates TSGs such as p53 [159],
HIC1 [160] and p73 [161], and is implicated in the dysregulation of
energy homeostasis, the hypoxic response, the PI3K/AKT signaling
pathway, TGF-β signaling, Wnt signaling and DNA damage repair
(reviewed in [162]. At the chromatin level, upregulation of Sirt1
during tumorigenesis could lead to the establishment of a cancer-
specific histone modification profile [144,163,164]. Consistent with
the observation that Sirtuin proteins are tightly linked to cellular
metabolic pathways [165], upregulation of Sirt1 in mice has been
shown to ameliorate symptoms of a variety of age-related metabolic
diseases including TD2, AD and cancer [166].

Epigenetic Based Diagnostic and Therapeutic
Strategies

DNA methylation profiles are relatively malleable and are often
early neoplastic events, thus the exploration of epigenetic marks as
early detection, diagnostic and predictive biomarkers is an enormous
field of study (reviewed in [60]). Moreover, in contrast to DNA
sequence level alterations, epigenetic modifications are reversible.
Epigenetic based drugs which reverse aberrant DNA methylation or
histone profiles (albeit non-specifically) through the inhibition of
DNMT or histone modifying enzymes (specifically histone deactylase
inhibitors, HDACs) are approved chemotherapies for some
malignancies. The assessment and development of epigenetic-based
treatment strategies for a broad variety of cancer types is an active field
of cancer research [167]. Since the epigenome can also be modulated
by diet, prevention is an emerging field of research for malignant and
non-malignant disease. For example, epigenetic modifications
implicated in the pathogenesis of Alzheimer’s disease, such as genes
involved in neural pathways for learning and memory are found to be
hypomethylated in AD [168]; therefore, it is postulated that dietary
supplementation with methyl donors (i.e. folate) may help restore
cognitive performance that declines with age [169,170]. HDAC
inhibitors have also been shown to have potential clinical relevance in
AD; valproic acid, a pan-HDAC inhibitor, was shown to lead to a
reduction in β-amyloid production and alleviate behavioural deficits in
murine models of AD [171]. Currently, epigenetic-based drugs are
non-specific; however, as knowledge about the mechanisms guiding
specificity of epigenetic machinery emerges, the targeting of epigenetic
based therapeutics will no doubt improve. Encouragingly, since an
individual’s epigenome can be modulated by healthy dietary and
lifestyle choices (e.g., increased intake of vegetables, quitting/not
smoking); reduced risk of disease associated with these healthy choices
may be in part modulated epigenetically.

Conclusion
It is clear that the biological pathways underlying age-related

disease are associated with epigenetic dysregulation, however many
questions remain unanswered regarding i) the precise mechanisms
governing these processes, ii) timing and iii) interactions between an
individual’s environment, epigenome and genome. With the advent of
powerful new experimental pipelines built around high-throughput
next generation sequencing, initiatives such as The Encyclopedia of
DNA Elements (ENCODE) consortium [172,173] and The NIH
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Roadmap Epigenomic Mapping Consortium, have undertaken large-
scale coordinated efforts to catalogue DNA cytosine methylation
patterns and histone marks in the human epigenome. In conclusion, a
greater understanding of the epigenetic basis of age-associated
disorders is needed to inform the development of exciting new
therapeutic intervention and prevention strategies targeting these
diseases. As the population of elderly individuals continue to grow,
these questions become increasingly pertinent.
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