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ABSTRACT
The rapid advancements in Computed Tomography (CT) technology have positioned CT Colonography (CTC),

commonly known as Virtual Colonoscopy (VC), as a promising tool for early detection of colon cancer. Despite more

than 57,000 annual deaths in the United States attributed to colon cancer, CTC stands out as a recommended

radiological examination for diagnosing colorectal neoplasia, especially in cases of incomplete or contraindicated

colonoscopies. This method involves low-dose CT scans of the cleansed and distended colon in both supine and

prone positions.

This paper provides a comprehensive insight into CTC procedures and discusses key aspects of Electronic Colon

Cleansing (ECC), aiming to segment the colon lumen from CT images with an oral contrast agent. The study

outlines various ECC algorithms, their advantages, drawbacks, and technological intricacies extracted from reviewed

literature. ECC plays a pivotal role in processing CT data, particularly in cleansing the colon's interior for effective

polyp identification, a crucial step in virtual colonoscopy. The paper delves into multiple ECC methodologies,

including thresholding, Markov random field models, segmentation using segmentation rays, and non-linear transfer

functions combined with morphological operations. These methodologies vary in their approaches, performance,

and computational requirements. For instance, while thresholding offers speed, it struggles with partial voxel

segmentation and sensitivity to threshold alterations. In contrast, the Markov random field model integrated into the

Expectation Maximization (EM) algorithm simultaneously estimates model parameters and segments voxels.

Additionally, segmentation rays accurately detect partial volume regions and allow for their removal, enhancing

accuracy in colon cleansing. The paper also discusses non-linear transfer functions and morphological operations,

amalgamating two techniques to boost the precision of colon cleansing. This detailed analysis aims to present a

nuanced understanding of ECC techniques, providing researchers with a comprehensive overview of these

methodologies. The insights derived from this paper contribute to the ongoing exploration of effective ECC

strategies for optimizing virtual colonoscopy and improving colon cancer screening outcomes.
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INTRODUCTION
CT Colonography (CTC), also recognized as Virtual
Colonoscopy (VC), has emerged as a promising approach for

early colon cancer detection due to advancements in Computed
Tomography (CT) technology [1-3]. Despite over 57,000 annual
colon cancer deaths in the United States, CTC is highly
recommended for diagnosing colorectal neoplasia, particularly in
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The reduced resolution of the detectors and the soft property of
the reconstruction kernel is the product of a boundary between
contrast and tissues (Figure 1), undesirable but typically acquired
after threshold operation.

Figure 1: 2D slices of a): 3D CT data; b): 3D CT data after
classical thresholding operation.

While thresholding is recognized for its speed, it accompanies 
several notable limitations. Firstly, this method fails to eliminate 
partial voxel content, as depicted in Figure 1b, where the 
strength profile along a vertical line reveals voxels with intensities 
straddling two distinct regions. These voxels are problematic as 
they are inaccurately classified during thresholding. For instance, 
in Figure 2, the voxels lie within the soft-tissue range between 
fluid and air, making their removal as soft-tissue voxels 
impossible. This misclassification notably impacts segmentation 
accuracy [12].

Moreover, although high-density fluid or stool is successfully 
removed, residual artifacts, such as a thin soft-tissue-like 
boundary, persist where it shouldn't exist.

Secondly, the sensitivity of thresholds to slight variations across 
different intensity spectrums, especially concerning the inner 
surface contour of the colon, significantly influences segmentation 
outcomes. Altering these thresholds can lead to varying 
segmentation results, making the method highly sensitive and 
prone to changes in outcomes.

Additionally, despite successfully removing high-density fluid or 
stool, thresholding often results in aliasing effects at the inner 
colon boundary. Upon closer inspection of the segmented 
volume, notable shifts in pressure values from soft tissue to air 
ranges become apparent, presenting undesired outcomes from a 
volume rendering perspective.

Furthermore, this approach causes the loss of the thin colonic 
mucosa present on the inner surface, leading to the creation of 
sharp borders that obstruct the diagnosis of polyps. Consequently, 
removing this colonic mucosa becomes undesirable, posing a 
challenge in accurately identifying and diagnosing polyps.

RESULTS AND DISCUSSION

Markov random field model

Image segmentation: The algorithm is based on the framework 
of Maximum Posterior Probability (MAP), including a priori 
neighborhood membership information defined by the 
Randomly Filed Markov (MRF) theory.
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cases of incomplete or contraindicated colonoscopies [4,5]. This 
radiological method involves a low-dose, thin-section CT scan 
capturing a cleansed and distended colon in both supine and 
prone positions [6].

The procedure of CTC involves multiple phases, including colon 
cleansing and inflation with CO2, followed by a helical 
abdominal CT scan covering the entire colon [7,8]. This scan 
produces numerous 512 × 512 slices, which are reconstructed 
into a 3D volume ranging from 100-250 MB [9]. Subsequently, 
this volumetric data undergoes preprocessing stages crucial for 
virtual navigation, with the precise segmentation of the colon 
lumen being paramount. Virtual navigation within the colon's 
interior, crucial for polyp detection, is facilitated by meticulous 
volume rendering. The initial step in CT data processing, known 
as Electronic Colon Cleaning (ECC), becomes essential, 
particularly if other methods fail to extract fecal contents [10].

Both modern colonoscopy techniques, including virtual 
colonoscopy, necessitate a pristine colon lumen for accurate polyp 
identification, preventing misinterpretation of residual materials 
as part of the colon. Various computer algorithms have been 
proposed for ECC, aiming to eliminate voxels reflecting contrast 
and residual nutrients. These algorithms vary in image pre-
processing steps, local image characteristics, feature reduction 
procedures, applied modeling, segmentation techniques, and 
classification methods [11]. This paper seeks to concisely outline 
the strengths, weaknesses, and technical nuances of these ECC 
methods.

Moreover, segmentation rays demonstrate remarkable prowess in 
accurately identifying partial volume regions and facilitating 
their elimination, thereby augmenting precision in colon 
cleansing. The paper further navigates through non-linear 
transfer functions and morphological operations, amalgamating 
these techniques to enhance the precision of colon cleansing. 
This comprehensive analysis endeavors to furnish researchers 
with an intricate understanding of ECC techniques, thereby 
contributing significantly to the quest for effective strategies in 
optimizing virtual colonoscopy and ameliorating outcomes in 
colon cancer screening.

MATERIALS AND METHODS

Thresholding

The thresholding operation principle depends on the division of 
voxels into two classes that use a predefined threshold value.

Where: M(x,y,z) is a binary mask (1-indicates an object, in this 
case a colon, 0-background), and I(x,y,z) indicates a CT. 
Typically, the threshold value is calculated on the basis of a CT 
histogram or general knowledge of the values assigned to 
anatomical structures.
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Figure 2: Histogram of a volume CT image from a patient.

Parameter estimation: Assume that an image consists of L
classes (or tissue types) and each class l is characterized by a
Gaussian parameter vector θ1(μ1, ν1). Let ρ1(Yijk | θ1) be the
probability distribution of voxel Yijk which is associated with
class l. The likelihood for each voxel Yijk, falling into L distinct
classes, is described by a mixture functional as

Where ρ(1|XN(ijk)) is the locally-dependent probability when Xijk 
is equal to l, and XN(ijk) reflects the labels of thosenearby voxels.

Assuming a set of initial estimation {μ(0), ν1(0)}LI=1 and applying
the EM algorithm, that have, at each iteration n,

Where Z1(n)
ijk is the conditional probability that voxel Yijk 

belongs to class l, which represents the tissue percentages
withinthat voxel. The calculation of tissue percentages {Z1(n)

ijk}
within each voxel requires determination of the conditional 
probability ρ(n)(1|X(ijk)) at the nth iteration. The determination
of ρ(n)(1|X(ijk)) requires estimation of the classlabels {l}, which
can be obtained by the following MAP segmentation method.

MAP segmentation method: A MRF prior is constructed to 
reflect the neighborhood information. The assignment of labels 
over the voxel array is performed by the MAP criterion. A 
Markov random field prior can be constructed to reflect the 
neighborhood information by.

To represent the neighborhood details, a prior MRF is 
constructed. The MAP criteria executes the distribution of labels 
over the voxel series [16,17]. A prior Markov random field can be 
constructed to represent the neighborhood data by

Where α is a constant of normalization and b is a constant
parameter. The U(X) energy function defines the degree of
penalty levied on the neighbors and, in three dimensions, can
be specified as
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It iteratively estimates the model parameters in an interleaved 
manner through the Expectation Maximization (EM) algorithm 
and segments the voxels by MAP, converging to a solution where 
the parameters of the model and voxel labels are estabilized 
within a given criterion. The algorithm's implementation 
consists of two steps: Parameter estimation and segmentation of 
the MAP [13].

Initial parameters: The algorithm operates under the 
framework of Maximum Posterior Probability (MAP) and 
incorporates a priori neighborhood membership details 
outlined by the theory of Randomly Filed Markov (MRF). It 
undergoes iterative estimation of model parameters using the 
Expectation Maximization (EM) algorithm, interleaved with 
voxel segmentation via MAP. This iterative process converges to 
a solution where model parameters and voxel labels stabilize 
within a specified criterion. The algorithm's execution involves 
two primary steps: Initial parameter estimation and MAP 
segmentation.

The histogram depicted in Figure 2 represents a standard 
histogram extracted from a patient's abdominal CT image, 
delineating distinct features present in all abdominal CT scans. 
Three prominent peaks in the histogram correspond to the 
intestine's air, soft tissue, and muscle, while other elements like 
strengthened stool, fluid, and bone manifest as a smaller peak 
beyond the muscle range. Notably, partial volume effects are 
notable between air and soft tissue, as well as between muscle 
and simulated products within these pressure ranges.

Traditionally, initial parameter estimates were derived from 
histograms using threshold-based methods, which were somewhat 
heuristic. However, an alternative approach, involving online 
vector quantization, was proposed. This technique relies on 
primary component analysis for local feature vectors of each 
voxel, followed by classification into classes based on the nearest 
neighbor norm. This novel method stands out due to its 
independence from initial values. As part of this initial parameter 
calculation, the vector quantization approach offers a preliminary 
segmentation outcome. It then proceeds to concentrate on 
segmenting the tagged stool/fluid area, leveraging a hidden MRF 
model to address issues of non-uniformity [14,15].
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Where δ(0)=1, the voxel names of the neighbors are δ((≠0)=0
and {li}. The r index runs over the 6 neighbors of the first order
and s runs over the 12 neighbors of the second order.

The segmentation is carried out iteratively, where at the (n+1)th

iteration, the current voxel is allocated to the corresponding
tissue type l by,

Segmentation using segmentation rays

Need for a sophisticated segmentation: Following the recent
bowel preparation, the acquired CT data is notably more
intricate compared to that obtained from an uncleansed bowel.
This complexity arises from the substantial accumulation of
fluid and stool within the colon (Figure 3). Despite efforts to
address these unwanted residues, their lack of a distinct
boundary persists, attributed to the partial volume effect.

Moreover, this issue is exacerbated by the finite resolution of the
CT scanner and its inadequate contrast capabilities. This
renders naive segmentation methods impractical due to their
inability to effectively address these challenges.

Figure 3: Intensity profile at the boundary of air and fluid.

Further refinement of this algorithm prevents ray casting where
no intersection is expected, leveraging the presence of air within
the colon. This is accomplished by outlining the rough contour
of the colonic interior using air voxels from a seed point within
the colon. The algorithm continues its tasks until a ray detects
an intersection. This typically involves the extraction and
processing of PVE voxels at the intersection, either through
classification or by altering their strength values to reconstruct
the mucosa. Consequently, most PVE voxels are identified and
removed using this method.

Additionally, the algorithm applies volumetric contrast
enhancement to residual PVE voxels found at the fluid-soft
tissue intersection, a technique akin to contrast enhancement in
image processing (Figure 4). This process facilitates mucosal
regeneration and extraction of residual fluid from the colon,
compensating for areas missed due to high fluid density [18].

Figure 4: A traverse slice before (left) and after (right) electronic
cleansing.

Using non-linear transfer function and
morphological operations

The proposed ECC method relies on a combination of nonlinear 
value adjustments and the manipulation of morphological voxels. 
Additionally, if the CT data lacks offset Hounsfield Unit (HU) 
values, an approach involves augmenting voxel values by 1024 to 
obtain an unsigned 16-bit fixed-point integer data format, 
effectively reducing computational time [19,20].

Identification and removal of contrast-reflecting voxels in the 
CT data require the computation of two binary masks: A fluid 
mask and a residual mask. The fluid mask, created through the 
thresholding process outlined in section 3, assigns a value of 1 
to voxels with values exceeding 1600. Similarly, the residual 
mask targets values greater than 1350 and equal to or smaller 
than 1600, encompassing voxels representing stool and fluid 
within this range. Subsequently, dilation is applied to all masks 
using regular hexahedrons of size 3. Voxels marked with a mask 
value of 1 undergo processing via two transfer functions 
illustrated in Figure 5, demonstrating a Gaussian transformation 
of intensity.

With σ=450 for the fluid mask and 100 for the residual one.
This operation is desirable due tonecessity to keep smooth
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This approach's core concept lies in identifying a unique 
property existing at the junction of regions with distinct 
densities. As it moves towards this junction, it encounters the 
Partial Volume Effect (PVE) voxels present in this transition. By 
recognizing these voxels and removing them accurately, the 
method aims to address this challenge.

The approach involves a preliminary analysis and storage of 
individual strength profiles specific to various intersections. 
These profiles are characteristic of the region intersections and 
remain consistent across different CT scanning protocols. The 
subsequent step involves identifying intersections by comparing 
intensity profiles along cast rays with those of various 
intersections. When a match occurs, the ray successfully detects 
the intersection.
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changes of intensity on the border between colon and soft
tissues.

Figure 5: Gaussian transfer functions; blue line–for fluid mask 
σ=450, red line–for residual mask σ=100.

In the subsequent step, a binary dataset (MBin) is generated, 
assigning 0s to air voxels (v<300) and 1s to the remaining 
sections. Subsequently, a sequence of two morphological 
procedures is implemented: Firstly, a 3D erosion operation is 
applied to each volume utilizing a three-cubic matrix, followed by 
a dilation process on the resulting data from the erosion step.

Additionally, it is imperative to validate whether the voxels 
acquired from the subtraction belong to the boundary. Given 
the patient's positioning either on their back or abdomen during 
CT scanning, the boundary often aligns parallel to the body's 
surface (Figure 6). The entire procedure is summarized by the 
following theorem [21,22].

Figure 6: The intensity profiles for a voxel which cannot be
removed (left) and must be removed (right).

Figure 7: Exemplary results of usage of the proposed algorithm
for colon cleansing.

CONCLUSION
The landscape of medical imaging has been revolutionized by the 
rapid advancements in Computed Tomography (CT) technology. 
Within this realm, CT Colonography (CTC), also known as 
Virtual Colonoscopy (VC), has emerged as a promising non-
invasive tool for the early detection of colon cancer. Despite the 
staggering toll of over 57,000 annual deaths attributed to colon 
cancer in the United States alone, CTC has emerged as a 
recommended radiological examination, particularly in scenarios 
where conventional colonoscopies remain incomplete or are 
contraindicated. This modality revolves around the acquisition 
of low-dose CT scans capturing the purified and distended colon 
in both supine and prone positions.

This paper endeavors to provide an exhaustive exploration into 
CTC procedures while delving into the critical domain of 
Electronic Colon Cleansing (ECC). ECC assumes a pivotal role 
in the segmentation of the colon lumen from CT images utilizing 
an oral contrast agent. This study meticulously scrutinizes diverse 
ECC algorithms, meticulously extracting their advantages, 
limitations, and technological intricacies from an extensive review 
of relevant literature. ECC assumes paramount importance in the 
processing of CT data, particularly in ensuring a pristine interior 
of the colon for accurate identification of polyps, a fundamental 
requirement in virtual colonoscopy.

The manuscript meticulously dissects a spectrum of ECC 
methodologies, encompassing thresholding, Markov random field 
models, segmentation employing segmentation rays, and the 
fusion of non-linear transfer functions with morphological 
operations. These methodologies exhibit distinct approaches, 
performances, and computational requisites. For instance, while 
thresholding emphasizes speed, it grapples with challenges in 
segmenting partial voxels and susceptibility to alterations in 
thresholds. Conversely, the incorporation of the Markov random 
field model within the Expectation Maximization (EM) algorithm 
facilitates concurrent estimation of model parameters and voxel 
segmentation, showcasing promising potential.

Mostafavi M, et al.

After subtraction, with each voxel equal to 1 in the MPr-Border 
volume, the strength profile must be tested in the usual direction 
of the body surface (Figure 6): If the profile includes voxels 
belonging to the stool or comparison, this voxel is omitted.

Figure 7 demonstrates excellent performance from the 
implementation of the proposed algorithm for electronic colon 
cleansing.
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Moreover, segmentation rays demonstrate remarkable prowess in 
accurately identifying partial volume regions and facilitating 
their elimination, thereby augmenting precision in colon 
cleansing. The paper further navigates through non-linear 
transfer functions and morphological operations, amalgamating 
these techniques to enhance the precision of colon cleansing. 
This comprehensive analysis endeavors to furnish researchers 
with an intricate understanding of ECC techniques, thereby 
contributing significantly to the quest for effective strategies in 
optimizing virtual colonoscopy and ameliorating outcomes in 
colon cancer screening.

The paper systematically unfolds the advantages and drawbacks 
of each ECC approach, illuminating the trade-offs inherent in 
these methodologies. Thresholding emerges as the fastest and 
simplest method, yet it faces challenges in handling partial 
voxels and exhibits sensitivity to intensity thresholds. 
Contrastingly, the integration of Markov random field models 
within the EM algorithm allows for simultaneous estimation of 
model parameters and voxel segmentation, leveraging spatial 
knowledge to address non-uniformity issues. Segmentation rays 
excel in accurately detecting and removing partial volume 
regions, while the fusion of non-linear transfer functions and 
morphological operations enhances the accuracy of colon 
cleansing.

The ECC approaches in virtual colonoscopy offer distinct 
advantages, each contributing uniquely to the accuracy and 
efficiency of the process. Thresholding stands out as the fastest 
and simplest method among the ECC strategies. Despite its 
speed, it faces challenges in handling partial voxels and 
sensitivity to intensity thresholds.

The integration of Markov random field models within the EM 
algorithm presents a significant advancement. This integration 
allows for the concurrent estimation of model parameters while 
segmenting voxels. This approach harnesses spatial knowledge 
effectively to address non-uniformity issues, enhancing the 
accuracy of colon cleansing significantly. Segmentation rays 
emerge as a powerful tool by accurately detecting partial volume 
regions within the colon. Their capability to identify and remove 
these regions, if necessary, marks a significant leap in precision, 
ensuring a clearer and more accurate depiction of the colon's 
interior.

Lastly, the fusion of non-linear transfer functions with 
morphological operations signifies a sophisticated enhancement 
in accuracy. By combining these methods, there's a notable 
increase in the precision of colon cleansing, improving the 
overall effectiveness of virtual colonoscopy in detecting polyps 
and abnormalities within the colon.

In conclusion, each ECC approach offers unique advantages, 
and their comparative analysis illuminates the ongoing quest for 
an optimized virtual colonoscopy method. This systematic 
exploration sets the stage for further advancements in ECC 
strategies and paves the way for improved colon cancer 
screening methodologies.
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