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ABSTRACT

A rogue wave epidemiological pattern has been identified as a predominant pattern in COVID-19 epidemiological 
series with emergent chaotic attractors for different world regions. In the present work, we study People Republic 
of China’s daily new number of confirmed cases of COVID-19 from 2020-01-03 to 2023-10-27, which provides 
for a long series with a rogue wave pattern, and apply to this series multifractal analysis, smart topological data 
analysis and chaos theory, finding that the rogue wave pattern is linked to chaos-induced multifractal self-organized 
criticality, the source of the rogue wave is shown to be associated with an emergent three-dimensional chaotic 
attractor with a three winged structure, explaining the rogue wave dynamics, the reconstructed attractor is shown 
to have exploitable topological information that can be used by adaptive A.I. systems to predict the daily number 
of confirmed cases of COVID-19 with a high level of performance, the predictability is shown to decrease in a 
several days ahead prediction and to be linked to the attractor’s Lyapunov time, k-nearest neighbors’ graph analysis, 
persistent homology and ordinal partition graph analyses are also applied and researched in their relation to the 
predictability of the target series. The implications of the results for epidemiology, risk science, complexity research 
and healthcare planning are discussed.

Keywords: COVID-19; Smart topological data analysis; Machine learning; Chaos theory; Multifractal self-organized 
criticality; Epidemiology; Healthcare management; Risk science

INTRODUCTION

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) responsible for the Coronavirus Disease 2019 (COVID-19), 
was first identified in the city of Wuhan in the Hubei province in 
People’s Republic of China and led to the COVID-19 pandemic. 
Different research into the virus, by different authors applying 
chaos theory methods, uncovered complex nonlinear dynamics and 
markers of chaos in the main epidemiological series for different 
countries and regions [1-6].

In [5] we applied a combination of topological data analysis, 
machine learning and chaotic time series analysis methods and 
uncovered evidence of a form of stochastic chaos characterized 
by emergent low-dimensional noise resilient chaotic attractors 
underlying the number of new positive cases of COVID-19 per 
million and the number of new deaths from COVID-19 per million 
for the different world regions.

In the number of new positive cases of COVID-19 per million we 
found that the attractors were all three-dimensional, with positive 
Lyapunov exponents and a high predictability when using adaptive 

Artificial Intelligence (AI) based systems, employing topological 
information to predict the main target epidemiological series. 
The main topological properties of these attractors were analyzed, 
applying further topological data analysis methods. Similar methods 
were also successfully employed in [6] for the US and Canada daily 
hospital occupancies from COVID-19 data, also uncovering the 
existence of noisy low-dimensional chaotic attractors.

In [5], two patterns were identified in the epidemiological dynamics, 
one was the multiple wave pattern, which characterized mainly the 
Africa region, the other dynamics was the rogue wave-like pattern, 
which characterized the remaining world regions. 

Rogue waves are a phenomenon in hydrodynamics that has been 
identified to occur in the sea as the formation of very large waves 
that correspond to waves that are at least twice as large as the 
significant wave height, rogue waves have been identified in large 
datasets with events including waves of 25 meters [7].

The occurrence of rogue wave-like dynamics in the epidemiological 
context as large exponentially rising epidemiological peaks in 
infections that then rapidly die out characterize a strongly turbulent 
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The frequent occurrence of power law decay in power spectra, 
also called 1/f-noise, in different systems’ dynamics was the main 
problem addressed in [15], in this way, the hypothesis of SOC was 
initially proposed as an explanation for this phenomenon. The 
initial proposal of SOC, therefore, addressed specifically fractal 
scaling signatures, especially associated with power law scaling in 
spectral analysis.

Indeed, while scale invariance in power law decaying correlations 
occur at critical points of phase transitions, the difference in SOC 
is such that features like power law decay in spectral analysis, event 
size distributions or fractal laws in spatially extended systems 
result from a self-organization, rather than a careful adjustment of 
a parameter, in this way, the system is considered to self-organize 
to a critical dynamical regime, where scale invariance occurs. The 
theory therefore addresses a bottom-up rather than top-down 
occurrence of fractal laws in systems’ dynamics.

However, in some systems’ dynamics, the hypothesis of a single 
fractal scaling law holding with a single characteristic exponent, 
that is, a monofractal scaling does not hold, instead the emergent 
dynamics shows a spectrum of multiple scaling exponents, that is, 
the emergent scaling is multifractal rather than monofractal [17]. 

Some systems near critical points can exhibit multifractal scaling 
[18]. In this way, multifractal scaling can occur at critical points, 
which raises the possibility of SOC occurring with multifractal, 
rather than monofractal scaling, an issue that has been studied and 
identified in models of SOC and in dynamics of complex systems 
that range from financial returns’ series to earthquakes and even 
the Earth’s magnetotail [12,14,19-21].

A system’s self-organization to a multifractal dynamical regime 
corresponds to what can be called Multifractal Self-Organized 
Criticality (MSOC), which is an expansion of the theory of SOC 
to deal with the emergence of multifractal scaling in systems’ 
dynamics. In this case, the criticality is not characterized by a single 
scaling law but, instead, by a spectrum of scaling laws, that is, a 
multifractal spectrum. 

Given a signal ( )x t , the multifractal scaling is given by the moments’ 
order relation [17]:
log{ [| ( ) ( ) | ]} ~ ( ) log( ).........................................(1)E x t x t s q qh q s− −

Keeping the lag fixed, the dependence upon the order is given by 
the product of the order by the generalized Hurst exponent ( )h q  
which can be a nonlinear function of the moment order. Keeping 
the order fixed there is a power law scaling with the lag, thus, 
different orders lead to different scaling slopes, which explains the 
basis of the multifractal spectrum, that is, different power scaling 
laws (fractal laws) for different moment orders.

When the dependence of the Hurst exponents upon the order 
corresponds to a general nonlinear function, the logarithm of the 
moments of the absolute variations for each lag, have a complex 
nonlinear dependence upon the moments’ order, which can 
depend upon the structure of the multifractal spectrum. In this 
case, the multifractal scaling function addressed in [17] becomes 
relevant:

( ) ( ) 1........................................(2)q qh qτ = −

Depending upon the product of the moment order by the 
generalized Hurst exponent, the scaling function reveals the pattern 
for a possible moment divergence with the order or alternatively for 
a convergence. If we replace the multifractal scaling function in 

epidemiological dynamics and a high-risk scenario for healthcare 
response strategies, since these peaks will lead to an accelerated 
flooding of hospitals and a saturation of hospital resources that 
may increase the death toll. It can occur in viruses that have a high 
transmissibility and a high number of asymptomatic cases.

The fact that this rogue wave dynamics is a dominant pattern 
in SARS-CoV-2’s epidemiological profile, as addressed in [5], 
may have roots in the virus’ characteristics, including the high 
transmissibility of new variants, with a possible large number of 
asymptomatic cases that may enhance the contagion dynamics and 
lead to rapidly accelerating outbreaks. China is one of the countries 
rogue wave patterns, with epidemiological peaks occurring mainly 
in urban regions, with large population numbers and high 
population density.

While one might consider the possibility that the rogue wave 
events in the COVID-19 numbers could be rare events, outside 
the normal epidemiological dynamics of the virus, this is, and 
however, an unlikely hypothesis given the nature of the virus and 
the predominance of this pattern, as reported in [5]. We find, in the 
present work, further evidence that this is not the case, by applying 
multifractal analysis and Smart Topological Data Analysis (STDA), 
combining topological data analysis with machine learning and 
chaos theory applied to the daily number of new confirmed cases 
of COVID-19 in China. 

By applying the multifractal analysis methods, we uncover the 
presence of multifractal scaling in the epidemiological series, which, 
in complex systems, typically characterizes a form of self-organized 
criticality linked to turbulent signals, corresponding to Multifractal 
Self-Organized Criticality (MSOC), which has been reported to 
occur in financial data, characterizing financial turbulence [8-14]. 

We also uncover that this multifractal pattern is induced, in the 
case of China, by an emergent low-dimensional strange chaotic 
attractor in an emergent dynamics characterized by a three-
dimensional phase space, we study this attractor’s topological 
structure, uncovering a link between the extreme rogue wave 
dynamics and a three-winged structure of the attractor, which 
provides for an important evidence of how the theories of chaos 
and Self-Organized Criticality (SOC) can be jointly applied to 
epidemiology, to study the link between emergent strange attractors 
in epidemiological dynamics as well as to effectively predict this 
dynamics, providing for both an explanatory ground for major risk 
patterns and for an opportunity to employ adaptive topological A.I. 
systems and attractor reconstruction methods for epidemiological 
prediction and risk management.

In section 2, we review the main concepts, materials and methods 
employed in the present work. In section 3, we present the results 
and in section 4 we provide for a final discussion on the implications 
of the present work for epidemiology, risk science and the relevance 
of chaos theory and the theory of SOC to these fields.

MATERIALS AND METHODS

Self-organized criticality, also known as SOC, was proposed in 
[15,16] as an explanation of power law decay in power spectra 
of complex systems’ dynamics, growing as a theory within the 
complexity research field, to address the emergence of power law 
temporal and/or spatial correlations, leading to a scale invariance 
in time and/or in space as a result of complex systems’ self-
organization. 
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equation (1) we get the following relation [17]:

log{ [| ( ) ( ) | ]} ~ (1 ( )) log( ).........................................(3)qE x t x t s q sτ− − +

Multifractal scaling is compatible with different power spectra, 
in this way, even if one has a white noise spectrum, multifractal 
scaling can still be present [8,10,17]. In this case, the emergence of 
multifractal scaling is a more complex problem than monofractal 
dynamics, in particular, as stressed in [17], spectral analysis can be 
misleading, in the sense that multifractal scaling can be present 
even in the case of white noise spectra, in this sense, the standard 
spectral analysis of a signal is insufficient to detect multifractal 
scaling, requiring the application of multifractal analysis methods 
for the estimation of the multifractal spectrum.

While multifractal signals can be built top-down with generators 
and multiplicative cascades, with these generators having played a 
key role in discussions around multifractal scaling and turbulence 
[17], the major issue, for both complexity research and risk science 
is that of self-organization of a system’s dynamics to a multifractal 
scaling regime, this is the already referred phenomenon of MSOC.

The presence of multifractal scaling can be analyzed through 
different methods, the method we will employ is Multifractal 
Detrended Fluctuation Analysis (MFDFA) with polynomial fitting, 
which is robust in the detection of monofractal versus multifractal 
scaling, and, in the case of turbulence processes, allows one to 
characterize the relation between risk and predictability. The 
method that we use is described in detail in [22], and it involves 
the estimation of a detrended fluctuation function that, for a 
fractal or multifractal signal, scales with the lag in accordance 
with a power law scaling rule that depends upon the generalized 
Hurst exponents, that is, for a multifractal process, the detrended 
fluctuation function qF  scales with the lag s as:

( )~ ............................(4)h q
qF s

Monofractal scaling can be identified when parallel lines in the 
log-log plot have the same slope, in this case, the generalized Hurst 
exponents coincide with each other or, at least, fluctuate in a 
small interval around the true Hurst exponent that characterizes 
the monofractal dynamics. Multifractal scaling is characterized by 
different slopes.

Besides the plot of the detrended fluctuation function for the 
different lags, we also plot the multifractal scaling function, the 
histogram for the generalized Hurst exponents and the graph of 
the function of the exponents for the different moments’ orders, 
besides these plots we also calculate the maximum and minimum 
of the generalized Hurst exponents’ distribution, allowing us to 
better characterize the profile of the multifractal scaling.

In the epidemiological context, MSOC resulting from the 
dynamics involving an epidemic or pandemic is a key point 
demanding further research. The epidemiological dynamics of a 
virus will depend upon biological factors including the incubation 
period, the first time for symptoms of a disease caused by the 
viral infection to appear, the number of asymptomatic cases, 
the viral mutation process and the mutation rates leading to the 
surfacing of new variants, the transmissibility and transmission 
vectors, the population it infects and immunity response of the 
human populations, with different factors, including human 
genetics, possibly affecting that response, the presence of biological 
reservoirs for the virus, other factors also include geographical and 
climate conditions, the country populations’ behaviors as well as 
public healthcare response policies and other measures including 

quarantine, possible treatment solutions, testing frequencies, the 
use of different measures, vaccination and so on.

Public healthcare response involves responses to predictions based 
on the epidemiological risk variables, which can lead to preemptive 
measures by healthcare authorities based on the predicted 
epidemiological dynamics; this introduces a feedback loop in the 
epidemiological process, with the adaptive responses impacting the 
epidemiological dynamics and vice-versa. 

The above factors indicate that the epidemiological dynamics will 
tend to exhibit strong nonlinearities and feedback between top-
down and bottom-up dynamics, especially in what regards healthcare 
planning and response as well as public health communication 
and the role of traditional and online media which may influence 
people’s behavior.

The above different factors will vary from country to country; this 
also includes the healthcare authorities and government approach 
to healthcare. For instance, in countries where the response is 
reactive rather than proactive in responding to rising healthcare 
pressure associated with viral infections, the dynamics will be 
different from the countries that implement proactive measures.

Considering the above points, the occurrence of multifractal 
turbulence in epidemiological dynamics, associated with MSOC, 
implies a complex process associated with this dynamics, in 
particular, in the case of rogue wave patterns, it involves possible 
sudden accelerations in the epidemiological processes, leading to 
extreme outbreak events that can put an accelerated pressure on 
healthcare resources. 

Thus, in epidemiological turbulence, multifractal turbulence, 
associated with MSOC, leads to the possibility of sudden 
acceleration of outbreak processes leading to spikes of infections 
and to the possibility of epidemiological rogue waves of different 
sizes, that may occur at different times, with the largest rogue waves 
effectively appearing as very high spikes above the rest of the time 
series of confirmed cases.

From a healthcare standpoint this provides for a higher risk than 
the multiple wave patterns and the necessity for the identification 
of the source of MSOC. In [5], the rogue wave pattern was found to 
be predominant in SARS-CoV-2’s epidemiological dynamics and 
was also found to occur in tandem with chaotic markers, in this 
sense, one possible source of MSOC is a stochastic chaos dynamics, 
which is an open chaos dynamics.

Therefore, after testing for the presence of multifractal scaling 
and characterizing the scaling and memory properties of the 
COVID-19 epidemiological series, performing spectral analysis as 
a complementary analysis, we proceed to implement chaotic time 
series analysis methods, combined with STDA, in order to research 
the hypothesis of chaos-induced MSOC.

The first step is the time series phase space embedding for possible 
attractor reconstruction, where the reconstructed underlying phase 
point, for an embedding dimension d and a lag h, is given by:

( ) ( ( ( 1) ),..., ( 2 ), ( ), ( )).......................(5)p t x t d h x t h x t h x t= − − − −

The main problem is one of finding the appropriate embedding 
dimension and embedding lag values.

The first parameter to be chosen is the embedding lag. As discussed 
in [5], in epidemiological contexts, the choice of the lag should 
be defined in terms of the incubation period and quarantine 
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window, setting the period to the first day after a recommended or 
mandatory quarantine period allows for the embedding to account 
for possible quarantine effects.

In this way, as in [5], we use a 15-days period, which is the number 
of days between the start and the end of the World Health 
Organization’s (WHO) recommended a 14-day quarantine period 
from a person’s last exposure, leading to 15 days between the last 
exposure and an exit from quarantine.

As for the embedding dimension selection, we use STDA [5,6,23], 
employing an adaptive topological learner, that is, an artificial 
agent equipped with a topological machine learning unit, in this 
case we will use a k-nearest neighbors’ learning unit, the adaptive 
component involves employing a sliding learning window to 
predict the target epidemiological variable using the embedded 
phase point.

The use of a k-nearest neighbors learning unit is linked to the 
objective of the topological data analysis, in this case, we wish to 
find the optimal dimension, from a set of alternative dimensions, 
that leads to the highest exploitable topological information in the 
prediction of the target, in order to better capture the underlying 
attractor’s topology, to be able to apply topological analysis methods 
to characterize that attractor, linking the time series properties to 
that of the attractor’s structure. Since we will be using k-nearest 
neighbors’ graph analysis, with Euclidean metric, the machine 
learning unit should be a k-nearest neighbors’ unit [23].

The sliding learning window allows for an adaptation to local 
patterns in the attractor, including attractor epochs, making the 
agent adaptive to local topological regularities that can be exploited 
for the target prediction [5,6,23].

Thus, to select the embedding dimension we deploy the adaptive 
AI system, using a sliding window for relearning, in order to 
perform the single period prediction for the next period’s value of 
the target series, that is, the agent forms the following conditional 
expectation:

[ ( 1) | ( ), , ] ( ( ), , , ).......................(6)E x t p t w k f p t w k t+ =

Where we denote by [ ( 1) | ( ), , ]E x t p t w k+  the agent’s prediction for the 
next period’s target series value, this expectation is conditional on 

the phase point  ( )p t , on the learning window size w  and on the 
number of nearest neighbors k.

The adaptive topological AI system is trained using the feature set of 
embedded points { ( 1),..., ( 2), ( 1)}p t w p t p t− − − −  and target variable values 
{ ( ),..., ( 1), ( )}x t w x t x t− − . In this way, the AI learns to predict the next 
value of the target using the previous value of the embedded phase 
point. As stated, the relearning allows the AI to produce a local 
topological mapping, capturing the local topological regularities in 
the attractor and adapting to the attractor’s epochs, making the 
method especially robust in the case of turbulent and noisy series, 
which is effective when dealing with open systems and stochastic 
chaos as shown in [6,23], the method is also robust to bifurcations, 
as shown in [5].

The process of dimension selection that we will employ involves 
the simultaneous calibration of the number of nearest neighbors’ 
parameter and the embedding dimension. In this way, we use a 
grid-based calibration, recording the coefficient of determination 
score for the adaptive topological learner for different embedding 
dimensions in a range of alternative dimensions and different 
values of the number of nearest neighbors’ parameter in a range of 
alternative values.

In this way, we select the number of nearest neighbors and the 
embedding dimension that lead to the best performance in 
prediction of the target series. These are the parameters, within 
the searched range, which have the highest topological information 
exploitable by the adaptive topological agent, for which the phase 
point can be used in the prediction of the target series’ next period’s 
value. 

For the best performer, besides the coefficient of determination 
score we report additional prediction performance metrics, 
including the correlation between the adaptive topological agent’s 
predictions and the target, the quotient of the Root Mean Squared 
Error (RMSE) by the data amplitude and the explained variance 
[23].

A high correlation, low RMSE/amplitude ratio, high explained 
variance and high coefficient of determination score indicate that 
there are topological patterns in the reconstructed trajectory that 
can be exploited for the prediction of the target series and that we 
can apply topological data analysis methods to better characterize 
the resulting reconstructed attractor. 

The first method that we employ, for the reconstructed attractor 
is Eckmann et al,. method for the Lyapunov spectrum estimation 
[24]. If a convergence occurs in the spectrum with one or more 
positive Lyapunov exponents, this is indicative of chaos, a negative 
sum of exponents, with a positive largest Lyapunov exponent, is 
indicative of dissipative chaos, which is consistent with a chaotic 
attractor.

Using the estimated Lyapunov spectrum we also calculate the 
Kaplan-Yorke dimension [25,26], which is a measure of the fractal 
dimension of a chaotic attractor that uses the Lyapunov spectrum, 
the dimension calculation is based on the following formula:

1

1

....................(7)
| |

n
jj

KY
n

D n
λ

λ
=

+

= +
∑

Where, jλ  are the Lyapunov exponents arranged in decreasing 
order and n  is the maximum number of exponents which may be 
added, with the exponents arranged in decreasing order, before the 
sum becomes negative.

Besides the Kaplan-Yorke dimension we also calculate the Lyapunov 
time, which is the inverse of a dynamical system’s largest Lyapunov 
exponent and sets the limits of predictability.

As a complementary analysis to the Lyapunov time we calculate 
the predictability of the target series several days ahead, using 
the adaptive topological agent and the embedded trajectory for 
prediction, thus, instead of the one-day ahead prediction of 
equation (6), we use the same sliding window adaptive topological 
learner scheme for an l-days ahead prediction, using as a predictor 
the phase point at time t, leading to the prediction values. 

We increase the number of days ahead for prediction and, in each 
case, extract the corresponding coefficient of determination score 
and report the first time that the score drops below a threshold, 
we call this the threshold foresight time. In this case, we report the 
60% and the 50% foresight times. The foresight time corresponds 
to the time it takes for the exploitable topological patterns for long-
term prediction by the adaptive topological learner to drop below 
a threshold. We analyze the relation between the foresight time 
marks and the estimated Lyapunov time.

After analyzing the Lyapunov spectrum, the Kaplan-Yorke 
dimension, the Lyapunov time and the foresight times, we address 
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dimension, corresponds to the difference between the death and 
birth times, with the death happening after birth, in this way, 
denoting the time of death by Dn  and the birth time by  Bn , the 
persistence of a homology class can be calculated as:

( ) ........................(8)D Bpers c n n= −

Structures that live through the full filtration have Dn = ∞  and, 
therefore,  ( )pers c = ∞ . In terms of statistical analysis of the 
homology classes, we calculate the following metrics [5]:

• The number of classes with  ( )pers c < ∞ : Calculated for each 
dimension, this metric provides for a statistical distribution of 
the number of structures for each homology dimension with 
lifetimes shorter than infinity;

• The number of classes with  ( )pers c = ∞ : This metric allows us 
to identify the homology dimensions that have structures that 
persist throughout the whole filtration, allowing us to identify 
large-scale structures;

• The maximum persistence: Calculated for each dimension, 
this metric allows us to characterize which dimensions have 
the strongest persistent structures;

• The mean persistence: Also calculated for each dimension, 
this metric allows us to characterize each homology dimension 
in terms of its mean persistence.

The last analysis method that we employ is a symbolic dynamics 
analysis using the ordinal partition graph, which is used to calculate 
the permutation entropy, this analysis was also employed in [5], but 
is expanded here to deal with patterns associated with different 
embedding dimensions.

Indeed, given the permutations { }: 1, 2,..., !d i i dπ∏ = =  of the 

embedding dimensions’ set { }1,2,...,d , with 1,2,..., !i d= , one defines 
a permutation map:

: ......................(9)d
perm df R ∏

Such that:

1 2( , ,..., ) ........................(10)perm d if x x x π=

With iπ  satisfying the condition that:

(1) (2) ( )... ........................(11)
i i i dx x xπ π π≤ ≤ ≤

That is, the permutation produces a non-decreasing reordering of 
the values in the d tuple of real numbers.

The permutation map defined above is calculated for each phase 
point in the embedded trajectory, leading to a sequence of 
permutations, this sequence leads to an ordinal partition graph, 
such that two permutations are linked if there is a transition between 
them. From the ordinal partition graph, the permutation entropy 
can be calculated from the estimated probability distribution over 
the permutations as follows [5]:

!
21

( ) ( ) log ( ).......................(12)d
i ii

H d p π π
=

= −∑
Besides the permutation entropy, we also calculate the permutation 
graph’s K-S entropy, degree entropy and percentage of completeness, 
as we did for the k-nearest neighbors’ graphs.

For increasing embedding dimensions we obtain the corresponding 
permutation graphs and calculate the above metrics, leading 
to a picture of how these metrics change with the embedding 
dimension, allowing us to analyze the correlations between each 
of these metrics with the coefficients of determination obtained 

the topological features of the attractor and specific computational 
properties associated with symbolic dynamics’ analysis by 
performing three analyses: The k-nearest neighbors’ graph analysis, 
persistent homology analysis and permutation entropy analysis 
calculated from the permutation graphs.

The k-nearest neighbors’ graph, which links each phase point in 
the reconstructed attractor to each of its k nearest neighbors is an 
important topological analysis method for the characterization of 
the attractor’s topological structure, we begin by plotting the graph 
and the degree distribution for the number of nearest neighbors 
for which we obtained the best prediction performance, we, then, 
vary this number and, for each resulting graph, we calculate the 
following metrics:

• The percentage of completeness: Defined as the quotient of 
the graph’s number of edges over the total number of edges 
that would make the graph complete multiplied by 100, this 
metric provides for a measure of the degree to which the graph 
is close to a complete graph, expressed as a percentage;

• The graph’s normalized degree entropy: Defined as the 
Shannon entropy of the degree distribution divided by the 
maximum entropy, this entropy value is between zero and 
one, and the closer it is to one the closer the graph’s degree 
distribution is to a maximum entropy distribution;

• The graph’s Kolmogorov-Sinai (K-S) entropy: The entropy, 
for an unweighted graph, which in our case coincides with the 
logarithm of the dominant eigenvalue of the graph’s transition 
matrix, using the base 2 for the logarithm, it provides for an 
information measure, in this case, considering a random 
walker that follows the k-nearest neighbor’s adjacency, the 
K-S entropy graph provides for a measure of the rate at which 
information is generated by the graph’s adjacencies, providing, 
in this way, for a measure of the topological complexity of the 
attractor associated with the k-nearest neighbors’ structure.

We calculate each of these metrics for increasing values of number 
of nearest neighbors, studying how these metrics change with this 
number.

After performing this analysis, we proceed to plot the attractor 
in three-dimensional Euclidean space in order to have an overall 
picture of the three-dimensional projection of the attractor, in this 
case, as we will see, the attractor for China is three-dimensional and 
its overall geometric structure will give us significant information 
on the source of the rogue wave epidemiological dynamics.

Besides this plot, we also apply persistent homology analysis, which 
provides for a picture of persistent structures in the attractor, 
by which different homology classes are counted, for different 
homology dimensions, this analysis was applied in [5] to regional 
COVID-19 new cases per million and new deaths per million series.

Homology classes are classified by the dimensionality of the 
boundary of the structure, in this way, a zero-homology class 
corresponds to connected components in the attractor, therefore, 
with a zero-dimensional boundary, while a one-homology class 
corresponds to components that have a one-dimensional boundary, 
and so on. In persistent homology analysis the number of structures 
in each simplicial complex in a Vietoris-Rips filtration are counted 
for each homology class, the birth and death of homology classes as 
the radius is increased is also counted [5]. 

The lifetime or persistence of a class c , at a given homology 
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for the best performer adaptive topological learner selected in 
the calibration process, that is, using the number of nearest 
neighbors that leads to the highest coefficient of determination 
in the calibration process for the optimal embedding dimension, 
we study the relation between the prediction performance of this 
agent with varying dimensions and the ordinal partition graph’s 
metrics, thus providing for a better picture of the relation between 
the computational properties associated with the ordinal partition 
graphs and the prediction performance with the embedding 
dimension. 

The above analysis methods are applied to the number new 
confirmed cases of COVID-19 in China, from 2020-01-03 to 2023-
10-27. Allowing us to characterize the underlying emergent attractor 
and uncover the origin of the rogue wave dynamics.

RESULTS AND DISCUSSION

In Figure 1, we show the time series chart for the daily new confirmed 
cases of COVID-19 in China in the period from 2020-01-03 to 
2023-10-27, obtained from the “Our World in Data” database. As 
can be seen from the graph, it almost seems as if there is a flat line 
and then some peaks, near the end with a large wave of confirmed 
cases, this is actually an illusion of scale, indeed, the region that 
appears as a flatline is actually comprised of fluctuations in the 
number of new cases, and large jumps as illustrated in Figure 2.

The two figures exhibit a pattern of turbulence in the series with 
extreme jumps corresponding to the epidemiological rogue wave 
dynamics of different sizes occurring at different steps, however, this 
dynamics follows the same rules of structure as the whole process, as we 
now show applying fractal and multifractal analysis tools. 

In Figure 3, we show the power spectrum plotted in log-log scale 
(left) and with the fitted line in the power law decaying region 
(right). As can be seen in the figure, the power-law scaling occurs in 
the high frequency region, the estimated slope is of -3.9562 with an 
R2 of 99.69%, which is evidence favorable to a strongly persistent 
process in the black noise range, that is, a power law noise with 
decay exponent larger than 2, a feature that was also identified in 
the regional data in [5].

Now, while the data indicates long-memory persistent process, 
which is consistent with SOC, we need to analyze the multiscaling 
properties in order to evaluate the hypothesis of MSOC. In this 
case, we apply Multifractal Detrended Fluctuation Analysis 
(MFDFA) to estimate the multifractal spectrum and the extract the 
main multifractal metrics (Figure 4).

As shown in Figure 4, we find a few important points, for moments’ 
orders ranging from 0 to 40, there is a wide range of slopes which 
is indicative of multifractal scaling (Figure 4, top left), also, the 
estimated exponents exhibit a nonlinear dependence upon the 
order, with an accelerated decay to exponent values just below 0.5 
(Figure 4, top right), which leads to a divergence in the moments 
as can also be seen in the multifractal scaling function (Figure 
4, bottom left) which has an initial nonlinear rise and then rises 
linearly with the order, which is not consistent with a moment 
convergence with the order. 

The histogram reflects the convergence of the exponents to 
the values near 0.5, indeed, the dominant exponents, in terms 
of frequencies, are near 0.5 (Figure 4, bottom right), with the 
maximum estimated exponent being around 2.5196 and the 
minimum estimated exponent being around 0.4987. 

Figure 1: Daily new confirmed cases of COVID-19 in China in the period from 2020-01-03 to 2023-10-27.
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Figure 2: Figure 1’s series from: 2020-01-03 to 2021-04-16 (left), 2021-04-17 to 2022-07-30 (middle), 2022-07-31 to 2023-10-27 (right).

Figure 3: Power spectrum plotted in log-log scale (left) and with fitted line (right).

Figure 4: Multifractal detrended fluctuation analysis, showing the: fluctuation function (top left), generalized Hurst exponents (top right), 
scaling function (bottom left) and generalized Hurst exponents’ histogram (bottom right), the moments’ orders range from 0 to 40 in 200 steps 
and the lags range from 1.5 to 2.5 in 500 steps.
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5 87.562% 85.756% 83.322% 81.211% 79.656%

6 87.559% 85.753% 83.318% 81.206% 79.650%

7 87.556% 85.749% 83.313% 81.202% 79.645%

8 87.553% 85.745% 83.308% 81.196% 79.639%

9 87.550% 85.741% 83.304% 81.191% 79.634%

10 87.547% 85.738% 83.300% 81.187% 79.629%

The third pattern that we find is that the performance decreases 
with the increase in the number of nearest neighbors, a pattern that 
is different from the study by continent in which the performance 
increased with the number of nearest neighbors [5].

The best performance of the group is obtained for k=2 and a 
three-dimensional embedding, which leads to a coefficient of 
determination score of 87.567%.

In Table 2, we show the additional prediction metrics for k=2 and 
d=3. We find, in this case, that the correlation between the adaptive 
agent’s predictions and the target series is positive and high, with a 
value of 0.9393, which reinforces the results on a good prediction 
performance using the k-nearest neighbors algorithm, that is, the 
k-nearest neighbors for the reconstructured attractor contains 
exploitable information that can be used for predicting the target 
series with a high prediction performance.

Table 2: Prediction performance metrics for table 1’s best performing 
adaptive topological learner of the previous table, with embedding 
dimension equal to 3.

Correlation 0.9393

RMSE/Amp 2.615%

Explained variance 87.568%

R2 score 87.567%

The RMSE is only 2.615% of the total amplitude of the data, which 
is a low relative error; the explained variance and the coefficient of 
determination score are both slightly higher than 87.5%. In Figure 
5, we show the time series chart with AI’s predictions and the daily 
number of confirmed cases of COVID 19 in China.

Figure 5: Daily new confirmed cases of COVID-19 in China in the 
period from 2020-01-03 to 2023-10-27 in blue and prediction by the 
best performing adaptive topological learner in orange.

The relation of the scaling with regards to the order and lag 
is relevant, in this case, for the high moments’ orders there is a 
convergence to a monofractal scaling with a Hurst exponent below 
but near 0.5 with respect to the lag, however, for the low moments’ 
orders, the Hurst exponents are higher than 1, which is significant.

The fact that the Hurst exponents for the lower moments’ orders 
are greater than 1, implies that there is a divergence of the lower 
moments with the lag due to higher than 1 exponent, which is 
consistent with the high turbulence process associated with the 
dynamics of the daily new confirmed cases of COVID-19.

The overall results of the multifractal analysis indicate that the 
dynamics is multifractal, rather than monofractal and the spectrum 
already shows a relation to the turbulence features. This is 
evidence favorable to the hypothesis of MSOC. Also of notice, the 
multifractality occurrs with a power spectrum that is not white, that 
is, we have a black noise spectrum for the signal, which indicates 
strong persistence, along with a multifractal scaling structure.

In terms of epidemiological dynamics, MSOC associated with 
the turbulence pattern, means that the epidemiological dynamics 
associated with the rogue wave pattern in China is indicative of a 
self-organization to a critical multifractal turbulent regime where 
the large jumps are part of the same process that leads to the 
smaller jumps. The question that needs to be raised is whether the 
source of the MSOC is an underlying chaotic dynamics, emergent 
from the epidemiological dynamics, that is, whether we are dealing 
with chaos-induced MSOC.

As discussed in the previous section, using the 15 day period for 
delay embedding, we search for the embedding dimension with the 
highest exploitable topological information in the prediction of 
the daily number of new confirmed cases of COVID-19 in China, 
using the adaptive topological learner.

In Table 1, we present the results for the embedding dimensions 
ranging from 2 to 10 and the nearest neighbors’ parameter k ranging 
from 2 to 6. Three patterns stand out in the results; the first is that 
the prediction performance is very high for all embedding’s, with 
coefficients of determination scores all greater than 79%, which 
indicates a strong topological exploitable pattern for the prediction 
of the target series. The second pattern is that for all values of k, the 
best performance is obtained for a three-dimensional embedding, 
which is strong evidence of an emergent attractor with three 
degrees of freedom underlying the epidemiological dynamics. A 
point that is particularly relevant since in [5] we also found three-
dimensional attractors for all the world regions that had a stable 
attractor structure, which are all world regions with the exception 
of Oceania which underwent a bifurcation.

Table 1: R2 score for the adaptive topological learner in predicting the daily 
number of new cases of COVID-19 in China with a k-nearest neighbors’ 
learning unit, a 15-days sliding learning window, using the previous day’s 
phase point as predictor, with embedding dimensions ranging from 2 to 
10, k ranging from 2 to 6 and weights based on Euclidean distance, with 
ball tree algorithm used for the learning process.

Dimension k=2 k=3 k=4 k=5 k=6

2 87.520% 85.639% 83.286% 81.155% 79.591%

3 87.567% 85.761% 83.329% 81.219% 79.664%

4 87.565% 85.759% 83.326% 81.215% 79.660%
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the coefficient of determination for the adaptive topological 
learner, with the three-dimensional reconstructed attractor in 
several periods’ ahead predictions, and calculate the foresight time 
for 60% and 50% prediction, this is shown in Figure 7.

Figure 7: Prediction performance of the best performer in table 1, for 
t-periods ahead prediction, with t varying from 1 period (1 day) to 50 
periods (50 days) using the three-dimensional embedding, 15 days’ lag 
and the R2 score as prediction performance measure. Note: ( ) R2; 
( ) 60% line; ( )50% line.

We find that the predictability decreases with the prediction 
horizon, when we use the best performing topological learner 
to predict several periods ahead, rather than one period ahead, 
with the prediction performance measured by the coefficient of 
determination first dropping below 60% from 24 to 25 days ahead, 
making the 60% foresight time 25. 

The 50% foresight time, in turn, is 32. with the coefficient of 
determination first drop below 50% occurring from 31 to 32 days 
ahead prediction, which coincides with the expected foresight from 
the Lyapunov time, which is also between 31 and 32 days, a result 
and reinforces the strong evidence of a low-noise three-dimensional 
chaotic attractor. 

There is, however, a plateau with the increasing of the window in 
which the predictability seams to stabilize fluctuating in a band 
between 60% and 50% for the coefficient of determination score, 
which may be linked to the topological features associated with the 
long memory, the fluctuations in the narrow band last up until a 
prediction horizon of 46 days ahead, after this period at 47 days 
the performance drops and then accelerates with the coefficient 
of determination decaying significantly only after the 46 period 
horizon, which is around 1.4830 of the Lyapunov time.

Another relevant point is that the predictability of the topological 
adaptive agent does not decrease exponentially until the foresight 
time of 32 days ahead but, instead, decreases linearly, this may 
be linked to the attractor’s structure, namely, the topological 
information in the k-nearest neighbors and the long memory 
persistence of the series associated with the MSOC with a black 
noise power spectrum which leads to the strong persistence.

The results so far are consistent with a form of chaos-induced 
MSOC, with an underlying low-noise three-dimensional chaotic 
attractor, with a strong topological structure that allows for a high-
predictability of the target series and with the predictability limits 
linked to the Lyapunov time and the predictability pattern related 
to the interplay between the MSOC with black noise spectrum 
(black MSOC) and the positive largest Lyapunov exponent.

Having identified the presence of an attractor we now need to 

The Figure illustrates visually the results that the statistics provide, 
that is, a high prediction performance for the topological learner 
using the three-dimensional embedding and the 15-day period 
lag. Thus, the results obtained from the topological learner lead 
to strong evidence in support of the possibility of a noise-resilient 
three-dimensional attractor, underlying the epidemiological 
dynamics.

The next step in the analysis is the estimation of the Lyapunov 
spectrum, in this case, we find a convergence of the maximum 
Lyapunov exponent to a positive value, up to a four-decimal place 
approximation, of 0.0322, as shown in Figure 6, with the other two 
exponents being negative and, respectively, up to a four-decimal 
place approximation equal to -0.0036 and -0.0531, which leads to a 
negative spectrum sum of -0.0244, the convergence of the spectrum, 
with positive largest exponent and negative sum are consistent with 
dissipative chaos. In this case, the Lyapunov time is, up to a four-
decimal place approximation, of 31.0181, which is between 31 and 
32 days, the Kaplan-Yorke dimension is, in turn, 2.5393 which is 
between 2 and 3 dimensions.

Figure 6: Lyapunov spectrum estimation for the reconstructed three-
dimensional attractor.

The high predictability with best results showing consistently a 
three-dimensional embedding as the best embedding in the grid 
search, the convergence of the estimated Lyapunov spectrum to 
a positive largest Lyapunov exponent, the negative sum of the 
spectrum and the Kaplan-Yorke dimension are all consistent with a 
noise-resilient low dimensional strange chaotic attractor underlying 
the target series’ dynamics. This evidence and the previously found 
markers of MSOC are favorable to the hypothesis of chaos-induced 
MSOC.

The largest positive Lyapunov exponent along with the strongly 
persistent process with a black noise signal identified in the power 
spectrum analysis of the series and a multifractal scaling of this same 
series leads to an added complexity in regards to the predictability 
horizon. 

Indeed, the positive Lyapunov exponent leads to an exponential 
divergence and restricts the predictability, in this case to a 
Lyapunov time that is between 31 and 32 days, in this way, the 
loss in predictability associated with the sensitive dependence upon 
initial conditions is expected to be identified at 32 days, however, 
the long memory of the dynamics and multifractal scaling lead to 
topological predictability markers that may increase predictability.

In order to address the pattern of predictability we now calculate 
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the parameter k.

In this sense, as k is increased, the exploitable topological 
information decreases due to a rise in the complexity of the 
neighborhood connectivity structure addressed in terms of the 
k-nearest neighbors.

So far, the evidence is favorable to a chaos-induced MSOC, 
associated with the daily number of new cases from COVID-19 in 
China, with an emergent noise-resilient low-dimensional attractor 
underlying the turbulent dynamics. The k-nearest neighbors’ 
analysis combined with the chaotic time series analysis methods 
effectively allowed us to link the Lyapunov time and the main graph 
metrics (the percentage of completeness, the degree entropy and 
the K-S entropy) associated with the k-nearest neighbors’ graph to 
the predictability of the series by the adaptive topological learner.

Having performed the k-nearest neighbors’ topological analysis, we 
now turn to the persistent homology analysis. In Figure 10 (left), 
the reconstructed attractor is shown. As can be seen the attractor 
exhibits a three-winged structure, this structure accounts for the 
rogue wave phenomenon with the tips of the wings leading to the 
rogue waves. In Figure 10 (right), we show the persistence diagram 
for homology dimensions 0 and 1. From the diagram we find that 
all homology dimensions 0 structures are born at the beginning 
of the filtration exhibit the strongest persistence, with an infinity 
class, for homology dimension 1, which represent cycles. We find 
that most classes are short-lived with just one class lasting longer 
(Figure 10).

Figure 10: Reconstructed attractor on the left and persistence diagram 
on the right. Note: ( ) ∞; ( ) H0 ; ( )H2.

The results from Figure 10 are reinforced in Table 3, which shows 
the persistence statistics.

Table 3: Persistent homology statistics for the reconstructed attractor.

Number of 
classes

Maximum 
persistence

Mean persistence

H0 1344  1008368.06  25166.92 

H1 375  1876963.88  5856.45 

In terms of persistence, as shown in Table 3, we find that the 
homology dimension 0 is predominant with one infinity class and 
1344 non-infinity classes, all born at 0, the maximum persistence 
of the non-infinity classes is 1008368.06 and the mean persistence 
is 25166.92, while homology dimension 1, has only 375 classes, 
higher maximum persistence (1876963.88) but lower mean 
persistence 5856.45. 

The persistence values contrast significantly with those found for 
the Asian continent’s chaotic attractor in [5], which was also three-

apply topological analysis methods in order to better characterize 
its structure and its relation to the predictability of the target series. 
We begin by addressing the topological patterns based upon the 
number of nearest neighbors. In Figure 8, we show the k-nearest 
neighbors’ graph for 2 nearest neighbors and the corresponding 
degree distribution plotted in log-log scale. For this graph, the 
percentage of completeness is low, around 0.201%, the degree 
entropy is also low 0.1534, indicating a far from maximum 
entropy degree distribution, the K-S entropy is, in turn, equal to 
3.0543 bits. Regarding the degree distribution itself, the graph 
does not show a scale-free structure but, instead a faster than 
power law decay.

Figure 8: k-nearest neighbors’ graph for 2 nearest neighbors (left) and 
respective degree distribution (right) plotted in log-log scale, for the 
reconstructed attractor.

This distribution profile holds for higher number of nearest 
neighbors, however, there are power law scaling relations between the 
graph’s number of nearest neighbors and the graph’s main metrics, 
and the predictability as shown in Figure 9. First, considering the 
percentage of completeness of the graph, defined, as reviewed in 
the previous section, in terms of the relation between the number 
of edges in the graph and the number of edges that would make the 
graph complete, we find that the percentage of completeness grows 
as a power law of k, the same holds for the degree entropy and the 
K-S entropy, while the coefficient of determination score for the 
adaptive topological agent decays as a power law of k as shown, for 
k varying between 2 and 12. 

Figure 9: Power law scaling of the percentage of completeness, degree 
entropy, K-S entropy and R2 score for the adaptive topological agent in 
the one period ahead prediction, with k varying from 2 to 12 in steps 
of 1.

The above results provide for a link between the topological 
structure of the attractor and the predictability, namely, the main 
graph’s metrics increase as a power law of the number of nearest 
neighbors with the predictability decreasing as a power law. In this 
sense, the power law rise in the graph’s metrics, in particular the 
entropy measures that provide for a definition of graph complexity, 
explains the power law decay in the predictability with the rise in 
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dimensional but had a lower number of homology dimension 0 and 
homology dimension 1 classes (899 in for homology dimension 0 
and 257 for homology dimension 1) with lower persistence statistics, 
which indicates the presence of a greater number of topological 
structures for China’s attractor with stronger periodicities.

Considering now the ordinal partition analysis, obtained for the 
reconstructed attractor, Figure 11 shows the ordinal partition 
graph, the graph is complete, which means that transitions between 
all possible alternative permutations occur.

Figure 11: Ordinal partition graph for the three-dimensional 
reconstructed attractor.

The permutation entropy is up to a four decimal places’ 
approximation equal to 2.5023 bits, the degree distribution entropy 
is 0, and because the graph is complete the K-S entropy of the graph 
is 2.3219.

The permutation analysis becomes more important in terms of 
characterization of the dynamics by considering embedding’s 
with increasing embedding dimension. In Figure 12, we show the 
different entropy measures, permutation entropy, K-S entropy, 
degree entropy for the ordinal partition graph, and the percentage 
of completeness as a function of the embedding dimension for 
embedding dimensions varying from 2 up to 8.

Figure 12: Permutation entropy (top left), K-S entropy (top right), 
degree entropy (bottom left) and percentage of completeness (bottom 
right) plotted for embedding dimensions varying between 2 and 6 for 
the ordinal partition graphs.

Considering the results from Figure 12, we find several relevant 
points. First, the percentage of completeness shows that for 2 and 
3 dimensions the permutation graphs are complete, that is, the 
embedded trajectory leads to a computational dynamic where all 
of the alternative transitions between permutations occur, this also 
explains why for 2 and 3 dimensions the degree entropy is 0.

The ordinal partition graph’s K-S entropy, however, increases 
when we go from 2 to 3 dimensions and increases again when 

we go to a four-dimensional embedding. The degree entropy also 
increases when we proceed from a three-dimensional to a four-
dimensional embedding, in this case, not all of the transitions 
between permutations are allowed, indeed, in 4 dimensions, the 
percentage of completeness drops, in this case, to 69.203%. The 
percentage of completeness continues to drop with the embedding 
dimension until it reaches almost zero, for 7 and 8 dimensions. 
This is so because the dynamics is such that number of allowed 
transitions grows slower than the number of possible transitions 
between permutations.

In terms of ordinal partition graph structure the degree entropy is 
always lower than the maximum entropy, which means that we do 
not have an equiprobable distribution of the degree distribution, 
furthermore the largest entropy is achieved for 5 dimensions, the 
second largest being achieved for 4 dimensions. With increasing 
embedding dimension beyond 5 there is a rapid decrease in 
degree entropy, which makes the degree distribution far from the 
maximum entropy. The permutation entropy rises linearly with 
the embedding dimension; however this rise slows down in the 
transition from 7 to 8 dimensions.

The most relevant metric, in this case, is the K-S entropy, since not 
only does it provide for a measure of the rate at which information is 
generated for the permutations’ transition graph, its pattern shows 
a specific relevance in the relation with the exploitable topological 
information, namely, it is positively and strongly correlated with 
the coefficient of determination score obtained for the adaptive 
topological agent with k equal to 2, as shown in Table 4, we find 
that the correlation is, in this case, 0.8706, which is positive and 
strong, that is, the higher the K-S entropy for the permutation graph 
tends to be, the higher tends to be the performance of the adaptive 
topological learner. The remaining entropy measures (permutation 
entropy and degree entropy) are also positively correlated with 
the R2 score, however, the correlation is weaker, the percentage 
of completeness, on the other hand, has a negative but also weak 
correlation with the prediction performance.

Table 4: Correlations between each metric for the permutation graphs 
obtained for the different embeddings and the corresponding R2 scores 
obtained for the adaptive topological learner with 2-nearest neighbors’ 
learning values provided in Table 1.

Metrics Correlations

Permutation Entropy 0.3724

Degree Entropy 0.4564

K-S entropy 0.8706

% Completeness -0.3153

In terms of symbolic computational analysis, considering the above 
results, we find that the graphs for the permutation transitions 
obtained from the embedded trajectories are such that the K-S 
entropy of these graphs shows strong links to the exploitable 
topological information in the embedded trajectory for predicting 
the target, with varying embedding dimensions, thus, the K-S 
entropy of the permutation graphs stands out in the sense that 
the higher its value, the higher tends to be the predictability of 
the series when using the embedded trajectory as predictor feature 
space by the adaptive topological learner. 



12

Gonçalves CP

Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000367

since it provides an example where there is a robust evidence for 
an emergent chaotic attractor in epidemiological dynamics, in the 
context of a pandemic. 

From an epidemiological and risk science standpoint, the evidence 
indicates the importance of further research into emergent 
chaos-induced self-organized criticality in the COVID-19 as a 
case study for possible future pandemics, also illustrating the 
need for the application of latest methods from chaos theory 
combining topological data analysis and machine learning, in 
order to understand the emergence of low-dimensional attractors 
underlying epidemiological turbulence markers with multifractal 
scaling of target epidemiological variables and the link between 
the epidemiological dynamics and the attractor’s geometric and 
topological properties. 

The results also reinforce the effectiveness of the employment 
of adaptive A.I. systems with machine learning units and sliding 
windows for target epidemiological series’ prediction and healthcare 
response planning.
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This pattern is linked to the fact that, as the embedding dimension 
is increased, the lower tends to be the K-S entropy and also the lower 
tends to be the predictability of the series, in terms of exploitable 
topological information. This in turn reinforces the evidence for 
low-dimensional noisy chaotic dynamics.

CONCLUSION

The epidemiological series for COVID-19 has a strongly turbulent 
process with rogue waves as a predominant pattern, in the case of 
China, the lockdown policies actually led to a curbing of the wave 
heights, however, rogue waves occurred at different heights, strongly 
linked to urban centers’ transmission and the rise of new variants, 
which, coupled to the virus’ epidemiological profile, characterized 
by high transmissibility and large number of asymptomatic cases, 
leads to a fast propagation dynamics in human populations.

We found that this rogue wave turbulent dynamics has markers of 
Multifractal Self-Organized Criticality (MSOC), with a black noise 
spectrum linked to a strong persistence.

The application of state-of-the-art chaos theory empirical methods 
employing Smart Topological Data Analysis (STDA) uncovered 
evidence that the MSOC in the daily number of new confirmed 
cases of COVID-19 in China is linked to an emergent three-
dimensional noise resilient chaotic attractor with a three-winged 
structure, with the tips of the wings in phase space explaining the 
rogue wave phenomenon. The signal is strongly predictable from 
the reconstructed attractor by an adaptive topological learner 
using a k-nearest neighbors’ topological unit, which can be used by 
healthcare authorities for response planning.

In several days ahead prediction we found a link between the 
Lyapunov time and the time it takes for the coefficient of 
determination score of the best performing adaptive topological 
agent to drop below 50% (foresight time), which further reinforces 
the findings for an emergent chaotic attractor.

Further topological data analysis on the attractor’s structure found 
a link between the topological structure of the attractor and the 
predictability pattern of the new cases of COVID-19 by the adaptive 
topological learner, with the degree entropy and the K-S entropy 
of the k-nearest neighbors’ graph strongly linked to the prediction 
performance of the topological learner, with varying values of the 
number of nearest neighbors’ parameter k.

The persistent homology analysis showed that the attractor has a 
higher persistence than the results obtained in a previous study 
for the Asian continent [5], which also had a three-dimensional 
emergent attractor.

The ordinal partition analysis methods uncovered a link between 
the computational dynamics associated with the phase space 
embedding, for different embedding dimensions, and the 
predictability of the target series with the K-S entropy of the ordinal 
partition graph being the main metric positively and strongly 
correlated with the predictability of the series, accounting for the 
drop in predictability as the embedding dimension rises beyond 
the three-dimensional structure.

The overall strong evidence for chaos-induced MSOC and the 
strong predictability of the target series, employing an adaptive 
topological learner, constitutes a relevant finding for both the 
strategic planning for dealing with COVID-19 in countries and 
regions with rogue wave patterns and for epidemiological studies, 
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