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Abstract
Recent interest in the field of biocommodities production through bioelectrochemical systems has generated 

interest in the enzyme catalyzed redox reactions. Enzyme catalyzed electrodes are well established as sensors 
and power generators. However, a paradigm shift in recent science towards the production of useful chemicals 
has changed the face of biofuel cells, keeping the fuels or chemicals production in the upfront. This review article 
comprehensively presents the progress in the field of enzyme-electrodes for the production of electricity, fuels and 
chemicals with an aim to represent a practical outline for understanding the use of single or multiple redox enzymes as 
electrocatalysts for their electron transfer onto electrodes. It also provides the state-of-the-art information regarding 
the different existing processes to fabricate enzyme electrodes. Successfully-achieved electroenzymatic anodic and 
cathodic reactions are further discussed, together with their potential applications. Particular focus was made on the 
novel single/multiple enzyme systems towards product synthesis and other applications. Finally, techno-economic 
and environmental elements for industrial processing with enzyme catalyzed bioelectrochemical system (e-BES) are 
anticipated, in order to provide useful strategies for further development of this technology.
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Introduction
During the past decade, interest in bioelectrochemical systems 

(BESs) has significantly expanded. However, the major research 
focus is currently directed at microbial bioelectrochemical systems 
[1]. Enzymatic electrocatalysis involving energy applications has 
remained more discrete. However, the continuous search for highly 
selective, efficient and low cost non-precious catalysts, together with 
the recent advances in bioelectrochemistry and its related fields have 
already allowed further progress on enzymatic production of electricity 
from a wide variety of substrates or, the other way around, enzymatic 
applications of excess electrical energy for the production of chemicals 
and fuels [2].

Enzymes, contrary to microbes, have been the most important 
target for biosensor technologies. So, the electrochemical grounds 
for enzymatic applications are rather strong. Still, sensor operation is 
often desired at low current and potential differences, in order to avoid 
counter-reactions. On the other hand, energy applications demand 
maximum values of current and potential difference [3]. Furthermore, 
electricity-, fuel- or chemical-prospective devices are expected to have 
a stable and extended lifetime, which is still a crucial factor in the 
enzymatic-electrocatalysis-driven research of our days.

As an example of these technologies, Figure 1 presents a general 
scheme of current production in an enzymatic fuel cell. At the anode, 
enzymes can produce electricity and release protons from the oxidation 
of substrate fuels (e.g. glucose), while at the cathode substrate reduction 
(e.g. oxygen, carbon dioxide, volatile fatty acids) together with the use 
of electrons and protons can be completed for enzymatic electrolysis or 
electrosynthesis [4]. However, there are various critical fundamental 
challenges remaining unresolved in such processes. For example, the 
electron conduction between enzymes and electrodes still entails great 
improvement in the case of enzymatic bioelectrochemical systems 
(e-BES) [2].

At the anode, a reduced substrate (Sred) is oxidized (to Sox) by means 
of an enzyme or enzyme-chain supported on an electrically-conducting 

material. At the cathode, a reduction reaction of an electron acceptor 
which may or may not be enzymatically-mediated e.g. O2 reduction can 

Figure 1: Schematic representation of a typical enzymatic fuel cell.
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be carried out over a Pt-based electrode or over a glucose-oxidase-based 
carbonaceous electrode, by using the electrons and protons released 
at the anode. Electricity is directly produced during this process. 
Otherwise, enzymatic conversion can be carried out at the cathode 
for electrolysis purposes when Ean>Ecat, for synthesis applications such 
as e.g. alcohol production from volatile fatty acid reduction. Paired 
electrolysis can also be achieved, producing other valuable compounds 
at both cathode and anode level. In some cases the anode and cathode 
compartments are separated by an ion-selective membrane, in others 
this component is not essential.

The major objectives of this review are (i) to present the progress 
of enzyme-electrodes for the production of electricity, fuels and 
chemicals, simultaneously understanding the use of single or multiple 
redox enzymes as electrocatalysts and their intrinsic electron-transfer 
mechanisms to electrodes; (ii) to provide state-of-the-art information 
regarding the different existing processes to fabricate enzyme electrodes 
(iii) to discuss successfully-achieved electroenzymatic anodic and 
cathodic reactions together with their potential applications. A special 
attention was focused on the possible enzymatic electrosynthesis 
mechanisms for the value-added product synthesis. Finally, techno-
economic and environmental elements for industrial processing with 
e-BES are projected, in order to provide useful strategies for further 
development of this technology.

The ABCs of enzyme-electrodes

Enzyme organization: Enzymes can be classified in several 
ways. The highest classification level is related to their function: a) 
oxidoreductases (redox enzymes) catalyze oxidation or reduction 
reactions, b) transferases transfer functional groups, c) hydrolases 
catalyze the hydrolysis of various bonds, d) lyases cleave various bonds 
by means other than hydrolysis and oxidation, e) isomerases catalyze 
isomerization changes within a single molecule and f) ligases join two 
molecules with covalent bonds [5]. In this article, focus will be only on 
oxidoreductases, since they are the sole enzymes capable of catalyzing 
the transfer of electrons from one molecule to another or to electrodes. 

Redox enzyme systems: Oxidoreductases are a group of enzymes 
that usually utilize nicotinamide adenine dinucleotide (NAD) or its 
phosphorylated analog (NADP) as cofactors. However, they can also 
act on other groups of electron donors such as CH-OH, aldehyde or 
oxo, CH-CH, flavine adenine nucleotide (FAD) or its phosphorylated 
analog (FADP), CH-NH2, CH-NH, etc. Similarly, it also can act on the 
other compounds such as sulfur, heme, diphenols, peroxide, hydrogen 
as well as single or paired donors with incorporation of molecular 
oxygen, superoxide radicals, CH or CH2, iron-sulfur proteins, reduced 
flavodoxin, phosphorus or arsenic and all the X-H and Y-H to form an 
X-Y bond among others. So far, the most relevant enzymes in e-BES 
have been oxidases, (de)hydrogenases and peroxidases. Redox enzymes 
typically contain one or more coenzyme structures that act as catalytic 
active centers. Flavins and Pyrroloquinoline Quinone (PQQ) are most 
commonly known coenzymes. All these enzymes typically undergo 
Mediated Electron Transfer (MET) or Direct Electron Transfer (DET). 
In addition to organic species, metalloproteins containing metal 
coenzymes are also used, e.g. copper, nickel-iron-sulfur, iron-sulfur, 
and heme-based. Cytochromes are commonly studied co-factors in 
BES and they are electron transport proteins containing heme groups 
[3]. 

Enzyme function in e-BES: Based on the function of enzymes, e-BES 
can be classified into two broad categories, direct energy producing and 
value-added product synthesizing. The enzymes that participate in the 

electron transfer chain between the fuel and the anode from oxidizing 
the organic matter with their simultaneous reduction at cathode in 
presence of an oxidant. This is the same principle as conventional or 
Microbial Fuel Cells (MFCs). On the contrary, the product synthesizing 
e-BES consists of enzymes that are involved in electroenzymatic 
synthesis of chemicals and fuels with the help of energy generated 
[6]. Although electricity generation in e-BES is rather interesting, up 
to date no commercial alternatives are available at the industrial scale. 
However, the use of enzymes in organic synthesis has shown great 
potential. So far, more than 150 industrial processes are known, where 
enzymes are used for the production of fine and commodity chemicals 
[4]. It is anticipated that enzymatic electrosynthesis will also rapidly 
expand to fulfill industrial needs in green chemistry.

Mono-enzyme vs. multi-enzyme electrodes: Compared to e-BES, 
the microbial Bioelectrochemical Systems (m-BES), using bacteria 
as electrocatalyst, already contain a wide variety of enzymes that 
allow complex oxidation or reduction processes for a great variety of 
substrates. On the contrary, most e-BES employs a single enzyme to 
partially convert a specific compound [7]. In general, a single enzyme 
can catalyze a simple chemical reaction, and approximately 4800 enzyme 
entries have been documented and classified to date [8]. Most single 
redox enzymes catalyze one- or two-electron reactions, and represent a 
single elementary step in more complex reaction mechanisms; although 
some enzymes (e.g. blue copper oxidases: laccase, ascorbate oxidase) 
catalyze four-electron reduction of oxygen to water, higher specificity 
is usually desired [3]. Relatively complicated chemical reactions can be 
mediated by multiple enzymes in one location (Figure 2). The use of 
multiple enzymes in one location has numerous benefits such as fewer 
unit operations, smaller reactor volume, high volumetric and space-
time yields, shorter cycle times and less waste generation. Besides, with 
multiple enzymes working together, the equilibria among the reactions 
is usually regarded as unfavorable which can be driven to the formation 
of target products [8]. Multi-enzyme-bioelectrochemical systems (me-
BES) can be considered a type of in vitro synthetic biology project, 
promising for the production of fuels, chemicals, biocommodities and 
bioelectricity [8].

Electron transfer mechanisms

Electrons generated during oxidation should reach the anodic 
electrode to enter into the power circuit. Similar to the m-BES known 
as MFCs, there are two different mechanisms that have been proposed 
for anodic electron transfer in e-BES (Figure 3), as earlier introduced, 
DET and MET (section 3.1.2) [9-11]. However, the enzymatic electron 
transfer processes have their singularities. In general, the enzymes will 
have two distinct sites, viz., the biocatalytic site (apoenzyme/protein 

Figure 2: The functional difference between the mechanism of mono 
vs multiple enzyme electrodes [S: Substrate; P: Product; E: Enzyme; I: 
Intermediate; e-: Electron].
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part) for substrate recognition and the electrocatalytic site (prosthetic 
group/redox mediator) for electron transfer. The prosthetic group 
or internal redox site of the enzyme undergoes a conformational 
change during electron transfer, described as DET. However, some 
of the enzymes have only one site for both activities, which generally 
uses an external soluble redox carrier for electron transfer, described 
as MET. Overall, electrons derived from the enzymatically catalyzed 
oxidation of a substrate by oxidoreductases are transferred to the 
electrode through reduction of either a prosthetic group integrated 
within the enzyme (DET) or a co-substrate (MET), intermediately 
storing the transferred redox equivalents. However, the possibility to 
re-oxidize the prosthetic group or the co-substrate is crucial in order 
to regenerate the enzyme activity and make it available for further 
substrate recognition and conversion reactions [12]. Moreover, it is 
very difficult to clearly delineate the differences between MET and DET 
[12]. The detailed mechanism and existing challenges are discussed in 
the further sections.

Direct electron transfer (DET): The simplest and most appealing 
mode of interaction between electrodes and enzymes is DET, due to 
small number of transfer steps. In this form of electron transfer, the 
redox enzymes that possess tightly bound cofactors in the active site, 
can deliver the electrons directly at the electrode. The first reports on 
DET were published over 30 years ago [13] and recent reports are also 
available on a wide range of enzymes [14-18]. DET has been reported 
for about 40 redox enzymes, including laccase, peroxidases and 
complex multi-cofactor-containing enzymes [13]. Most extensively 
studied and best characterized enzymes for DET belong to the group 
of peroxidases [19-29]. Though there exist several mechanisms for the 
direct electrochemical communication between enzyme and electrode, 
several challenges need to be overcome to achieve significant rates of 
electron transfer, leading to appreciable current densities, between 
active sites and solid electrode surfaces. Major criteria for the effective 
electron transfer are shorter ET distance between enzyme and electrode 
and right orientation of the enzyme active site towards electrode.

The electrode surface itself is considered to be a “substrate” for the 
enzyme during DET, where the electron transfer kinetics are controlled 
by—at least—the electrode potential and by the distance between the 
surface and electron transfer structures in the enzyme [30]. DET 
involves the direct electrochemical recycling of the prosthetic group of 
the enzyme at the electrode surface, sometimes involving an electron 

tunneling mechanism. The mechanism of tunneling is based on a 
“bridge” molecule of complex structure (including different functional 
groups), that simply represents a barrier for ET which tunnels deep 
under the barrier. Superexchange is also a DET process similar to 
tunneling, but in a system with vacant electronic energy levels, higher 
than the energy of the tunneling electron. However, for this case, the 
electron transfer between two redox enzymes is not only dependent on 
the difference in potential between them and the distance between their 
respective redox centers, but also on the structural rigidity of the redox 
species involved [31,32]. The electron transfer distance between the 
prosthetic group of the enzyme and the electrode surface is obviously 
long due to the shielding provided by the protein shell, and this makes 
DET via tunneling a bit difficult. Although, immobilization of the 
redox enzyme on the electrode reduces the ET distance, negligible rates 
of ET have been observed for distances beyond 2 nm, which are very 
difficult to achieve. This indicates that DET can only take place when 
an electrode is placed within this distance to an enzyme cofactor in 
the active site [33]. Upon immobilization, the electrode can also block 
the access to the active site of the co-substrate/substrate resulting in 
no bioelectrocatalytic current for substrate electrolysis, even when an 
electrode can approach sufficiently close to an active site to achieve DET. 
Moreover, the denaturation of enzyme structure during immobilization 
with the consequential loss in activity, is another hurdle [12,13,34], 
caused by weak and unstable binding, random surface orientation, 
or impeded by the multiple redox sites present in a single enzyme 
[13,34]. Thus, an optimally designed electrode configuration has to 
ensure that the ET distance between an immobilized redox protein 
and a suitable electrode surface is made as short as possible but with 
favorable orientation. The enzyme molecules immobilized in the first 
monolayer on an electrode surface tend to show higher DET, but only a 
very small number of enzymes can be productively immobilized on the 
electrode surface which limits the overall electron transfer. In addition, 
proteins directly adsorbed on carbon, platinum or gold surfaces tend 
to denature, leading to electrode fouling and to unfavorable conditions 
for electron transfer [12]. 

Similarly, for enzymes that have their active sites sufficiently 
exposed to permit DET, the correct orientation of each enzyme at the 
electrode surface is a pre-requisite to keep the closest distance between 
enzyme and electrode. Design of suitable surfaces for the anisotropic 
and oriented immobilization of enzymes, such as immobilization 
on self-assembled monolayers (SAMs), is one approach to enhance 

Figure 3: Schematic illustrating a simple arrangement for (A) direct electron transfer (DET) and (B) mediated electron transfer (MET), between the active site of an 
electrochemically-active enzyme and a solid electrode, during the oxidation of a substrate (Re-printed after [30] with permission from Elsevier).
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DET. Orientation of immobilized enzymes with the prosthetic group 
directed towards the electrode surface also drastically increases the rate 
of DET. The immobilization of an enzyme on a SAM also leads to the 
orientation of its prosthetic group towards the electrode surface and 
thus to a shortened electron transfer distance [12,35,36]. In addition, 
the SAMs also help in preventing denaturation of the proteins at the 
electrode surface [12].

Another approach for enhanced DET is the entrapment of 
enzymes in the conducting materials. These conducting matrices can 
also increase the “virtual” electrode surface by allowing the enzymes to 
immobilize at a fair distance from the electrode surface to take part in 
effective DET [12]. Entrapment into conducting materials such as sol-
gel composites, polymers, etc., has been described previously [37-42]. 
However, the sensitivity of the enzyme has shown to become low in 
some cases after entrapment, and the ET mechanism could not be well 
defined as DET [43-45], except in very few cases [46].

Apart from these proposed mechanisms, another alternative for 
DET includes ET in a multi-cofactor enzyme with multiple subunits. 
This DET route is based on the pathway between the active site of the 
enzyme and the electrode surface, consisting of several steps between 
the different cofactors within the subunits of the enzyme. The studies 
related to multi-cofactor enzymes (mainly PQQ, FAD and heme-
containing) reveal the priority of the distance separating the active site 
from the electrode [47-55]. However, proper immobilization of these 
enzymes on the electrode surface without losing any of the properties is 

a tough task. SAM-modified surfaces can also be used as a basis for the 
design of new ET cascades, as the distance between the active site and 
the electrode surface can be tailored. However, design of “molecular 
cables” by the integration of redox relays into the monolayer or by 
introducing the conducting oligomers with in the spacer chain to 
subdivide the overall ET distance, will result in enhanced electron 
recovery at the electrode surface through DET [12,56].

Mediated electron transfer (MET): Mediated electron transfer 
(MET) is an alternative to the DET, where a co-substrate or an 
electrochemically active chemical species (e.g. redox mediator) can be 
used to shuttle the electrons between the enzyme and the electrode. 
Mediators are artificial electron transferring agents that can readily 
participate in redox reactions with biological components. They 
form low molecular weight redox couples, which shuttle electrons 
from the active center of the enzyme to the electrode surface or vice 
versa [57]. Mediators are quite diverse in structure, properties and 
redox potentials (Figure 4). Their electron transfer, therefore, can be 
generally classified as homogeneous- and heterogeneously-mediated 
transfer. Homogeneous mediation occurs in solution, where both 
the mediator and the enzyme diffuse freely in the medium and after 
the electron transfer both the enzyme and mediator remains in the 
solution phase and then the free mediator interacts with the electrode. 
On the contrary, heterogeneous mediation implies diffusion of the 
mediator or the enzyme through an interface, keeping the other on the 
electrode, before and after achieving electron transfer between them. 

Figure 4: Cofactor structures and redox processes for: (A) FAD/FADH2, (B) NAD+/NADH and (C) PQQ, where R links adenosine diphosphate via ribitol to the flavin 
(A) or nicotinamide (B). (Re-printed after [30] with permission from Elsevier).



Citation: Dominguez-Benetton X, Srikanth S, Satyawali Y, Vanbroekhoven K, Pant D (2013) Enzymatic Electrosynthesis: An Overview on the Progress 
in Enzyme-Electrodes for the Production of Electricity, Fuels and Chemicals. J Microb Biochem Technol S6: 007. doi:10.4172/1948-5948.
S6-007

J Microb Biochem Technol                                                                                                                       ISSN: 1948-5948 JMBT, an open access journal                            
Biofuel Cells & Bioelectrochemical 

Systems

Page 5 of 20

The latter occurs when the mediator is added to the bulk solution for 
reaching an immobilized enzyme or when the mediator is present on 
the electrode and not in the bulk solution, that contains the enzyme 
[3,57]. Initial studies on MET focused on the solution-phase mediators, 
which necessitate inclusion of a separating membrane between anode 
and cathode to prevent short-circuiting and cross reactions. Therefore, 
immobilization of mediator and enzyme onto electrode is preferable 
for the miniaturization of devices, permitting exclusion of the 
membrane. Initially, the freely diffusing natural co-substrate (NAD+) 
was used as electron shuttle between the enzyme and the electrode (to 
recycle the prosthetic group of enzymes), based on the fact that these 
co-substrates can be reduced or oxidized at a metal-electrode interface 
[12]. However, the regeneration of the co-substrate is energy intensive 
(which decreases the cell potential) and also condition dependent. 
Introduction of artificial redox mediators was found as an alternative 
to this mechanism, as they lower the working potential resulting in 
decreased interference by other compounds that are directly oxidized/
reduced at the electrode surface [12,58,59]. 

Ideal mediators should react rapidly with enzymes and exhibit 
reversible heterogeneous kinetics. Also, the overpotential for mediator 
regeneration should be low and pH independent. The mediator 
should have stable oxidized and reduced forms; the reduced form 
should not react with oxygen, while the oxidized form should not 
react with protons, if such are not the targeted reactions [57]. If these 
conditions are met, different mediators and prosthetic groups can 
be used for substituting or reducing expensive natural mediators of 
particular enzymes, allowing more economically efficient processes, if 
not also more kinetically favorable [60]. The artificial redox mediators 
are generally low molecular weight, soluble metal complexes with 
reversible electron transfer properties such as K4[Fe(CN)6], quinones, 
Os-complexes, etc. [61-67]. These artificial mediators also help in the 
regeneration of co-substrates which cannot regenerate on the bare 
electrode surface (NADH), especially at lower potentials [12]. Further 
to this approach, the adsorption of soluble redox mediators on the 
electrode surface followed by the immobilization of the enzyme in a 
second layer has been carried out [59,68,69]. However, this mechanism 
is similar to the freely-diffusing soluble mediators mechanism as these 
mediators diffuse between enzyme and electrode. Moreover, leaching 
of the mediators, lack of long-term stability, and sample contamination, 
are the main disadvantages in this mechanism [12,70,71].

The free diffusional movement of the redox mediator is obvious 
and an indispensable prerequisite for a productive electron transfer. 
Henceforth, it is important to maintain a fast electrochemical 
communication between enzyme and electrode as well as to tightly 
retain the redox mediator at the electrode surface. One approach to 
satisfy these two conditions is known as “hopping”, where electron 
transfer distances are reduced by dividing the overall ET process into 
a sequence of electron hopping reactions between redox mediators 
(relays) covalently attached to a matrix. The ET mechanism in hopping 
is dominated by a sequence of self-exchange reactions between adjacent 
redox mediator molecules. However, care should be taken so that the 
rate of these self-exchange reactions should not limit the electron 
transfer [12,13,72]. Similarly, covalent binding of the redox mediator 
via long and flexible spacer chains either to the electrode surface 
(seaweed mechanism) or to the outer surface of the enzyme itself (whip 
mechanism), has also been proposed as alternative [12,73]. Mixing the 
mediator into the carbon paste (graphite powder) is a relatively easy 
and effective method of mediator integration [74-81]. These carbon 
pastes can be further modified with stabilizers [82] or polyelectrolytes 
[75] to increase the long-term stability, response time, etc. The enzyme 

can also be mixed into the paste, but it is mostly immobilized on top 
of the carbon paste surface to increase the contact with the substrate. 
There are other approaches proposed to retain the redox mediator or 
enzyme at the electrode and prevent their leakage, such as trapping 
them within ion-exchange membranes [83-85], manufacturing them 
as colloidal particles [86], physical entrapment of the redox mediator 
into the matrix of composite electrodes [87,88], and entrapment into 
hydrogels [89] or in conducting polymers [90,91]. However, all these 
strategies have not completely solved the problem of mediator leakage 
and, in consequence; it has become indispensable to bind the mediators 
covalently in order to establish an electron-hopping mechanism 
instead of a shuttle mechanism [12]. Development of electroenzymes 
is another recent approach, where the protein itself is modified with 
covalently bound redox mediators at the outer surface [92-95] or at 
the inner surface of the protein, preferentially in close proximity to 
the active redox cofactor of the enzyme [96-99]. The covalently bound 
redox relays are supposed to shorten the ET distance between the 
deeply buried active site and the protein surface by allowing hopping 
mechanism via the enzyme-bound artificial mediators. 

Irrespective of the mechanism, thermodynamic redox potentials 
of mediator(s) will dictate the power output during MET in fuel 
cell mode. More positive oxidative biocatalysis at anode and a more 
negative reductive biocatalysis at cathode drive the electron transfer 
between enzyme active site and mediator but will contribute to the 
loss in cell voltage. Therefore, achieving a best compromise between 
driving force and current generation is a major challenge in MET, 
in order to maximize the power output [12,13,100]. This can also 
be extrapolated as more energy consumption in electrolytic e-BES, 
which is quite relevant since more than 80% of the operational costs 
of electrolysis systems typically account for energy consumption. The 
electron transfer kinetics between the enzyme and the redox mediator 
should also be as fast as possible (i.e. high exchange current density) to 
compete with the regeneration of the enzymatic active site. 

The absence of mediators is a big advantage when it comes to 
selectivity (there is less susceptibility to interferences due to lower 
electrode potentials) and because of the elimination of one reagent in 
the reaction sequence [13,57]. However, addition of a mediator may 
potentially increase the maximum rate of electron transfer, compared 
to DET. The mediators serve to facilitate a biological electron transfer, 
which is favorable thermodynamically but not kinetically [68]. 
Additionally, by using mediators the enzyme does not need to be in 
direct contact with the electrode surface, which minimizes enzyme 
denaturation possibilities. High electron transfer rate constant (kET) 
with the enzyme and accessibility in terms of steric effects, orientation 
and distance dependence, are two major factors to be considered while 
selecting mediators in order to obtain high currents [57,100]. Redox 
potential, electrostatic interactions, pH and ionic strength are also the 
other factors that play a major role on facilitating MET. 

Development of enzyme immobilized electrodes

Enzymes are usually sensitive and their lifetime is limited but 
their stability over a long period of time is much crucial for their 
applications [101,102]. Immobilization of the enzymes onto the 
solid conductive matrices is an efficient and sustainable solution to 
confer a high stability and extended lifetime. It protects the enzyme 
from various external environmental conditions, such as shear 
forces, pH, temperature fluctuations, organic solvents, toxins, etc., 
[103]. Furthermore, immobilization affords a high concentration of 
enzyme moiety on the electrode, as well as easy handling of the e-BES 
along with the possibility of increased re-use of enzyme [104,105]. 
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Henceforth, it can be concluded that immobilization of an enzyme 
offers a valuable solution for e-BES design and operation. In fact, 
the proper implementation of enzyme-electrodes relies mostly on 
the immobilization of enzymes or electrochemically active chemical 
species (e.g. mediators) and the chemical and physical properties 
derived thereof [6]. Immobilization of the enzyme on the electrode 
must be sufficiently strong to facilitate the transfer, but still suitable 
for not causing denaturation. Also, the enzyme must be properly 
oriented with respect to the electrode surface such that the active center 
is overlapped within an acceptable distance for the electron transfer 
to occur [3,72]. The electrode surface must be designed to resemble 
the surface characteristics of original environment (e.g. surface charge 
distribution or hydrophilic/hydrophobic properties) which facilitates 
the efficient interaction between enzyme and electrode without 
dramatic conformational changes [13].

Bare enzyme immobilization over electrodes has been the most 
common approach studied to achieve higher electron transfer. 
However, there are several other strategies, such as immobilization 
on the electrodes modified with promoters, SAMs of alkanethiols, 
polyelectrolytes, surfactants and ionic liquids, have also been used [13]. 
Enzymes with given surface groups suitable for direct chemisorption 
such as the thiolate and the disulfide group offer an attractive 
approach to protein-immobilization in well-defined orientations. 
The covalent, electrostatic or hydrophobic linking group may be 
close to the electrochemical redox center and this would support 
facile electrochemical electron transfer [72]. Despite the large record 
existing on enzyme-based electrochemistry (especially in the context 
of biosensors), the fabrication of bio-catalytically-modified electrodes 
with enzymes is still in early stages, particularly because of the 
difficulties in reaching high enzyme stability and power output. In 
recent years, studies on the development of new materials, enzyme 
modification, understanding the mechanisms of enzyme catalysis, 
enzyme immobilization methods, enzyme electrode structures 
and ways of preparation, have been carried out with the purpose of 
improving the performance of enzyme electrodes [6]. 

Numerous studies have been performed towards the development 
of enzyme-immobilized electrodes and their applications. The enzymes 
should be immobilized in such a way that electronic states in the surface 
material and enzyme active center overlap, increasing the probability 
of electron transfer across the interface [3]. Furthermore, care should 
be taken during immobilization in aspects such as enzyme orientation 
with the electrode, stability and activity after immobilization, 
possible denaturation during immobilization, etc. The methods 
of immobilization (Figure 5) developed over years can be broadly 
classified into three major groups, i.e. adsorption, covalent binding and 
entrapment [106-108]. Some of the previous studies reported about 

these methods in detail [2,109,110]. These immobilization methods are 
commonly used to construct bioactive hybrid materials and devices, 
including bioelectrodes for biofuel cell applications. However, there 
are certain challenges still needs to be addressed in the methods of 
immobilization. This part of the review mainly focuses on these existing 
challenges and various materials used for immobilization in a broader 
context. 

Challenges in Immobilization: Though, there is enormous 
literature available on the immobilization technology, still there are 
certain constrains to be overcome to make it industrially applicable. 
The major challenges can be summarized as, maintenance of enzyme 
activity, stability over changes in physico-chemical factors, enzyme 
life-time, right orientation of enzyme active center on the electrode 
surface, synergistic interaction of the enzyme with the electrode after 
immobilization, among others [103]. A recent review on immobilization 
technology by Yang and co-workers has thrown some light on the 
existing methods and the materials for enzyme immobilization 
including the challenges and the future scope [111]. Adsorption is very 
easily adapted and well-studied method but has the enzyme leaching 
problem. Similarly, covalent binding is known for enzyme stability but 
has a problem of lower activity after immobilization. Arrangement of 
enzymes in different layers and synthesis of enzyme-electrodes are the 
two major approaches that can be pursued for the better immobilized 
moieties. Immobilization structures strongly influence mass transfer 
in the e-BES in terms of substrate diffusion through the active sites, 
the electron transfer and diffusion of redox mediators [111]. High 
resistance for the mass transfer process in biofuel cell necessitated 
the development of designed immobilization structures which may 
help to alleviate the mass transfer problem. The increasing interest in 
nano materials and the involvement of multiple disciplines towards 
biofuel cell development has put forward the progress in using various 
nanostructures, viz., nanoparticles, nanofibers, nanowires, nanotubes, 
nanosheets, nanopores and nanocomposites, because of their larger 
surface areas, short charge diffusion lengths, and fast diffusion rates, etc. 
In general, the large surface area of nano structures leads to possibility 
of high enzyme loading and thus resulting in improved power density. 
Furthermore, these nanostructures also help in extending the lifetime 
of the biofuel cells by increasing the enzyme stability and activity under 
higher mass transfer rates. However, these nano-materials can be 
arranged into different layers for further enhancement in the process. 

The direct usage of nanoparticles, which have high electronic 
and catalytic properties for the enzyme immobilization for effective 
synergetic functions. For example, Au nanoparticles have been used 
to prepare biocatalytic electrodes for biosensor applications via a co-
deposition approach with redox enzymes/proteins on electrode supports 
[112-123]. One-dimensional nanostructures such as fibers and tubes 

Figure 5: Schematic representation of various immobilization methods of enzymes into electrode materials.
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have been also studied recently for their potential in nanoelectronic 
devices. For example, electrospun nanofibers provide a large surface 
area for the attachment or entrapment of enzymes and reduce the 
substrate diffusional path leading to better enzyme activity [124-136]. 
These electrospun carbon nanofibers were also studied in MFC, for their 
efficiency, and showed higher electroactive microbial biofilm growth 
[137]. Similarly, carbon nanotubes (CNTs) also made a great impact in 
the field of e-BES for stable and active enzyme immobilization systems 
with its high specific surface area which helped in effective adsorption 
of the enzyme molecules [138,139]. Multilayered enzyme assemblies 
on solid conductive supports (electrode) are another approach using 
nanolayers and sheets. Initially, enzyme layers were made in contact 
with nanolayered immobilization-support materials under controlled 
enzyme deposition, through electrostatic interactions or through cross-
linking (affinity interactions) or through encapsulation in matrices 
(tailored organized biomaterial layers) [111,140-147]. For example, 
reconstitution of the apo-enzyme on the electrode surface with surface-
bound and electrochemically active prosthetic groups was shown to be 
an effective way to achieve higher electron transfer rates by glucose 
dehydrogenase on PQQ-modified surfaces [13,141,142]. Apart from 
these, nanoporous materials with high specific surface areas, multi-
scale porosity, tunable pore sizes, interconnectivity and rich surface 
chemistry were also have been studied for enzyme immobilization 
[111,148,149]. For example, enzymes immobilized on mesoporous 
materials and their applications in e-BES [2,150-152].

Even if layered structures for e-BES have shown efficient electron 
transfer, they are also not ideal because the amount of immobilized 
enzyme is small, due to monolayer covalent binding. Moreover, the 
thicker or higher the number of monolayers, the more elevated electric 
resistance develops on the interface, which adds to the ohmic drop 
within the system. Similarly, the catalytic activity will depend on the 
orientation of the enzymes and distribution of mediator molecules, if 
the latter are used in the system [6]. Conducting redox polymers can be 
a solution to overcome these limitations. Polypyrrole and polyaniline 
(emeraldine-base) are commonly applied in BESs [153]. They have 
unique properties for facilitating electron transfer, even over insulating 
basal nature of the materials, and were proven to enhance the current 
densities in both e-BES and m-BES systems [6,153]. They also showed 
an improved selectivity and stability over the others. However, the 
use of polymer-mediators has raised concerns on biocompatibility 
for implantable-device applications [6]. Besides, these immobilization 
methods essentially involve the use of chemicals, which add costs to the 
fabrication process. Similarly, the synthesis of electrodes (entrapment) 
is generally considered a rather expensive process and not easily scalable. 
Therefore, it is important to put some effort on the elaboration of new 
and more efficient means for their production. Moreover, enzyme 
electrodes become even more difficult, since they generally involve (as 
described before) the use of a variety of chemicals, high temperatures, 
among other difficulties. From this perspective, low-temperature 
calendaring (cold rolling) appears as an interesting alternative because 
it is simple, low cost, well known in the industry and easily scalable 
[154,155]. Surprisingly, its application on the fabrication on enzyme-
electrodes is minimally used although ongoing research on the group 
of the authors of the present manuscript aims to confirm this direction. 

Immobilization materials: The materials used for immobilization 
in e-BES are also considered to be critical and they must be capable 
of extracting or bringing the electrons from or towards the active 
site of enzyme, respectively. The bioelectrocatalytic efficiency of 
an immobilization material is largely governed by the electrical 
conductivity and hence it is the primary concern for the selection of 

an immobilization material along with the hardness of the material. 
In general, solid supports such as gold and platinum are considered as 
immobilization materials but with advancement in materials sciences, 
the application of polymers, carbons, oxide and metallic nanomaterials, 
sol–gel based materials and composite materials are also being used as 
efficient immobilization materials in e-BES.

Polymers

A variety of polymeric materials, viz., Nafion, chitosan, polypyrrole, 
polyaniline, polyphenol, polythiophene, poly-1,3-phenylenediamine, 
polyvinyl pyridine, polyvinyl alcohol, polycarbonate, and nylon, 
have been studied as immobilization materials in e-BES [156-161]. 
Conducting electro-active biocompatible polymers are widely used as 
immobilization materials because of the guaranteed electron transfer 
which sustains the electrocatalytic reaction of the enzyme [162]. 
Similarly, use of efficient mediators such as osmium containing redox 
polymers has also been studied for effective electron mediation at 
anodes as well as cathodes [163-168]. Although there are limitations 
for this kind of approach in human applications due to the toxic effects 
of the metals, perhaps there is room for application of these materials 
at industrial level for the enzymatic electrocatalysis for the synthesis of 
commodity and fine chemicals. 

Similarly, some functionalized polymers have been studied for 
immobilization of electrochemically-active enzymes. Nagel et al. 
studied electro-deposition of the polymer over a support which was 
functionalized by amino groups, followed by subsequent coupling of 
the biomolecules via the carboxylic group of the protein cross-linked by 
carbodiimide. They studied their function as enzyme immobilization 
matrix as well as binder and electron transporting mediator [169]. 
Electrospun nanofibers are also proved as promising material for the 
encapsulation of nanoparticles, enzymes, proteins and whole cells. 
Cells and enzymes encapsulated within electrospun nanofibers can be 
a straightforward and cost-effective method as well as they can play 
a role on controlling the viscosity of the electrolyte solution [170-
173]. Polymer-brush-modified electrodes were also studied for their 
application in e-BES but the activity is dependent on the pH of the 
solution [174]. The polymeric materials are also employed to achieve 
additional functionalities such as receptors in the form of a polymer 
matrix, mediators, or as ion-selective membranes [175].

Carbon based materials

Carbon based materials are attractive electrode supports because 
of their unique properties such as large surface area, high electrical 
conductivity, high electron delocalization, and high chemical and 
thermal stability [111,176]. Immobilization of enzymes has been studied 
on a wide variety of high-surface area carbon materials, including 
carbon blacks, carbon pastes, nanotubes, nanofibers, graphite, carbon 
fibers, clothes and paper, glassy carbon, carbon aerogel, mesoporous 
carbon and reticulated vitreous carbons. Carbon nanofibres showed as 
good electrode supports in e-BES for effective enzyme immobilization 
and their conductivity facilitates diffusion of free electrons [177,178]. 
CNTs with high electrical conductivity have been also studied as 
electrode materials and showed to help in mediating electron transfer 
reactions. CNTs can also be introduced as efficient molecular-scale 
“conductive wires” between the electrode surface and redox enzymes, 
such as GOx and NiFe-hydrogenase to increase electron transfer [72]. 
Alternatively, a free suspension of support materials with enzyme (and 
mediator, if necessary) can be deposited on a porous support. This 
procedure allows profound mixing of enzyme with carbon nanotubes 
prior to deposition, but it is limited regarding the types of structures 
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that can be achieved after introduction of the enzyme. Majorly, two 
applications in the utilization of CNTs are commonly studied i.e. CNTs 
with metals (Pt/Au) and CNTs with polymers [179-182]. Carbon aerogel 
possesses high porosity, a large surface area and is extensively utilized 
as an enzyme adsorbent and electron conducting material [183]. For 
example, a laccase-adsorbed carbon aerogel electrode remained very 
stable without loss of the enzyme activity. Nanoporous structures of 
carbon aerogel have the advantage of stabilizing the enzyme electrode 
and they hold great interest in wastewater treatment [184,185]. On the 
other hand, graphene has several advantages for its application in e-BES, 
viz., superior electrical and heat conductivity, mechanical strength and 
unique optical absorption, and can thus be used as a novel class of 
electrode material [186,187]. However, graphene is hydrophobic and 
easily forms agglomerates irreversibly which is the limiting factor for 
its exploration as graphene-modified electrode. Similarly, mesoporous 
carbon with controlled porosity, high pore volume and large surface 
area, was also given much attention for e-BES applications [188,189]. 
Mesoporous carbon materials can be used in biofuel cell by enzyme 
cross-linking or by highly ordered mesoporous structures [190-196]. 
It is also noteworthy that mesoporous carbon is also recommended 
for bacterial adsorption [197]. The application of mesoporous carbon 
modified electrodes is extended in MFCs, where electron transfer rates 
have significantly increased [197,198]. Decreasing surface area and 
increasing pore size and distribution are two morphological parameters 
that substantially influence macroscale catalytic activity and reactant 
transport [3]. Activated carbons have surface area over 1000 m2g-1 but 
are generally unsuitable for supporting biocatalysts because most of 
this area exists in micropores that are inaccessible to catalysts or even 
to electrolyte solution [3,199]. In general, enzyme immobilization in 
nanostructured electrodes extends their lifetime and improves their 
activity, due to relieved mass transfer limitation of substrates in the 
nanostructures as compared to macro-scale diffusion, especially when 
the size of the nanopores is slightly larger than the size of the enzyme.

Metallic oxides and magnetic nanoparticles

Apart from polymers and carbon based materials, oxides and 
metallic nanomaterials have also been studied extensively for their 
application in e-BES due to their unique physical and chemical 
properties [200,201]. Most metallic nanoparticles that have been 
the focus of research are based on Au, Ag and Pt, due to their high 
thermal stability, electronic properties and promising applications 
[200,202]. Similarly, some oxide nanoparticles such as Fe2O3, Al2O3 
and CO3O4 [203-205] are well studied in enzymatic fuel cells for valid 
electron transfer. In comparison with conventional immobilization 
methods, nanoparticle level immobilization involves three important 
benefits, viz., ease for synthesis in high solid contents without 
using surfactants or toxic reagents, homogeneous and well defined 
structure and distribution can be obtained, and particle size can 
be conveniently controlled. In addition, with growing attention on 
multi-enzyme systems, co-immobilization thereof can be achieved in 
such nanoparticles [206]. Furthermore, magnetic and paramagnetic 
nanoparticles favor high enzyme-binding capacity and high catalytic 
specificity along with enhanced stability, due to their surface to volume 
ratio. Moreover, magnetic nanoparticles can be separated from the 
reaction medium simply by using a magnet, which was demonstrated in 
a study with lipase attached to γ-Fe2O3 nanoparticles by covalent bonds 
[204]. This allows enzyme reuse over a longer period than that for free 
or physisorbed enzymes. GOx, peroxidases, β galactosidases, lipases, 
cholesterol oxidase, trypsine, laccase, α amylase, hemoglobin, cellulase 
multienzyme mixtures, among others, have also been successfully 
immobilized (covalently) in this kind of particles, using several ligands. 

pH, temperature and substrate concentration-stability are also attained 
for periods as long as three months of continuous operation. Binding 
efficiency has also shown to increase; moreover, enzyme properties after 
storage within these particles are also enhanced [206]. Consequently, 
the use of magnetic nanoparticles represents an innovative approach 
for enzyme-electrode fabrication without using strong chemicals or 
high temperatures. Likewise, such particles allow easy-enzyme recovery 
and reuse which is important for reprocessing, especially when waste 
or high substrate content streams are considered. Recently, TiO2 based 
nanotube arrays, also demonstrated their remarkable charge transfer 
and photocatalytic properties with enzyme electrodes [207-209]. The 
application of these novel particles has been demonstrated, as well, in 
MFCs [205].

Mesoporous and sol–gel based materials

Micellar or mesoporous phases are usually added to the enzyme 
electrodes to provide an immobilized ion exchanger, buffer, prevent 
access of poisonous or competitive species, or enhance stability. Such 
materials are usually polymer or silica-based. Nafion, doped-Nafion, 
chitosan, have been used on the polymeric approach. In this way 
reactant permeation is allowed. The process is considered gentle enough 
that enzymes may be co-casted to form composite membranes [3]. 
Porous silica structures can encapsulate enzymes by gelation of sol-gel 
precursors surrounding biomolecules or by adsorption of the enzyme 
after gelation. The presence of the enzyme restricts the location in 
which the gel can form [3]. Mobile Crystalline Material MCM-41 (pore 
size: 4 nm) is a silicate obtained by a templating mechanism, that was 
the first used for enzyme-electrode immobilization. After it, ordered 
mesoporous silica (e.g. SBA-15, pore size: 5-13 nm), mesocellular foam 
(MCF, pore size: 15-40 nm) and mesoporous carbon, have been also 
applied. Modifications on these materials have also been achieved, such 
as enlargement of pore size and modified morphologies, for successful 
enzyme quick adsorption [2]. Sol-gels are porous polymeric matrices 
with increased surface area which resulted in the development of 
innovative advanced materials for the immobilization of biological 
receptors within silica, metal oxide, organosiloxane, and hybrid sol–gel 
polymers [210-212]. These sol-gel based materials are environmentally 
friendly and biocompatible and can be combined with many biological 
systems from molecules to single cells [111]. Sol-gel based materials 
and their uses for construction of enzyme electrodes have been 
extensively reported based on their biocompatibility which gives a 
stable environment for the enzyme function [211,212].

One frequent approach for enzyme immobilization in mesoporous 
materials is simple adsorption. The stability on the enzymes in such 
material depends mainly on pore size and charge interaction. It is 
considered that the pore size of mesoporous materials should be similar 
to or larger than of enzymes for achieving successful adsorption. The 
relationship between pore size and molecular diameter is important. 
Larger pore size, usually leads to poor enzyme stability. If the charge 
of mesopores is opposite to the net surface charge of the enzymes, 
it will make a stable system. On the other hand, when the charge is 
the same, there is repulsion between the enzyme and the surface of 
mesopores. Charge can be controlled by changing pH, adding buffers 
or by mesopore functionalization (e.g. with amino or carboxyl groups) 
[2]. Enzymes covalently attached to mesoporous materials have longer 
half-life (e.g. 1000 fold higher than that of native enzyme). Beside 
adsorption and covalent attachment, other approaches can be used for 
mesoporous material enzyme immobilization, such as partial closure 
of micropore inlets, nanocomposite shell on the particle surface, and 
cross-linked enzyme aggregates via a ship-in-a-bottle approach [2].
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Ionic liquids

Non-aqueous biocatalytic systems have acquired recent interest 
because of their unique synthetic opportunities. For example, hydrolytic 
enzymes (e.g. lipases and esterases) in non-polar, organic solvents with 
low water content have been shown to carry out reversed hydrolytic 
and transferase-type reactions in such media. Recently, ionic liquids 
(ILs) have emerged as an alternative media to non-polar, hydrophobic 
solvents for supporting biocatalysis [213]. Electrode modification with 
ILs is interesting due to their hydrophobicity, high viscosity, ionic 
structure, ionic conductivity, low-volatility and biocompatibility. The 
electrochemical properties of ionic liquid-modified electrodes (ILME) 
are determined by the presence of a well-established ionic liquid/liquid 
interface and three-phase junction electrode/ionic liquid/liquid where 
in most cases ET starts [214]. Ionic liquids are entirely comprised 
by anions and cations. A myriad of organic cation and inorganic or 
organic anion combinations are possible [213,214]. Therefore, the 
toxicological and pharmacological effects of most ILs have still to be 
defined. The melting point of most ILs is below room temperature. 
Their conductivity can be as high as 100 mS cm-1 and bulk electrode 
materials comprising this liquid acquire this property [215]. Viscosity 
of ILs is typically in the range of hundreds of mPas (at 25°C). The wide 
potential window is considered one of the major advantages regarding 
ILs in electrochemical systems. Indeed, ILs has been used for enzyme 
electrodes and was reported to increase enzyme stability and activity and 
for this reason they have become popular as a novel route for enzyme-
electrode manufacturing [214]. The presence of specific functionalities 
in ILs permits their application for electrode modification. For 
example, the use of amino acid-functionalized IL also provides stable 
enzyme immobilization [216]. Nonetheless, to date relatively little data 
exist on the enzymatic activity of oxidoreductases in ILs. Recent studies 
have shown that the classic redox-active hemoprotein, cytochrome c 
(cyt-c), and analogues of its active site, conditionally retain peroxidase 
activity in some ILs, but they must be coordinated with a ligand for this 
purpose [213].

IL-modified electrodes can be divided into five major categories. 
1) Electrodes modified with ionic liquid droplets or films: 
electrochemically generated ion transfer across IL/aqueous solution 
interface is observed, and their electrochemical behavior seems 
more complex than other ILs; however, these ILs produce suitable 
configuration for enzyme-electrode electron transfer. 2) Film electrodes 
with ionic liquids as one of the components: they are considered 
important supports for enzymes, because of its stabilizing properties 
and because they have supported DET of glucose oxidase, horseradish 
peroxidase, hemoglobin, myoglobin, cytochrome c, catalase and 
chloroperoxidase; still, the ET mechanisms with such ILs and enzymes 
are not yet understood. 3) Carbon paste electrodes with ionic liquid 
as a binder: they have higher viscosity; complex enzyme-electrode 
architectures can be built with such ILs.4) Electrodes prepared of ionic 
liquid-carbon nanotubes gel: GOx has been successfully immobilized 
in this type of IL-based electrodes; however redox reaction with other 
enzymes has appeared difficult to achieve, but metallic and magnetic 
nanoparticles seem an interesting possibility to explore for this type 
of IL-electrodes. 5) Electrodes modified with appended ionic liquids: 
contrary to the other ILs presented, these do not consist of the ILs as 
they are, they are prepared from imidazolium cation ILs with different 
functionalities related to their immobilization procedure; this is, they 
are just ionomers with immidazolium functionalities, therefore their 
wettability can be controlled by electric field. Application of the latter 
type of ILs to enzyme electrodes has been carried out, however, low 
current has been observed when compared to bare electrodes, possibly 

due to ion preconcentration effects [214]. For sure, the presence of ILs 
affects the ET processes and mechanisms and they bestow numerous 
unexplored possibilities for enzymatic electrocatalysis.

Composite materials

Apart from all these materials, there are numerous studies based 
on the combination of two or more kinds of them with resulting 
significantly different physical or chemical properties. Such materials 
can be termed as composites. Composite materials have the advantage 
of combining different structures and their native properties at the 
macroscopic or microscopic scale [111]. However, they may acquire all 
the native properties of the different combined materials or may possess 
unique hybrid properties of neither the incorporated components nor 
the host matrixes. Though there are several combinations, three major 
combinations were reported based on immobilization materials by 
Yang et al. [111]. These include polymer-based composite materials with 
carbon, nanomaterial and sol–gel, carbon-based composite materials 
with nanomaterial and sol–gel, and composite of sol–gel materials with 
metallic oxides and novel nanoparticles [111]. A few examples of these 
composites include novel metal/CNT/polymer composite electrodes 
which have presented significantly improved electron transfer 
properties [217]. Similarly, a new kind of electroactive nanocomposite 
formed by methylene green, that noncovalently functionalizes 
chemically reduced graphene, has been applied to e-BES [2,188,189,218-
221]. Sol–gel materials incorporating other constituents have also been 
extensively investigated, with the combinations of biopolymer chitosan 
[222], CNTs [223], etc. Overall, the combination of two or more 
compounds can bring some of new properties to the immobilization 
matrix which helps to support the enzyme activity, stability as well 
as the electron transfer rates to the electrodes. The incorporation of 
metallic or semiconductive nanoparticles into conductive polymers 
can be a typical example, which helps in increasing the electrocatalytic 
properties of nanoparticles and in return the conductivity of hybrid 
systems is enhanced with the metal nanoparticles [224].

Electroenzymatic reactions and applications

Enzymatic reactions on electrodes can be applied for anodic 
oxidation or cathodic reduction reactions, based on its functionality. 
The enzyme in the anodic compartment oxidizes the substrate, while 
transferring electrons to the electrically contacted electrode. Similarly, 
the cathodic enzyme reduces the available oxidizer compound with the 
help of electrons coming from the anodic oxidation. The electrons will 
flow through the external circuit, while the protons transfer through 
the electrolyte. Several enzymes belonging to the family of oxidases and 
dehydrogenases were studied in fuel cell for anodic oxidation of diverse 
compounds, for instance, saccharides, alcohols, acids and amino 
acids, etc. The most studied enzymes at cathode are based on oxygen 
reduction, such as laccase, peroxidases, etc., [225]. The difference in 
the thermodynamic redox potentials of the redox enzymes used at 
anode and cathode, determines the maximum voltage of the biofuel 
cell. However, the incorporation of redox relays to increase the 
electrochemical communication between electrodes and enzymes will 
lead to a potential drop, conducting to lower power outputs. Therefore, 
it is important to select the mediators with redox potentials close to 
the thermodynamic potentials of the enzyme. The turnover number 
of enzyme also plays a crucial role in current generation, which is 
determined by the rate of reaction occurring between the enzyme and 
the fuel/oxidizer. Though, two enzymatic electrodes are coupled and 
operate in a fuel cell, the cathodic reduction reaction is the major rate 
limiting step determining the current generation, similar to the MFCs. 
Over 1400 oxidoreductases are known to date (www.enzymedatabase.

http://www.enzymedatabase.org
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org), any of which could possibly be utilized as catalyst in an enzymatic 
FC. In the majority of cases, the use of mediators is needed to electrically 
connect the enzyme to the electrode, since only less than about a 
hundred of the known oxidoreductases are capable to communicate 
with an electrode surface via a DET mechanism [225]. Many redox 
enzymes have their catalytic sites buried deeply within the protein 
matrix, which acts to insulate the redox site and will eventually prevent 
DET.

Anodic oxidizing reactions: The most studied anodic reactions are 
based on glucose oxidation using oxidases and dehydrogenases. GOx 
is a well characterized and stable enzyme studied as anodic biocatalyst 
of choice for many e-BES [30]. Similarly, the other one is glucose 
dehydrogenase (GDH), catalyzing a similar reaction, oxidation of 
glucose to gluconolactone, thereby liberating two electrons. These two 
enzymes have been studied in the glucose/O2 system combined with 
the oxygenases such as laccases, bilirubin oxidases, peroxidases, etc., at 
the cathode. However, there are numerous other enzymes studied in 
the e-BES for their catalytic efficiency of oxidation or reduction, which 
are represented in Table 1.

Indeed, glucose oxidation has been extensively studied in the 
context of biosensing devices and does not provide a major reaction 
of interest for industrial exploitation; however, the fundamentals 
and practical experiences derived from the immoboilization, 
characterization, analysis and optimization of such enzymatic systems 
remain important due to their contributions to the overall field of 
enzymatic electrocatalysis. Apart from the glucose, alcohols were also 
extensively studied as fuel at anode in e-BES catalyzed by non-specific 
or specific alcohol dehydrogenases [240,241]. Similarly, cellobiose 
[229-233], fructose [234,235], pyruvate [227], glycerol [227], hydrogen 
[238,239], etc., were also studied as fuels in e-BES. Various studies 
have been performed to enhance the current densities, to meet the 
complete oxidation of the fuel, to increase the stability and longetivity 
of the enzyme properties. GOx is a well characterized and stable 
enzyme which catalyzes the oxidation of glucose to glucanolactone 
[242]. Several studies were performed to increase the electron transfer 
in GOx, especially based on using carbon nanotubes (CNTs) and gold 
nanoparticles [30,36,99,109,156,225,228,243-247], by using mediators 
such as ferrocene derivatives [59,248,249], by coordination complexes 
of osmium with polymers [243,250-257], by protein modification 
and engineering to achieve improved GOx properties [258-260] etc. 
Likewise, the other enzymes such as GDH, alcohol dehydrogenases 
were also studied from different sources and with various enhancing 
strategies in e-BES [14]. Oxidation of H2 is another potential application 
in e-BES, where different types of hydrogenases were studied for their 
function [14,238,239]. [Ni-Fe] hydrogenases with Fe-S cluster were 

found to be more efficient among these hydrogenases [14]. However, 
the complete oxidation of any fuel is not feasible in single enzyme 
catalyzed systems. Few studies on multi-enzyme cascade systems 
were also reported for the complete oxidation of fuels such as glucose, 
ethanol, methanol, pyruvate, etc., (see section about Multi enzyme 
cascades).

Cathodic reduction reactions

Similar to anode, there are several enzymes studied at cathode for 
completing the reduction reactions. Most of these cathodic enzymes 
are typically multi-copper oxidases, such as laccases [163], bilirubin 
oxidase [167], peroxidases [225], etc., which are capable of four-
electron O2 reduction [261]. Laccases are generally employed under 
slightly acidic conditions, while bilirubin oxidase has its activity in 
more alkaline media which allows it to be used at neutral pH. Apart 
from these, several other enzymes such as cytochrome oxidase and 
cytochrome c, have also been employed at cathodes in e-BES. In the 
case of H2O2 reduction, microperoxidase [99,225] and horseradish 
peroxidase [262] are commonly used as electrocatalytic enzymes. A 
comprehensive list enzymes used at cathode in e-BES was depicted in 
Table 2.

The cathodic reduction reaction is as crucial as anodic oxidation 
for the completion of the circuit in the electrochemical cell, and needs 
a terminal electron acceptor, such as oxygen. Various metallic catalysts, 
such as platinum, have been used to increase both selectivity and 
electrode kinetics towards reduction reactions at cathodes. However, 
enzyme-catalyzed cathodes are more efficient [266]. Multiple copper 
oxidases appear highly relevant in scientific literature, especially 
laccases, due to their high reduction potential, capacity to utilize 
multi-atomic reaction sites, flexibility of interatomic distances and the 
positive influence of residues adjacent to the active site on reaction 
mechanism [263,267-270]. Laccases from fungal origin are most 
extensively studied due to the higher redox potential (~0.58 V vs Ag/
AgCl), ligand co-ordination geometry, and the presence of weakly 
axially co-ordinated residues contributing to the difference in redox 
potential [30]. However, these fungal laccases are inhibited by hydroxyl 
ions and, to a lesser extent, by chloride [271], which limits their usage 
at biocathodes. Apart from this, laccases from plants [263] and bacteria 
[272,273] have been also studied, but they have a low reduction 
potential (~0.23 V vs Ag/AgCl). The higher reduction potential of some 
laccases close to the thermodynamic potential for oxygen reduction 
enables the effective reduction reaction at cathode. Laccases were 
adsorbed on graphite [263,274], carbon aerogel, HOPG [183], carbon 
nanotubes [184,275-277], nanoparticles [278-280], gold nanoparticles 
[281] to enhance electron transfer rates from laccases. Alternatively, 

Table 1: Some of the most studied enzymes for anodic oxidation and their respective reactions.

Enzyme Substrate/ Fuel Natural/ Artificial electron acceptor Co-factor Half-cell reaction Reference
Glucose oxidase Glucose O2 FAD Glucose → Glucono-1,5lactone+2H++2e- [226-228]
Glucose dehydrogenase Glucose NAD NAD Glucose → Glucono-1,5lactone+2H++2e- [227]
Glucose dehydrogenase Glucose Quinone PQQ Glucose → Glucono-1,5lactone+2H++2e- [227]
Cellobiose dehydrogenase Glucose FAD Heme Glucose → Glucono-1,5lactone+2H++2e- [229-232]

Cellobiose FAD Heme Cellobiose → Cellobiono-1,5lactone+2H++2e- [233]
Fructose dehydrogenase Fructose FAD Heme Fructose → 5-dehydrofructose+2H++2e- [234-235
Succinate dehydrogenase Succinate FAD Fe-S Succinate → Fumarate+2H++2e- [236]
Alcohol dehydrogenase Ethanol PQQ Heme Ethanol → Acetaldehyde+2H++2e- [237]
Oxalate oxidase Glycerol O2 FAD,Mn Oxalate → 2CO2+2H++2e- [227]
Pyruvate dehydrogenase Pyruvate NAD NAD Pyruvate+SCoA→acetylCoA+2H++2e- [227]
Hydrogenase Hydrogen Fe-S H2→2H++2e- [238]
Membrane-bound hydrogenase Hydrogen Fe-S H2→2H++2e- [239]

http://www.enzymedatabase.org
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retention of the enzyme behind a membrane at electrode surface [282] 
and chemical derivatisation to retain laccase through hydrophobic 
pockets were also studied to enhance the electron transfer rates [283]. 
Laccases cross-linked with an osmium-based redox polymer on carbon 
electrodes were shown to provide steady-state current densities [284]. 
Bilirubin oxidase [229,231,232] and cytochrome oxidase [285] were 
studied as alternative to laccases at cathode for O2 reduction and 
peroxidases have been well studied for the application in e-BES. 

Hydrogen peroxide (H2O2) is considered as a stronger oxidant 
than O2 at cathode in e-BES which can be oxidized by highly active 
peroxidases as the cathodic electrocatalyst [286,287]. Horseradish 
peroxidase, cytochrome c peroxidases and microproxidases are the 
common peroxidases used in e-BES [19,28,237,262,264]. Apart from 
these electron acceptors, few other oxidized substrates such as formate, 
fumerate, aldehydes, etc., were also being studied recently at the 
cathode of e-BES [54,238,265]. Considering these substrates for their 
reduction at cathode has opened new windows in the electrosynthesis 
research where single/multiple enzymes can be used to reduce the 
unwanted/waste substrates to potential value added products with the 
help of in situ generated reducing equivalents (H+ and e-) (see section 
about Enzymes for electrosynthesis).

Novel enzymes and their applications: Apart from these well 
studied enzymes, there are several enzymes being studied for their 
application in the enzymatic electrosynthesis as depicted in the Table 
1 and 2. However, certain enzymes should be mentioned here for 
their novel applications. Peroxidases such as horseradish peroxidase, 
chloroperoxidase, lignin peroxidase, etc., are well known for their 
application in treatment of complex and toxic pollutants. For instance, 
chloroperoxidase has proven highly valuable in the catalysis of 
epoxidations, hydroxylation, and oxidation of alcohols and indole. 
Heteroatom oxidation (N- and S- oxidation) has also been achieved; 
therefore, oxidation of heterocyclic sulfur compounds present in fuels 
and the modification of petroporphyrins and asphaltene molecules are 
two promising large-scale applications for e.g. petroleum industry, in 
order to improve the quality of petroleum and petroleum fuels, as well as 
for reducing their environmental polluting effects [288]. Studies on this 
enzyme were also extended to understand DET [215], immobilized on 
mesoporous materials [288], ionic liquid-modified carbon electrodes 
[215] and with conductive polymers [289]. Moreover, this enzyme can 
also be applied at anodes for electrochemical heteroatom oxidation (N- 

and S- oxidation) with simultaneous cathodic reduction of O2 and H2O2 
[215,289].

Multi enzyme cascades: The combination of two or more enzymes 

at the anode or cathode as cascade has shown higher anodic oxidation 
and cathodic reduction reaction rates in e-BES [30,290]. The first and 
one of the simplest me-BES that have been described is relative to the 
oxidation of methanol to CO2 and water by a three-step mechanism 
catalyzed by NADH-dependent systems [290]. Similarly, the two-step 
oxidation of ethanol to acetate was also studied in a novel membrane 
(Nafion) assembly [291]. A polymer-based electrocatalyst (poly-
methylene green) was used to regenerate NAD+ and to shuttle electrons 
from NADH to the electrode [292].

The complete oxidation of methanol to CO2 using solution phase 
dehydrogenases [290] and the reduction of CO2 to methanol using the 
enzyme cascade [265] are novel examples of this kind of reactions. 
Similarly, in some of the studies multi enzyme cascade was used for the 
complete oxidation of the substrates such as glucose [293], methanol 
[294], ethanol [295], pyruvate [296-298], glycerol [299-301], etc., 
to CO2 generating higher number of electrons. Modified electrodes 
combining cellobiose dehydrogenase and pyranose dehydrogenase 
have shown to be capable of extracting up to 6 electrons from one 
molecule of glucose [302]. 

The single enzymes in e-BES, studied over the years are, 
peroxidases, the multicenter redox enzymes hydrogenases, multiheme 
nitrite reductase, large membrane-bound enzymes including fumarate 
reductase, succinate dehydrogenases, Mo-containing nitrite reductases, 
sulfite oxidase and lacasses [72]. The current densities achieved in 
all these cases are much lower than those achieved by me-BES. Most 
e-BES implies low efficiency due to single-step redox reactions, but 
efficiency can be improved by using me-BES. In conclusion, one of 
the key issues to develop effective and efficient e-BES is the successful 
immobilization of multi-enzyme systems that can completely oxidize 
organic compounds to CO2 or vice versa, in order to increase the 
overall substrate-to-electrons efficiency of the cell.

Enzymes for electrosynthesis: Electrosynthesis is one of the 
emerging applications of BES where the negative valued substrates can 
be converted to commercially viable substrates under small applied 
potentials in presence of a chemical/biological catalyst. However, 
biologically catalyzed systems have more significance due to the 
renewability of the process and recyclability of the catalyst. Several 
researchers across the globe are currently working on the microbial 
electrosynthesis process in BES for the production of chemicals and 
fuels apart from electricity [10-11,303,304]. Bioconversion of fumarate 
to succinate [305], CO2 to acetate [306], acetate and butyrate to alcohols, 
acetone and elongated CFAs such as caproate [1], methane [308,309], 
volatile acids to polyhydroxyalkanoates [309], etc., have been reported 

Table 2: Some of the most studied enzymes for cathodic reduction and their respective reactions.

Enzyme Oxidizer/ Electron acceptor Natural/ Artificial electron donor Co-factor Half-cell reaction Reference
Laccase O2 Cu O2+4H++4e-→2H2O [226,228,239,263]
Bilirubin oxidase O2 Cu O2+4H++4e-→2H2O [229,231-232]
Chloroperoxidase H2O2 Heme H2O2+2H++2e-→2H2O [21]
Cytochrome c peroxidase H2O2 Heme H2O2+2H++2e-→2H2O [19]
Microperoxidase H2O2 Heme H2O2+2H++2e-→2H2O [28,237,264]
Horseradish peroxidase H2O2 Heme H2O2+2H++2e-→2H2O [262]
Fumarate reductase Fumarate FAD Fe-S Fumarate+2H++2e- → Succinate [264]
Alcohol dehydrogenase Formaldehyde Neutral red NAD Formaldehyde+2H++2e- → Methanol [265]
Formaldehyde 
dehydrogenase Formate Neutral red NAD

Formate + 2H++2e- → Formaldehyde 
+ H2O [265]

Formate dehydrogenase HCO3- Neutral red NAD HCO3-+2H++2e- → Formate [265]
Carbonic anhydrase CO2 Neutral red CO2+H2O → HCO3-+H+ [265]
Hydrogenase H+ Methyl viologen Fe-S 2H++2e- → H2 [238]
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so far. Still further research is on and going towards the production 
of various commercially viable products in renewable and sustainable 
way through BES. On the contrary, the research in the direction of 
enzymatic electrosynthesis has started more recently and very few 
articles are available in the literature. The major hurdles in this area is 
requirement of single substrate, stability and longetivity of enzymes, 
interference reactions, end-product inhibition, etc. Recent report on 
the methanol production from CO2 [265], has shown the possibility of 
using CO2 as precursor for the synthesis of useful chemicals and fuels 
at cathode in e-BES. Various novel routes for the product synthesis 
through enzymatic/chemo-enzymatic processes were reported 
extensively [310]. Adapting these enzymatic processes at e-BES cathode 
will have an added advantage of simultaneous power generation and 
co-factor regeneration. Electrosynthesis of methanol, ethanol, butanol, 
acetate, fumerate, etc., using enzymes cascades should be focused. 
Similarly, the conversion of waste glycerol, a major intermediate from 
biodiesel industry [310], to dihydroxyacetone phosphate, synthesis 
of polyhydroxyalkanoates using volatile acid straems also has higher 
commercial viability.

Criteria and cost elements for industrial processing with 
e-BES

According to the state of the art literature, industrial 
biotransformations must minimally consider three key factors:1) 
product yield (gram product per gram substrate/enzyme), 2) product 
titer (gram product per liter), and productivity (gram product per 
liter per hour) [8]. However, electrochemically-mediated enzymatic 
processes and biological in general—must be seen from additional 
perspectives, due to their heterogeneous-catalytic nature. Current 
density (amperes per square meter of electrode), faradic efficiency or 
fuel utilization efficiency (% of substrate to electrons conversion, from 
bioelectrochemical reactions) and energy efficiency (useful power 
output per total power input), are other core parameters related to 
production within these systems. 

Product yield and faradic efficiency are considered the most 
important for the production of biocommodities by e-BES, since 
a large fraction (30-70%) of the conversion step costs come from 
feedstock [8]. Product titer and current density come next in 
importance. Especially high-value products are habitually present 
in rather diluted concentrations and require intensive separations. 
Besides, reduced quantities are obtained from large electrode surfaces, 
which represent a significant extent of the processing costs [8]. Product 
yield is not significant for final product production costs. However, 
energy efficiency becomes important when enzymatic electrolysis or 
electrosynthesis are anticipated, since generally about 70-80% of the 
costs in electrochemical processing account for electricity [311,312].

In their application as enzymatic fuel cells, e-BES must have a 
positive energy budget. This is the power relative to consumption, 
i.e. pumping, must be lower compared to the power output from the 
electrochemical cell. In addition, especially if such enzymatic power 
source is meant to be applied as implantable or portable power source, 
economy of scale becomes highly relevant for comparison to batteries, 
as the latter have no pumping costs and relies only on diffusion. 
Volume and weight become critical for such comparison [313].

Compared to metallic electrocatalysts, enzymatic electrocatalysts 
offer competitive advantages. For instance, since biocatalysts are 
nowadays produced industrially, production costs are rather low, 
while this is opposite for the case of transition metal catalysts [313]. 
Still, there is further work needed to understand important enzymatic 

and engineering issues, especially when scale-up for industrial 
bioproduction is foreseen. So far, for such applications, there are no 
electroenzymatic pilot studies available. For this reason, scaled-up 
demonstration projects are required in order to prove the reliability 
and cost-effectiveness of enzymatic electrocatalysis. Although initially 
enzymatic electrocatalysis has evolved in the context of biosensors and 
now it has been moving to the field of miniaturized power devices, 
it is likely that it finds soon an industrial niche on the synthesis of 
fuels and chemicals as well. Given that electricity costs are relatively 
low compared with the value of such product chemicals, enzymatic 
electrosynthesis will become a key process for chemical synthesis if 
lifetime of enzymatic electrodes and reactor engineering issues are 
soon overcome.

On the other hand, enzymatic systems involve additional costs 
associated to their production. Specifically, separation and stabilization 
costs, as well as addition of coenzymes, are critical factors. For example, 
the cost factor to purify stabilized enzymes aimed for sugar oxidation 
(CE) can be calculated as [8]:

CE = FM CS FP FS / Y
E

X/S YE/X

Where FM is a cost correction coefficient for fermentation relative 
to sugar, CS is the cost of sugar ($ per kg of sugar), FP and FS are 
coefficients concerning the ratio between pure and crude enzyme 
and stabilized to free enzyme, respectively. YE/X is the yield of desired 
enzyme based on microbe mass (kg enzyme per kg cell mass). YE

X/S is 
the cell mass yield, based on sugar (kg cell mass per kg sugar), being 0.5 
for aerobic fermentations for the production of the desired enzymes. 
Processes for enzyme overproduction typically haave have values of 
YE/X ranging from 0.1 to 0.4 [8]. 

The total enzymatic turnover based on product weight (TTNW) is 
also an important parameter, especially when compared to microbial 
electrocatalytic systems. The TTNW is typically 1 to 7 orders of 
magnitude higher for enzymatic systems than for microbial systems 
[8]. This can be extrapolated to enzymatic electrocatalytic systems, 
as they have higher reaction specificity and due to their possibility of 
direct electron transfer when immobilized which also confers longer-
term stability as compared to free enzymes.

Of course, the development of ready-to-use and stable low-cost 
enzyme electrodes is anticipated to become the most critical factor 
in order to enable enzymatic electrocatalysis for bioproduction at 
industrial level. The research group oject of the present review is taking 
pioneering actions in this direction, being one of the leading groups 
in the fabrication and optimization of good performing electrodes 
for microbial electrochemical and classical electrochemical systems 
[1,155,314].

Conclusion
Though the concept of enzyme catalysis has existed since long time, 

its potential in the production of bioelectricity and biocommodities has 
recently emerged due to the discovery of bioelectrochemical systems 
(out of the biosensor applications). Some major bottlenecks that could 
hinder its industrial application are: the lack of long-term stability of 
single and multi-enzyme systems, non-uniform enzyme distribution 
on enzyme-electrodes, aggressive manufacturing procedures (pH, T, 
strong chemicals), inefficient electron transfer due to enzyme-electrode 
weak contact, reactant interference and contaminants which leads 
to the low productivity, current density and coulombic efficiencies. 
Enzymatic electrosynthesis and paired electrolysis are barely explored 
fields that offer a chance for industrial innovation towards green 
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chemistry applications. Success in this direction strongly depends on 
the advancement made in the enzyme immobilization methods, as 
well as on the right choices on enzymes, target reactions, materials and 
composites. Composites with performing electrode material and ionic 
liquids, magnetic nanoparticles, carbon nanotubes or mesoporous 
materials seem promising approaches for increasing the enzyme to 
electrode wiring potential.
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