

ISSN: 2684-1622

Journal of
Eye Diseases and
Disorders

OPEN ACCESS Freely available online

Perspective

Environmental and Lifestyle Factors Influencing Myopia

Oliver Mason*

Department of Ophthalmology, Northfield University, Birmingham, United Kingdom

DESCRIPTION

Myopia, also known as near-sightedness, is a common visual condition in which distant objects appear blurry while near objects remain clear. Its prevalence has risen steadily across the world, particularly among children and adolescents. While genetic factors contribute to the risk of developing myopia, environmental and lifestyle factors also play a significant role in its onset and progression. Understanding these influences is essential for managing the condition and supporting long-term eye health. Research has consistently shown that children with a family history of myopia are more likely to develop the condition themselves. However, genetic predisposition alone does not account for the dramatic increase in prevalence seen in recent decades. Environmental conditions, daily routines and visual habits appear to interact with hereditary factors to influence how myopia develops and progresses over time. One of the most significant environmental factors associated with myopia is the amount of time spent on near-work activities. Reading, writing and prolonged use of computers, tablets and smartphones require sustained focus at close distances. Extended near work places stress on the eye's focusing system, which may lead to elongation of the eyeball and the development of myopia. Children who spend several hours daily on near-work tasks without breaks are at higher risk of both developing and accelerating the progression of myopia.

Conversely, time spent outdoors has been associated with a lower risk of developing near-sightedness. Exposure to natural light, combined with opportunities to view distant objects, appears to reduce the likelihood of myopia onset in children. Sunlight stimulates the release of retinal neurotransmitters that may regulate eye growth, preventing excessive elongation of the eyeball. Outdoor activities such as sports, walking or simply playing in open spaces allow the eyes to focus at varying distances, relieving strain and supporting healthy visual development. Screen use is another lifestyle factor that affects myopia. While technology provides significant educational and recreational benefits, prolonged screen time can contribute to eye strain and fatigue. Holding screens close to the eyes for

extended periods can reinforce the tendency toward near-focus adaptation, increasing the risk of myopia progression. Encouraging regular breaks, adjusting screen distance and ensuring proper lighting can help reduce visual stress. Posture and visual ergonomics also influence the development of myopia. Children who read or write while lying down or holding books very close to the eyes may experience increased eye strain. Establishing proper posture, using supportive furniture and positioning reading materials at a comfortable distance can reduce the stress on the visual system. Additionally, alternating near-work with activities that require looking into the distance can relieve continuous eye focusing effort.

Diet and general health may indirectly affect eye development as well. Nutrients that support eye health, including vitamins A, C, E and omega-3 fatty acids, contribute to the overall functioning of the retina and ocular tissues. Maintaining a balanced diet and a healthy lifestyle supports visual development alongside other preventive measures. Early detection of myopia and monitoring its progression are critical. Children who develop myopia at a young age are more likely to experience rapid progression, leading to higher levels of refractive error and potential complications later in life. Routine eye examinations, especially for school-age children, can identify early signs of myopia and guide interventions such as corrective lenses, lifestyle adjustments and preventive strategies. Preventive measures include increasing outdoor activities, limiting prolonged near-work sessions, taking frequent visual breaks and maintaining proper posture and lighting while reading or using screens. Eye care professionals may also recommend specialized corrective lenses or interventions designed to slow myopia progression in high-risk children.

CONCLUSION

In conclusion, myopia is influenced by a combination of hereditary and environmental factors. While genetic predisposition sets the baseline risk, lifestyle and environmental exposures play a substantial role in determining when and how quickly myopia develops. Encouraging outdoor activity, limiting

Correspondence to: Oliver Mason, Department of Ophthalmology, Northfield University, Birmingham, United Kingdom; Email: oliver.mason@northfielduni.uk

Received: 17-Nov-2025, Manuscript No. JEDD-25-30795; **Editor assigned:** 20-Nov-2025, PreQC No. JEDD-25-300795(PQ); **Reviewed:** 04-Dec-2025, QC No. JEDD-25-30795; **Revised:** 11-Dec-2025, Manuscript No. JEDD-25-30795(R); **Published:** 18-Dec-2025, DOI: 10.35248/2684-1622.25.10.307

Citation: Mason O (2025). Environmental and Lifestyle Factors Influencing Myopia. *J Eye Disord*. 10:307.

Copyright: © 2025 Mason O. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

excessive near-work, promoting ergonomic reading habits and monitoring visual health are all essential strategies for managing myopia in children and young adults. Through awareness and practical measures, families and educators can contribute to healthier visual development and reduce the long-term impact of near-sightedness.

REFERENCE

1. Galvis V, Tello A, Camacho PA, Parra MM, Merayo-Lloves J (2017). Bio-environmental factors associated with myopia: An updated review. *Arch Soc Esp Oftalmol.* 92(7):307-325.
2. Eppenberger LS, Sturm V (2020). The role of time exposed to outdoor light for myopia prevalence and progression: a literature review. *Clin Ophthalmol.* 1875-1890.
3. Dhakal R, Shah R, Huntjens B, Verkiculara PK, Lawrenson JG. (2022) Time spent outdoors as an intervention for myopia prevention and control in children: an overview of systematic reviews. *OPO.* 42(3):545-58.
4. Rudnicka AR, Kapetanakis VV, Wathern AK, Logan NS, Gilmartin B, et.al. (2016) Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. *Br J Ophthalmol.* 100(7):882-890.
5. Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA,et.al. (2007) Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. *IOVS.* 48(6):2510-19.
6. Ojaimi E, Rose KA, Smith W, Morgan IG, Martin FJ, Mitchell P,et.al.(2005) Methods for a population-based study of myopia and other eye conditions in school children: the Sydney Myopia Study. *Ophthalmic Epidemiol.* 12(1):59-69.
7. Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K,et.al. (2007) Parental history of myopia, sports and outdoor activities, and future myopia. *Invest Ophthalmol Vis Sci.* 48(8):3524-3532.
8. Kurtz D, Hyman L, Gwiazda JE, Manny R, Dong LM, Wang Y,et.al. (2007) Role of parental myopia in the progression of myopia and its interaction with treatment in COMET children. *Invest Ophthalmol Vis Sci.* 48(2):562-70.
9. Mountjoy E, Davies NM, Plotnikov D, Smith GD, Rodriguez S, Williams CE,et.al. (2018) Education and myopia: assessing the direction of causality by mendelian randomisation. *bmj.* 361.
10. Enthoven CA, Polling JR, Verzijden T, Tideman JW, AlJaffar N, Jansen PW,et.al. (2021)Smartphone use associated with refractive error in teenagers: the myopia app study. *Ophtho.* 128(12):1681-1688.