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Abstract
The nitric oxide (NO) synthesized by neuronal nitric oxide synthase (nNOS) acts as a neurotransmitter and plays a 

crucial role in a series of neurobiological functions. In diseased condition, activated nNOS induces nitrosylation as well 
as phosphorylation of tau protein and glycogen synthase kinase 3 beta (GSK-3β) respectively. Hyper phosphorylation 
of tau accelerates tau oligomerization resulting in formation of neurofibrillary tangles (NFT), ensuring the neuronal cell 
death in hippocampus region; a hallmark of Alzheimer’s disease (AD). Thus, designing inhibitor towards nNOS may 
reduce the neuronal loss caused by nNOS. Hence nNOS has been one of the revitalizing targets for AD. In the present 
work, one energetically optimized structure-based pharmacophore (e-pharmacophore) was generated using nNOS 
co-crystal structure (4D1N) to map important pharmacophoric features of nNOS. Shape based similarity screening 
performed using e-pharmacophore against in-house library of more than one million compounds resulted 2701 library 
of compounds. Rigid receptor docking (RRD) was applied and followed by molecular mechanics and generalized Born 
and surface area (MM-GBSA) calculation which results 22 nNOS ligands. To define the leads, dock complexes were 
subjected to quantum-polarized ligand docking (QPLD) followed by free energy calculations revealed 3 leads. On 
comparison with 1 existing inhibitor,it concealed three best leads with lower binding energy and better binding affinity. 
The best lead was subjected to induced fit docking (IFD) with MM-GBSA calculation and further molecular dynamics 
(MD) simulations for 50 ns in solvated model system. Potential energy, root mean square deviation (RMSD) and root
mean square fluctuations (RMSF) results disclosed constancy of lead 1 interactions throughout 50 ns MD simulations
run. Thus proposed three leads are having favorable absorption distribution metabolism excretion toxicity (ADME/T)
properties and provide a scaffold for designing nNOS antagonists.
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Introduction
Alzheimer’s disease (AD) is the most common form of dementia 

characterized clinically with progressive cognitive decline and neuronal 
loss [1]. Pathologically, AD affected brain shows accumulation of 
β-amyloid (Aβ) plaques and neurofibrillary tangles formed by the 
hyper phosphorylation of tau protein [2]. Recent studies indicate that 
mitochondrial dysfunction, a pathological feature that can be detected 
early in AD [3]. Nitric oxide synthases (NOS) are a family of enzymes 
catalyzing the production of nitric oxide (NO), which functions as 
neuronal signaling molecule [4]. Altered expression of nNOS by the Aβ 
stimulus results in the formation of peroxy nitrite and reactive oxygen 
species [5]. These peroxy-nitrite, nitrosylates the cytoplasmic protein 
tau and phosphorylates GSK-3β [5]. 

Nitrosylation of tau protein results in structural and conformational 
change of tau protein ensuring the destabilization of microtubule 
[6]. This leads to dissociation of tau protein from microtubule and 
oligomerization of tau occurs to form neuro-fibrillary tangles (NFT’s). 
These tangles forms a physical road blocks within the neuronal 
cells and interrupts the neurotransmitter signaling. Destabilized 
microtubule leads to the loss of neuronal cell structure ensuing the 
vacuole in hippocampus region of brain another hallmark of AD [7]. 
nNOS mediated phosphorylation of GSK-3β gets activated and further 
phosphorylates tau protein which ensues the formation of NTF’s [7].

The reactive oxygen species formed due to altered expression of 
nNOS damages the mitochondrial membrane and is associated with 
impairment of energy homeostasis deficit in the function of complexes 
of the respiratory chains reduced ATP synthesis as well as altered 
mitochondrial structure. This ensues the production of cytochrome C 
which activates the apoptotic protein BCl-2, resulting in the neuronal 

cell death by stimulating neuronal apoptosis [8]. Following such NFT’s 
aggregation, disintegration of microtubules, collapsing the neuron's 
transport system with consequent altered communication between 
neurons, eventually ending in neuronal cell death [9].

Reduced hyper phosphorylation of tau can be achieved with the 
inhibition of nNOS, which in turn reduces formation of neuro-fibrillary 
tangles in the hippocampus region of brain [10]. In silico approaches 
such as e-pharmacophore modelling followed by multiple docking 
would be helpful in defining nNOS inhibitors. Three e-pharmacophore 
models defined increases the diversity of the compound and used for 
pharmacophore based similarity search against more than 21 million 
compounds. The ability of defined e-pharmacophores to retrieve actives 
was evaluated or validated using receiver operative characteristic curve 
(ROC). Multiple docking strategies (rigid receptor docking (RRD), 
QPLD and IFD) and MM-GBSA calculations were followed to propose 
antagonists against nNOS with a wide variety of scoring functions 
that defines better binding affinities, orientations and free energies of 
the dock complexes and finally the best lead-nNOS complex and co-
crystal-nNOS complex was subjected to 50 ns MD simulation studies, 
as it is the fundamental computational tool for capturing dynamic 
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events apart from the static structure-based approaches, such as 
docking and virtual screening, that have also made important strides 
in advancing drug discovery which would be useful for treating nNOS 
mediated Alzheimer’s disease by designing novel and potent inhibitor.

Materials and Methods
Human nNOS possess 3 co-crystal structures (4D1N, 4UCH 

and 4V3U) with common H4B inhibitor in the protein data bank 
(PDB) (http://www.rcsb.org). Among the three structures, the lowest 
resolution (4D1N) structure was considered to propose antagonists 
through e-pharmacophore modeling, virtual screening, and multiple 
docking and molecular dynamics simulations.

Active site analysis and protein structure preparation

Active site was defined for further study as these residues contribute 
to the structural and functional properties of the protein. The active 
site residues of human nNOS were defined 4 Å around co-crystallized 
inhibitor using PDBsum [11]. Protein structure was minimized using 
OPLS_2005 force field by converging the heavy atoms to RMSD of 0.3 
Å. Hydrogen atoms were added to all the atoms in the system and bond 
orders, formal charges were added for the hetero groups. Optimization 
was done at neutral pH. A 10 × 10 × 10 Å grid was generated around 
the active site residues of 4D1N co-crystal structure and grid was used 
to generation of e-pharmacophore model and docking analysis.

Generation of E-pharmacophore model

Co-crystal ligand was docked in the generated grid using Glide 
XP docking. Glide XP descriptor information was retrieved from the 
refined ligand-receptor complex and the energy terms were mapped on 
to the atoms. Glide XP energies were added together for all the atoms 
which comprises the pharmacophoric sites. As fitness score is the 
measure of how well the ligand fits into the receptor with reference to 
the ligand. Pharmacophoric sites with fitness score less than -0.5 were 
rejected [12]. E-pharmacophore model of nNOS was generated from 
4D1N docked complex using the protein ligand coordinates.

Preparation of nNOS inhibitors library

Generated e-pharmacophore model with the selected features 
was subjected to shape based similarity screening using PHASE v.3.9 
(Phase, version 3.9, Schrödinger, LLC, New York, NY, 2014). Flexible 
search was performed in the in-house library against more than one 
million compounds from ChemBank, ChemPDB, KEGG ligand, 
Anti-HIV NCI, Drug-likeness NCI, Not annotated NCI, AKos GmbH 
and Asinex Ltd small molecule databases. The hits matched for the 
pharmacophoric features were considered with a distance matching 
tolerance of 3.0 Å. Multiple conformers were generated and inactive 
compounds were rejected so that the false positives are reduced. All 
the hits obtained from the shape based similarity search based on 
e-pharmacophore model and H4B co-crystallized inhibitor were 
exported as library of nNOS inhibitors.

Molecular docking

In the present study, multiple docking protocols such as rigid 
receptor docking (RRD), quantum polarized ligand docking (QPLD) 
and induced fit docking (IFD) followed by binding free energy (∆G) 
calculation by Prime/MM-GBSA analysis were performed to propose 
novel inhibitors for human nNOS. The ligands were prepared and 
chemical correctness was achieved to expand protonation, stereo 
chemical, ionization variations, energy minimization and tautomeric 
states at pH 7.0 ± 2.0 units using LigPrep [13] and Epik [14]. 

Ligands with reactive functional group and compounds with high 
ionization states or ligands that are not obeying Lipinski’s rule of 
five were removed. The nNOS grid and the library of nNOS inhibitor 
compounds were imported into Maestro v.9.8 (Maestro, version 9.8, 
Schrödinger, LLC, New York, NY, 2014) and then docked into the 
active site of nNOS. Same protocol was followed for the co-crystal 
ligand used for generation the e-pharmacophore model so as to make 
a basis for comparison. RRD comprises multi-level docking steps such 
as high throughput virtual screening (HTVS), standard precision (SP) 
and extra precision (XP) docking to selectively filter the ligands at 
every stage from lower severity to higher severity of binding affinity 
[15]. Further, ligands obtained from XP docking were subjected 
to binding free energy (∆G) calculation using Prime/MM-GBSA. 
Resulted ligands from XP docking and Prime/MM-GBSA analysis were 
subjected to QPLD docking by using Q-site module of Schrödinger, 
where quantum mechanical and molecular mechanical (QM/MM) 
calculations were calculated [16]. In QPLD initially, Glide SP docking 
was used to generate top five poses of each lead. Partial atomic charges 
were calculated for each selected poses of most energetically favorable 
bound leads towards nNOS. Then leads were redocked using Glide 
with the charge sets calculated earlier in Q-Site refinement and were 
subjected to binding free energy (∆G) calculations. Subsequently, IFD 
protocol of Schrödinger were employed to the best docking complex 
obtained from QPLD and MM-GBSA analysis, by allowing flexibility 
to active site residues of nNOS. The Glide XP docking was used for 
the initial docking and 20 poses for lead 1 were retained. In the second 
step, Prime v.3.6 (Prime, version 3.6, Schrödinger, LLC, New York, 
NY, 2014) was used to generate the induced fit nNOS–lead 1 complex 
followed by the refinement of backbone and side chains of each docked 
conformations [17]. Prime energy was used to rank the nNOS-lead 1 
refined complex. Finally in IFD, Glide XP was used to re-dock the lead 1 
into the low energy conformation of nNOS refined earlier using Prime 
(Prime, version 3.6, Schrödinger, LLC, New York, NY, 2014). IFD 
scores were calculated by integrating nNOS-lead 1 interaction energy 
as well as the total energies of the system [18]. Binding free energy (∆G) 
was calculated for the induced fit nNOS-lead 1 docked complex. 

Free energy calculation

The docked complex from RRD, QPLD and IFD were subjected to 
binding free energy (∆G) calculations for lead molecules with nNOS 
using Prime-MM/GBSA approach, as ranking of leads based on binding 
free energy would be effective than XP GScore. Using OPLS_2005 force 
field and generalized Born/surface area (GB/SA) continuum solvation 
model energies of the dock complexes were calculated. Instead of 
vdW surface, generalized Born/surface area model was employed for 
better representation of the solvent accessible surface area. The binding 
energy was calculated by the following equation. 

Gbind E  Gsolv  GS∆ = ∆ + ∆ + ∆
Where, ΔE is the sum of minimized energies of the receptor-ligand 

docking complex using the OPLS-2005. ΔGsolv is the difference in the 
GBSA solvation energies of sum of the unaligned receptor and ligand 
with that of receptor-ligand docking complex. ΔGSA is the difference in 
non-polar desolvation energy of the protein-ligand docking complex 
and the energies of the unaligned protein and ligand. ΔGbind is the 
difference in the polar desolvation energy which is calculated by the 
generalized Born (GB) continuum model based on the defined within 
the 2 Å regions around the ligand.

Evaluation of virtual screening 

The virtual screening protocol [19] was validated by enrichment 

http://www.rcsb.org
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was carried out for 24ps simulation at 300K temperature with solute 
non-hydrogen atoms subsequently for the solute non-hydrogen 
atoms with no restraints. During the initial simulations, Berendsen 
thermostats and barostat were applied to control the temperatures and 
pressures. The relaxed system was subjected to 50 ns simulations and 
trajectory was recorded with a time interval of 4.8 ps. Intermolecular 
hydrogen bond interactions, energy potential and root mean square 
deviation (RMSD) were examined to define the stability of nNOS-lead 
1docked complex.

Results and Discussion
Receptor preparation and active site analysis

Active site residues were defined around 4Å region of the co-crystal 
ligand of 4D1N. Further the active site residues of receptor were cross 
checked with PDBsum. Residues such as Arg601, Val682, Trp683, 
Val685 and Hem750, constitutes active site of nNOS and were present 
deep into the binding cleft between N-terminal and C-terminal lobes. 

E-pharmacophore generation
As inhibitor co-crystal structures is available for nNOSin the 

PDB, energy-optimized structure based pharmacophore method 
was practiced in the present study. Pharmacophoric site was based 
on the structural and interactional energy information between 
the nNOS and the co-crystal ligand. E-pharmacophore was written 
with the selected features such that, it could effectively map all the 
structural requirements that are pharmacophoric features which were 
responsible for nNOS bioactivity. E-pharmacophore was developed 
from nNOS docked complex such that all the Glide XP energetic terms 
were mapped. The derived e-pharmacophore model has four features 

factor (EF) metrics calculations. Co-crystal ligand and obtained 3 leads 
were considered as actives which were combined to decoys set of 1000 
compounds downloaded from Schrodinger to form an internal library 
of 1004 compounds. The ability of the e-pharmacophore to distinguish 
the active site compounds from decoys was evaluated for validating 
the virtual screening protocol. Availed results were interpreted with 
enrichment factor at 1% that shows the enhanced recovery of known 
actives over the decoys. Boltzmann-enhanced discrimination of 
receiver operating characteristic curve (ROC) i.e., BEDROC (α=20.0) 
[20] metrics which shows the enhanced recognition of known actives 
over the decoys from the internal database.

Molecular dynamics simulations
Molecular dynamics (MD) simulations is a fully flexible method 

that offers wide range of solutions such as to refine protein-ligand 
complexes, evaluating stability of docking complexes and calculating 
the binding energies during the simulations run [20,21]. Desmond 
v.3.8 of Schrodinger was used to compute the energies and inter-
molecular interactions. nNOS-lead 1 docked complex system was 
embedded in the SPC water model and assigned with OPLS-AA 2005 
force field. System was neutralized with the counter ions and specified 
with periodic boundary conditions such as particle mesh Ewald 
(PME) method for electrostatics, Lennard-Jones interactions limiting 
the cutoff to 10 Å and SHAKE algorithm for limiting the movements 
all hydrogen atoms involved in the covalent bonds. The neutralized 
system was energy minimized with steepest descent method with a 
maximum of 2000 steps with solute restrains followed by another 2000 
steps without solute restraints. Then 12 ps simulation was performed 
in NVT ensemble followed by NPT ensemble for restraining non-
hydrogen solute atoms at 10K temperature. Further, NPT ensemble 

Figure 1: Four featured pharmacophore model.

Lead Mol. Wt. Rotor SASA FOSA WPSA PISA Volume Donor Acceptor
Lead 1 344.21 4 540.26 87.05 70.62 259.41 923.15 3.5 4.5
Lead 2 330.18 4 520.53 0 77.28 292.31 871.45 4 4.5
Lead 3 300.33 5 525.84 0 54.02 320.37 894.61 4 4.25

Co-crystal ligand H4B 237.22 2 455.256 73.119 0 94.236 731.385 3 3
Parameters (Range 95% of Drugs)

Mol. Wt. = Molecular Weight (130.0/725.0)
Rotor = No. of Rotatable Bonds (0.0/15.0)

SASA = Total solvent accessible surface area (300.0 /1000.0)
FOSA = Hydrophobic solvent accessible surface area (0.0/750.0)

PISA = Carbon Pi solvent accessible surface area (0.0/450.0)
WPSA= Weakly Polar solvent accessible surface area (0.0/175.0)

Volume = Molecular Volume (A^3) (500.0/2000.0)
Donor =  Donor - Hydrogen Bonds (0.0/6.0)

Acceptor  = Acceptor - Hydrogen Bonds (2.0/20.0)
The abbreviations used to specify different principal descriptors of three probable leads to Table 2 and their range in 95% of the available drugs are given. The range for 
properties of 95% drug is given based on QikProp.

Table 1: Principle descriptors of three proposed leads and co-crystal ligand towards human nNOS.
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(RDDD) such as one aromatic ring (R) and three hydrogen bond 
donors (D). The pharmacophoric sites having fitness score more than 
-0.5 were written as pharmacophore hypothesis as it measures how well 
the pharmacophore site points are aligned with those of the co-crystal 
ligand. The e-pharmacophore model and their pharmacophoric sites 
were shown in (Figure 1).

Ligand optimization

The generated e-pharmacophore model was used for shape based 
similarity screening against the in-house library of small molecules. 
Shape screening based on e-pharmacophore results 2701 structurally 
similar compounds. Co-crystal inhibitor along with the shape 
screened compounds was exported as library of nNOS inhibitors. 2301 
compounds have passed the Lipinski’s filter, subsequently subjected to 
reactive filters resulted 2201 compounds which were considered for 
docking analysis and binding energy calculations.

Docking 

The RRD docking was streamlined through HTVS, SP and XP 
docking methods to find potential ligand molecules using prepared 
grid and 2201 compounds library of nNOS inhibitors. 2201 compounds 
were docked in HTVS resulted 220 hits and further passed to SP 
docking. These resulted 22 hits from SP were redocked to nNOS using 
XP docking and Prime/MM-GBSA was performed. The 22 ligands were 
subjected to quantum polarized ligand docking (QPLD), for evaluating 
the strength of relative active site interactions of each potential ligands 
with nNOS by accurate charge calculations followed by Prime/MM-
GBSA. Leads obtained from QPLD MM-GBSA were compared with 
the co-crystal structure.

The different docking strategies of RRD and QPLD followed by 
re-scoring with MM-GBSA affirmed the ability of three leads as a 
potent nNOS inhibitor. QPLD docking and MM-GBSA analysis results 
showed that, 3 leads having the good binding free energy interactions 
and having the better Glide scores. Three leads having hydrogen bond 
interactions with nNOS, lead 1 possessed highest binding affinity 
towards nNOS with QPLD ΔG score of -61.931 kcal/mol; Glide Score 
of -10.45 kcal/mol when compared to co-crystal ligand (Table 1). 
Induced fit docking (IFD) protocol of Schrödinger was considered to 
calculate the possible binding modes and associated conformational 
changes within the receptor active site by using Glide and Prime. The 
lead 1 was observed to exhibit highest binding affinity and binding 
free energy towards nNOS that are calculated using MM-GBSA (Glide 
Score as -11.53 kcal/mol; ΔG value as -61.93 kcal/mol) (Table 1). Lead 
1 interaction in IFD docking mode with nNOS (Figure 2c).

Interactions of nNOS-lead 1 docking complex

Multiple docking strategies revealed that lead 1 is having the 
binding free energy and docking score than the co-crystal ligand 
and obtained three leads (Table 1) (Figures 2b, 2c and 2d). The good 
binding affinity of lead 1 is due to hydrogen bonding, hydrophobic 
interactions, hydrophilic interactions, electrostatic interactions and 
steric interactions with Glide Score of -8.04 kcal/mol; ΔG value as 
-61.93 kcal/mol in RRD. Lead 1 bound to the nNOS with four hydrogen 
bond interactions, in which two hydrogen bonds were observed with 
backbone residue of Val685 and hydrogen bond was formed with the 
side chain residue of Hem750 and another with backbone residues 
of Val682. Lead 1 also involved in two π-π stacking interactions and 
two π-cation interactions with Arg601 and Trp683. Lead 1 docking 
interactions were well collaborated with co-crystal structure of 4D1N 

 

 

 

c                                                                          d 

 

a b 

Figure 2: Interaction patterns of nNOS with (a) Co-crystal ligand (b) Lead 1-nNOS docked complex in RRD (c) Lead 1 nNOS docked complex in QPLD (d) Lead 1-nNOS 
docked complex in IFD.
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(Figures 2a and 2b). Molecular interactions of nNOS-lead 1 docking 
complex showed four hydrogen bonds, two π-π stacking and two 
π-cation interactions revealing high stability (Figure 2b). Active site 
interactions observed in RRD were reproduced after QPLD and MM-
GBSA analysis where lead 1 showed the Glide Score of -10.45 kcal/mol; 
ΔG value as -61.93 kcal/mol in QPLD. Lead 1 showed two hydrogen 
bonds were observed with backbone residue of Val685 and single 
hydrogen was formed with side chain residue of Hem750 and another 
with backbone residue of Val682. Two π-π stacking interactions and 
single π-cation interaction were observed with Trp683 and single π-π 
stacking, π-cation interaction was observed with Arg601 (Figure 2c). 
Active site interactions observed in QPLD were reproduced after IFD 
and MM-GBSA analysis (Figure 2d) and lead 1 showed the Glide Score 
of -11.53 kcal/mol; ΔG value as -61.93 kcal/mol in QPLD. Docked 
complex showed single hydrogen bond with Val682 and Val 685, one 
π-π stacking, π-cation with Trp683, one π-cation interaction with 
Arg601 and salt bridge was formed with Hem750.

Evaluation of virtual screening

One co-crystal ligand and three leads (actives) were screened 
against internal library of 1000 decoys and actives resulted from XP 
docking with nNOS, yielded 75% of known actives which were within 
EF1% of internal library containing actives and decoys (EF 1%=75). 
Receiver operative characteristic curve (ROC) metric corresponds to 
a linearly scaled average of the actives positions with ordered ranks 
among the internal library. The range of ROC was 0 to 1 and Truchon 
and Bayly considered ROC with ≥ 0.7 as a desirable performance value. 

EF metrics measures the early recognition of actives found within 
the defined ordered list relative to the randomly distributed decoys 
in the internal library. In virtual screening, all the actives were found 
with ROC of 0.99 with respective to nNOS e-pharmacophore model. 
BEDROC value of 0.905constitutes the scope of early identification of 
actives from the ranked compounds in the internal library. Resulted 
EF, ROC and BEDROC values were 75 (EF1%), 0.99, 0.905 (α=20.0) 
respectively indicates that the generated e-pharmacophore model 
was considered for virtual screening against in-house library were 
enough in retrieving the active compounds. The enrichment curve 
graphically represents quality of retrieved actives which were ranked 
after comparing to decoys within internal library (Figure 3).

Molecular dynamics simulations

MD simulations were performed to know inter-atomic interactions 
that facilitate the complex stability. MD simulations studies were 
performed up to 50 ns to analyze the conformational stability and 
steady nature of nNOS-lead 1 docked complex and nNOS-H4B docked 
complex in solvated model system. After simulations, energy plot 
reveals that the nNOS-lead 1 docking complex was comparatively 
consistent during 50 ns MD simulations run (Figure 4a). Stability 
of the docked complex was compared with the 4D1N-H4Bcomplex 
throughout the 50 ns simulations run.

The energies of both the systems were relatively stable during 50 
ns simulations run. Energy of both the simulated docked complexes 
showed that nNOS–lead 1 complex was having the lowest energy when 
compared with nNOS-H4B complex and energy of the system was 

 

Figure 3: Enrichment curve for evaluating virtual screening protocol.

 

Figure 4: Potential energy plot of (a) nNOS-H4B (b) nNOS-lead 1 complex during 50 ns MD simulations run.



Citation: Madhulitha NR, Pradeep N, Sandeep S, Hema K, Chiranjeevi P, et al. (2017) E-Pharmacophore Model Assisted Discovery of Novel 
Antagonists of nNOS. Biochem Anal Biochem 6: 307. doi: 10.4172/2161-1009.1000307

Volume 6 • Issue 1 • 1000307
Biochem Anal Biochem, an open access journal
ISSN: 2161-1009

Page 6 of 9

relatively consistent during 50 ns MD simulations (Figure 4b). The root 
mean square deviation range for nNOS Cα and lead 1 complex initial 
conformation and during simulations period were ranged from 0.70 
Å to 2.99 Å for Cα of nNOS and for lead 1 it was ranged from 0.10 Å 
to 2.39 Å, the average RMSD of Cα was 2.12 Å and for lead 1 is 1.06 
Å in 50 ns simulations (Figure 5b). The analysis of the RMSD plot for 
Cα and heavy atoms of lead 1 showed that after a small rearrangement 
from the initial conformation of complex was stable during 50 ns MD 
simulations period. In case of nNOS-H4B docked complex, RMSD 
range for nNOS backbone and H4B were within conventional range 
from 0.08 Å to 1.53 Å and 0.67 Å to 3.09 Å respectively, which is stable 
throughout MD simulations run. Average RMSD for nNOS backbone 
was 2.04 Å and an average RMSD for lead 1 was 0.41 Å (Figure 5a).

Root mean square fluctuations (RMSF) were useful for 
characterizing local changes along the protein chain and average RMSF 
for nNOS backbone and side chain residues at were within the limit of 
1.13 Å and 1.62Å respectively. RMSF for active site residues of nNOS 
were within the limit of 4.0 Å. Lower the RMSF values indicate the 
minimal fluctuations of backbone and side chain residues during the 
MD simulations run (Figure 6a).

In case of nNOS-H4B docked complex, RMSF of backbone and side 
chain residues at active site were within the limit of 1.01 Å and 1.50Å 

respectively. Therefore, the lower RMSD and RMSF values of the 
nNOS-lead 1 system shows the smaller structural rearrangements 
and lesser internal motions around the active site residues of nNOS 
and it was better collaborated with the nNOS-H4B docked complex 
(Figure 6b).

Binding interactions of nNOS-lead 1 and nNOS-H4B com-
plexes during 50 ns simulations

nNOS-lead 1 and nNOS-H4B docking interactions were analyzed 
throughout 50 ns run period (10416 trajectories). During the 
simulations, lead 1 formed hydrogen bond (H-bond) interactions 
with the active site residues Trp683, Val685, three π-π stacking with 
Trp683, one π-π stacking with Arg601 and two π-cation interactions 
with Arg601in 10416 trajectories with nNOS protein, which revealed 
the stability of nNOS-lead 1 complex throughout the 50 ns simulations 
run (Figure 7b). Total 10416 trajectories were analyzed during the 
50 ns simulations to check all types of binding interactions of lead 1 
with nNOS. Lead 1 showed hydrogen bonding interactions in 2083 
trajectories, water mediated interactions in 850 trajectories and 5800 
trajectories involved in hydrophobic contacts with the Trp683 of 
nNOS (Figure 7b). In case of Val 685, lead 1 showed hydrogen bonding 
interactions in 3800 trajectories, water mediated interactions in 1000 
trajectories and 3800 trajectories involved in hydrophobic contacts 

 
b

 

a

Figure 5: RMSD plot of (a) H4B-nNOS (b) lead 1-nNOSduring 50 ns MD simulations run.
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Figure 7: Interaction patterns after 50 ns MD simulations run(a)nNOS-H4B (b)nNOS-lead 1 complex (Yaxis 0.2% = 2083 trajectories).

 
b

 

a

Figure 6: RMSF plot (a) nNOS-H4B (b) nNOS-lead 1.
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(Figure 7b). Whereas, lead 1 involved in hydrogen bonding interactions 
in 3800 trajectories, hydrophobic contacts in 3800 trajectories and 400 
trajectories involved in water mediated interactions with the Val682 
(Figure 7b). In case of Arg601, lead 1 involved in hydrogen bonding 
interactions in 3750 trajectories, ionic contacts in 1200 trajectories and 
1000 trajectories involved in hydrophobic interactions (Figure 7b). 
Average analysis revealed that out of 10416 trajectories lead 1 is having 
better interactions with Val685 in 8600 trajectories, in 8000 trajectories 
bonding with the Val682, in 8733 trajectories with the Trp683 and 
Arg601 involved bonding in 5900 trajectories (Figure 7b).

The nNOS-H4B complex displayed four hydrogen bonds with active 
site residues such as Val600, Arg601, Asp605 and Val685 during MD 
simulations run (Figure 7a) 10416 trajectories were analyzed during 
the 50 ns simulations and H4B showed hydrogen bonding interactions 
in 3620 trajectories with the Val600 (Figure 7a). Whereas with Arg605, 
H4B involved hydrogen bonding interactions in 4320 trajectories, 
water mediated interactions in 1520 trajectories and 100 trajectories 

involved in ionic contacts (Figure 7a) H4B formed hydrogen bonding 
interactions in 8000 trajectories, ionic contacts in 1000 trajectories 
and 250 trajectories involved in water mediated interactions with the 
Arg601 (Figure 7a). 

In case of Val685, H4B involved in hydrogen bonding interactions 
in 6200 trajectories and 1500 trajectories were involved in water 
mediated interactions (Figure 7a). Compare to the crystal ligand data 
lead 1 data revealed strongly binding with the active site residues of 
nNOS in over all 50 ns simulations run and nNOS-lead 1 complex well 
collaborated with the binding free energy in different docking strategies 
such as RRD, QPLD and IFD and also in 50 ns MD simulations run.

The analysis of RMSD and RMSF confirmed the lesser re-
arrangement in the protein backbone and stable potential energy of 
docking complex revealed that nNOS-lead 1 complex was more stable 
in the solvated model conditions throughout the 10416 trajectories. 
The proposed three leads showed favorable ADME/T properties 
against nNOS (Tables 1 and 2).

a

 

b

Figure 8: Analysis of (a) nNOS-H4B (b) nNOS-lead 1 contacts towards nNOS during 50 ns simulations run.

Lead Log Po/w Log S Clog S Log BB Rule of 5 Rule of 3 Log Kp Log Khsa
Lead1 2.44 -3.908 -5.133 -0.7 0 0 -2.623 -0.047
Lead2 2.44 -3.908 -5.133 -0.7 0 0 -2.623 -0.047
Lead3 2.112 -3.387 -4.369 -0.99 0 0 -2.702 -0.172

Co-crystal ligand H4B -1.19 -0.643 -1.409 -1.926 0 1 -1.129 -0.688
Parameters (Range 95% of Drugs)

Log P o/w = log P for octavo/water (-2.0/6.5)
Logs = log S for aqueous solubility (-6.5/0.5)

CI log S = log S - conformation independent (-6.5/0.5)
Log BB = log BB for brain/blood (-3.0/1.2)

Log KP = log KP for skin permeability (KP in cm/hr)
Log K hsa = log K hsa Serum protein binding (-1.5/1.5)

Lipinski rule of 5 violations (maximum is 4)
Jorgensen rule of 3 violations (maximum is 3)

Table 2: Predicted ADME properties of three leads and co-crystal ligand towards human nNOS.



Citation: Madhulitha NR, Pradeep N, Sandeep S, Hema K, Chiranjeevi P, et al. (2017) E-Pharmacophore Model Assisted Discovery of Novel 
Antagonists of nNOS. Biochem Anal Biochem 6: 307. doi: 10.4172/2161-1009.1000307

Volume 6 • Issue 1 • 1000307
Biochem Anal Biochem, an open access journal
ISSN: 2161-1009

Page 9 of 9

Lead 1 formed better docking score and good active site interactions 
with nNOS than with the co-crystal docking complex by forming 
hydrogen bonds with active site residues such as Trp683, Val685, 
three π-π stacking with Trp683, one π-π stacking with Arg601 and 
two π-cation interactions with Arg601 of nNOS (Figure 8a). Stability 
of protein-ligand docked complex was analyzed in MD simulations 
through solvating water molecules because it was recognized closer 
to the physiological environmental conditions. Binding interactions 
of the best ranked docked complex were also observed during the 50 
ns MD simulations run and analyzed for stability of docked complex 
in every trajectory. The nNOS-lead 1 docked complex was consistent 
throughout 50 ns simulations period. RMSD, RMSF and potential 
energy of docked complex were also in the acceptable range. In the 
present study, lead 1 showed molecular interactions with residues Arg-
601, Val-682, Trp-683 and Val-685 when compared to the co-crystal 
ligand and it was instable orientation with better binding affinity in 
RRD, QPLD, IFD and MD simulations. 

Lead 1 showed favorable interactions with the active site residues 
along with the residues extended by hydrophobic interactions and 
water bridges, which results the conformational change within the 
active site of nNOS (Figure 8b). Therefore, blocking the active site 
with lead 1 was adequate to decrease the biological activity of nNOS 
with the unavailability of active site residues. Thus, nNOS induced 
neurofibrillary tangles formation subsequently neuronal apoptosis 
within the neurons of front-temporal region of brain might be reduced.

Conclusion
Altered expression of nNOS results in hyper phosphorylation 

of cytoplasmic protein tau in turn results in destabilization of 
microtubule ensuring the formation of Neurofibrillary tangles (NFTs). 
Thus, these NFTs forms a physical road blocks in the neurons and leads 
to neuronal apoptosis. As three crystal structures available for nNOS, 
e-pharmacophore modeling and multiple docking methods were
practiced to define the leads. The obtained leads from multiple docking 
studies were analyzed for ADME/T properties to propose the leads.
E-pharmacophore model of nNOS-ligand complex demonstrates
the structural requirements of the nNOS to define potent leads. The
analysis of nNOS-ligands complexes revealed the key amino acids
present in the active site of nNOS that are important for ligand binding. 

The generated e-pharmacophore was used for shape based 
similarity screening against in-house library and multiple docking 
was performed with the generated library of nNOS inhibitors. Results 
from docking strategies such as RRD, QPLD and IFD followed by 
MM-GBSA calculations revealed three the best leads when compared
to the existing antagonists. MD simulations studies revealed the
stability of lead 1 to form nNOS-lead 1 complex, such that it may
reduce the nNOS biological activity by blocking the critical active
site residues. The proposed three leads exhibited similar interaction
pattern with increased binding affinity and favourable orientation
towards nNOS, such that critical active sites were blocked in turn to
reduce the biological activity of nNOS. The proposed three leads were
also validated and ranked better than the existing co-crystal ligand and 
decoys in ROC metrics. Thus inhibition of nNOS results in reduced
NFT formation in turn reduces neuronal loss in the fronto-temporal
region of brain and pave a way for treating nNOS mediated AD.
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