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ABSTRACT

Hyperspectral imaging holds immense potential for detailed land cover analysis due to its rich spectral information 
across the electromagnetic spectrum. However, the inherent trade-off between spatial and spectral resolution limits its 
applicability. The study explores the deployment and enhancement of Single Hyperspectral Image Super-Resolution 
(SSPSR) model, using the Spatial-Spectral Prior Network (SSPN), to notably improve the spatial and spectral 
quality of hyperspectral images. This model stands out for its ability to elevate image resolution without relying 
on supplementary hardware enhancements. Our research focused on training this model using the comprehensive 
Chikusei dataset, this dataset features 128 spectral bands from 363 nm to 1018 nm, captured over Chikusei, Japan, 
enhancing deep learning research in agricultural and urban land cover analysis, followed by fine-tuning with the 
Cave dataset, renowned for its hyperspectral indoor images across numerous spectral bands, to ensure adaptability 
to diverse real-world scenarios. A refined loss function was introduced to enhance image fidelity, spatial smoothness, 
spectral fidelity and perceptual quality. Through meticulous hyper parameter tuning and leveraging of public datasets, 
we significantly improved upon existing methodologies, as evidenced by quantitative performance measures. The 
fine-tuned SSPSR model achieved noteworthy gains in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 
Index (SSIM); thus, contributing to the precision and efficiency of hyperspectral image analysis. Our results 
demonstrate the model’s enhanced performance in generating high-resolution images from low-resolution data, 
promising substantial advancements in remote sensing and land mapping applications.

Keywords: Image resolution; Spatial resolution; Remote sensing; Deep transfer learning; Hyperspectral images; 
Machine learning

numerous frequency bands across the electromagnetic spectrum, 
has been widely used in various applications. Lu et al., provides a 
comprehensive review of its use in medical diagnostics and image-
guided surgery, highlighting its ability to capture spatially resolved 
spectral images [1]. Kurz et al., Bahalul et al., both explore its 
potential in close-range applications, with Kurz emphasizing its 
flexibility and high spectral resolution and Bahalul introducing a 
new approach using wave front division interference [2,3]. These 
studies collectively underscore the versatility and potential of 
hyperspectral imaging in various fields. Peyghambari et al., Kwan 
both highlight the potential of hyperspectral imaging in geological 
mapping and remote sensing applications, respectively [4,5]. 
However, the trade-off between spatial and spectral resolution 
in remote sensing is a key consideration, which can be mitigated 
by deep learning-based super-resolution techniques [4]. The 
enhancement of spectral resolution in hyperspectral images is 
also a focus, with Fotiadou et al., proposing a machine learning 

INTRODUCTION

Unlike traditional RGB images, hyperspectral images capture 
a vast amount of spectral data for each pixel, encompassing the 
entire electromagnetic spectrum. This creates a three-dimensional 
“data cube” where the additional dimension represents spectral 
information. Each pixel’s unique spectrum acts like a fingerprint, 
allowing scientists to identify materials present. This rich 
data empowers researchers in numerous fields. In agriculture, 
hyperspectral imaging helps assess crop health and optimize 
practices. For mineral exploration, it aids in identifying and 
mapping valuable resources. Even cultural heritage preservation 
benefits, as art analysis can reveal hidden layers and assess an 
artwork’s condition. By capturing light’s complex story at each 
image point, hyperspectral imaging unlocks a deeper understanding 
of our world. 

Hyperspectral imaging, with its ability to capture data from 



2

Khan N, et al.

J Remote Sens GIS, Vol.13 Iss.4 No:1000358

technique using sparse representations [6]. Ablin et al., further 
discusses the challenges and prospects of hyperspectral image 
classification, emphasizing the need to reduce uncertainties in the 
image processing chain [7]. 

In Figure 1, the left side illustrates how increased spatial resolution 
leads to a finer grained representation of the image data, whereas 
the right side depicts spectral resolution, indicating the sensor’s 
ability to discriminate between narrow wavelength intervals, 
important for identifying and classifying diverse materials based on 
their spectral signatures. To measure high spectral resolution versus 
high spatial resolution, different types of equipment or sensor 
technologies are required due to the differing nature of the data 
they capture.

The field of hyperspectral imaging presents a unique challenge 
for traditional analysis methods due to the high dimensionality 
and complex spectral information contained within each pixel. 
Machine Learning (ML) algorithms are emerging as powerful 
tools to address these complexities and unlock the full potential 
of hyperspectral data. ML techniques excel in automating 
workflows such as classification, anomaly detection and target 
recognition, significantly reducing the burden of manual analysis 
for hyperspectral datasets. Furthermore, ML facilitates feature 
extraction, identifying the most relevant spectral signatures within 
the data for a specific application. This targeted approach leads to 
improved accuracy in material classification and anomaly detection 
compared to conventional methods. Moreover, the ability of 
ML models to learn from labelled datasets fosters continuous 
improvement in performance. By generalizing knowledge acquired 
from diverse hyperspectral datasets, these models can be effectively 
applied across a wider range of applications and environments. 
Finally, ML offers dimensionality reduction techniques that 
compress the high-dimensional hyperspectral data while preserving 
critical information. This not only enhances computational 
efficiency but also facilitates faster and more streamlined analysis. In 
conclusion, machine learning serves as a foundation for unlocking 
the true power of hyperspectral data, empowering researchers with 
automated workflows, improved feature extraction, enhanced 

accuracy and efficient data analysis capabilities. Caponi et al., 
Wu et al., used machine learning on images to extract physical 
properties of interest [8,9]. Misra et al., Li et al., used deep learning 
techniques of T1-T2 heat maps for purposes of signal synthesis as 
a reconstruction approach [10,11]. Wu et al., developed a workflow 
for connectivity quantification by processing images using 
traditional machine learning guided by strong feature extraction 
techniques [12]. 

Recent research has made significant progress in hyperspectral 
image super-resolution using deep learning and transfer learning. 
Yuan et al., Liu et al., both proposed frameworks that leverage the 
relationship between low- and high-resolution images, with Yuan 
specifically focusing on the spectral characteristic [13,14]. Li et al., 
introduced a deep unsupervised fusion-learning framework that 
generates a latent high-resolution hyperspectral image using only 
the observed low-resolution hyperspectral and high-resolution 
RGB images [15]. Huang utilized a Generative Adversarial 
Network (GAN) and residual learning for hyperspectral image 
super-resolution, achieving superior performance in spectral 
fidelity and spatial resolution [16]. Zou combined Deep Residual 
Convolutional Neural Network (DRCNN) with spectral un mixing, 
preserving spatial and spectral information without the need for 
auxiliary images [17]. 

Wang et al., developed a deep residual convolutional neural network 
with 18 convolution layers, achieving improved hyperspectral super-
resolution results [18]. In exploring advancements in hyperspectral 
image super-resolution, our study is particularly inspired by the 
innovative techniques developed by Jiang and Liu [14,19]. Jiang’s 
introduction of the SSPSR model, which features a SSPN, presents 
an innovative approach to enhancing hyperspectral imagery [19]. 
This model adeptly navigates the challenges posed by the high-
dimensional spectral data and the scarcity of training samples. It 
uses group convolution with shared parameters and a progressive 
up sampling strategy, markedly improving the spatial and spectral 
quality of images [20]. Similarly, Liu advances this field with the 
proposal of a Spatial-Spectral Feedback Network (SSFN), further 
enriching the methodology for hyperspectral image analysis. 

Figure 1: Visual distinction between the concepts of spatial and spectral resolutions, which are the essential components of hyperspectral image analysis.
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Model evaluation and transfer learning: Cave dataset is used for 
evaluating and tuning the model to facilitate the adaptability and 
strength of the image super-resolution workflow across various 
hyperspectral image datasets (Figure 2).

Overview and structure

The SSPSR model is structured into two core segments to process 
hyperspectral images effectively. The first segment comprises 
branch networks, which are specialized to manage distinct spectral 
bands or features through a sequential process: Initially performing 
shallow feature extraction, followed by deep spatial-spectral feature 
extraction. These initial steps are important for isolating and 
enhancing relevant spatial and spectral characteristics. The second 
segment is the global network, where the refined features from each 
branch are up scaled through an up sampling module and then 
integrated to reconstruct the high-resolution hyperspectral image, 
ensuring both detailed spatial representation and spectral integrity 
are preserved.

Shallow and deep feature extraction: In the SSPSR model’s 
initial stage, patterns within hyperspectral images are identified 
through initial convolutional layers. The process progresses to a 
more advanced stage, known as the spatial-spectral deep feature 
extraction segment, where the model uses deeper convolutional 
layers combined with nonlinear activations to extract and enhance 
complex features and discern subtle interplay between spatial detail 
and spectral information within the data. 

Up sampling and reconstruction: The up sampling module 
elevates the resolution of these features, preparing them for the 
final reconstruction phase. The latter, often comprising several 
convolutional layers, refines and transforms the up scaled features 
into coherent, detailed, higher-resolution images. 

Handling spectral bands: Progressive up sampling by a factor of 2 
and spectral grouping are used to manage the high dimensionality 
of spectral bands and reduce parameters. Efficient residual learning 
and attention mechanisms are leveraged to exploit spatial-spectral 
features effectively (Figure 3). 

Branch architecture

The branch networks commence with a Conv2d layer, followed by 
a SSPN that includes three Spatial-Spectral Blocks (SSB) featuring 
ResBlocks and ResAttentionBlocks. The attention mechanism 
is realized through a Channel Attention (CA) layer, focusing on 
the most informative features. The trunk network mirrors the 
branch’s structure, enhanced with a skip convolutional layer for 
refined feature processing. The architecture concludes with a final 
convolutional layer, utilizing over 8 million trainable parameters, 
showcasing its capability to learn complex spatial-spectral patterns. 

The SSPSR model, with its capacity to significantly elevate image 
detail and resolution while ensuring stable training, outperforms 
existing methods and establishes a new standard. The alignment 
of these methodologies with our research objectives has led us to 
adopt Jiang et al., SSPSR model for our study, aiming to leverage its 
strengths in enhancing hyperspectral imagery’s spatial and spectral 
fidelity [19]. Our approach involves training the SSPSR model on the 
Chikusei dataset [21]. Fine-tuning its hyper-parameters and refining 
its performance on the Cave dataset [22]. This process resulted 
in heightened adaptability and improved overall performance, 
showcasing the efficacy of hyper-parameter-tuning and fine-tuning 
methodologies in hyperspectral image super-resolution tasks.

MATERIALS AND METHODS

Objectives

This study aims to deploy and evaluate the precision and efficiency 
of hyperspectral image analysis using a deep learning technique, 
SSPSR, developed by Jiang et al. [19]. Our goal will be the following: 

• Achieve high spatial and spectral accuracy in hyperspectral 
images. 

• Reduce computational time required for super-resolution 
processing

To attain these objectives, the following methodologies were 
applied: 

Super-resolution enhancement: Utilized deep learning techniques, 
particularly SSPSR, to upscale low-resolution hyperspectral images. 

Model development: Improved a deep learning model to 
simultaneously enhance spatial and spectral accuracies, ensuring 
precise object placement and accurate spectral data representation. 

Process optimization: Streamlined super-resolution enhancement 
by implementing computational strategies that expedited data 
processing. 

Technique adaptation: Modified the SSPSR architecture to better 
fit the complexities of hyperspectral image enhancement, focusing 
on training protocols that improve spatial detail and spectral 
fidelity. 

Performance benchmarking: Conducted quantitative assessments 
of model performance using indices like PSNR and SSIM to ensure 
spatial and spectral precision. 

Model fine-tuning: Adjusted hyper parameters to balance image 
resolution precision with model complexity, optimizing for the 
most effective learning process

Computational resources: The training was conducted on a 
system with 32 GB RAM, an NVIDIA RTX 2080 GPU and an 
Intel i7 processor. The training time for the SSPSR model was 
approximately 10 h for 40 epochs. The inferencing time on new 
datasets was around 30 sec per image.

Resources and validation

The project utilized and validated its methodologies through: 

Model training and testing: Chikusei dataset is used for a 
comprehensive training, validation, testing and benchmarking. 
The training dataset comprised 3700 samples, while the testing 
dataset included 370 samples for scale=4% and 10% reserved for 
evaluation for scale=8. 

Figure 2: The workflow of the SSPSR model, used in our study for the 
hyperspectral image super-resolution.
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hyperspectral image to produce a sub-image of 2304 x 2048 x 128 
pixels. This sub-image was divided into two sets: 

Testing dataset: The upper portion, comprising four non-
overlapping hyperspectral images with dimensions of 512 x 512 x 
128 pixels. 

Training dataset: Depending on the up sampling factor (scale), 
sub-images were extracted at either 64 x 64 pixels with a 32-pixel 
overlap for scale=4, or 128 x 128 pixels with a 64-pixel overlap for 
scale=8. To generate low-resolution hyperspectral images, Bicubic 
Interpolation was used. This technique used a 4 x 4 grid of 
neighboring pixels and a weighted averaging method to estimate 
pixel values at non-grid positions. The generated images for scale=4 
included ms (16 x 16), ms_bicubic (64 x 64) and gt (64 x 64), while 
for scale=8, the images included ms (32 x 32), ms_bicubic (128 x 
128) and gt (128 x 128). The entire process resulted in two distinct 
datasets, each with 3,700 samples: One for scale=4 and another 
for scale=8. For both scales, 10% of the samples were reserved for 
evaluation. This figure illustrates the spatial and spectral resolution 
of the hyperspectral image and its importance in the analysis. 

Each SSB uses ResBlocks and ResAttentionBlocks, integrating 
convolutional layers and a CA layer to heighten the focus on 
significant features. An up sampler in the final SSB, utilizing a 
PixelShuffle operation, facilitates the creation of super-resolved 
images with enriched spatial resolution. The SSPSR model, with its 
intricate design and integration of advanced techniques like residual 
learning and attention mechanisms, underscores its capability to 
deliver superior performance in the spatial and spectral domains. 
Each layer and block are meticulously crafted to extract, process and 
enhance features, promising detailed and accurate super-resolved 
hyperspectral images (Figure 4). 

Data pre-processing (Chikusei)

The Chikusei hyperspectral dataset, acquired using the Headwall 
Hyperspec-VNIR-C imaging sensor, covers agricultural and urban 
areas in Chikusei, Ibaraki, Japan. This dataset includes 128 bands 
spanning the spectral range of 363 nm to 1018 nm as shown in 
Figure 4. 

We began pre-processing by cropping the central region of the 

Figure 3: The architecture of a Spatial-Spectral Block (SSB) within the SSPSR model, depicting the flow from the spatial residual module through to the 
spectral attention residual module.

Figure 4: Chikusei hyperspectral image, captured by the Headwall Hyperspec-VNIR-C imaging sensor.   
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lower RMSE indicates a smaller average difference, but it doesn’t 
necessarily translate to higher image similarity.
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Where N is number of pixels. While Root Mean Squared Error 
(RMSE) calculates average intensity differences between images, 
it’s not ideal for direct similarity assessment. Images with similar 
structures but different lighting or noise can have a high RMSE 
despite being visually similar. RMSE can be a helpful tool alongside 
other techniques, but for a stronger measure, consider methods 
like SSIM which analyse structural information or feature-based 
approaches that identify key point features for matching. In tasks 
like image super-resolution where you’re trying to reconstruct a 
higher resolution image from a lower resolution one, RMSE can be 
used as a basic metric to compare the reconstructed image’s pixel 
intensities to the ground truth (original high-resolution image).

Erreur Relative Globale Adimensionnelle de Synthese (ERGAS): 
ERGAS is a commonly used evaluation measure in the field of 
image processing and remote sensing, particularly for assessing the 
performance of super-resolution algorithms applied to hyperspectral 
images. It takes into account both spatial and spectral fidelity of 
the reconstructed image. A lower ERGAS score indicates better 
performance, indicating that reconstructed image closely resembles 
the original high-resolution image. 

ERGAS evaluates image super-resolution by calculating the Mean 
Squared Error (MSE) between original and reconstructed images, 
assessing pixel-wise differences, for each band. It incorporates 
a scaling factor to adjust for variations in image variability and a 
global factor to normalize errors across the entire image, preventing 
bias towards specific regions. ERGAS synthesizes these elements 
into a dimensionless metric, offering a relative measure of error 
independent of image scale or units. ERGAS provides a single, 
dimensionless score between 0 and 100.
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Where M is the number of bands. Lower ERGAS values 
correspond to superior performance. It provides a dimensionless 
metric, allowing for easy comparison across different datasets and 
scales. ERGAS is advantageous when assessing the performance of 
algorithms that aim to improve both spatial and spectral resolution 
simultaneously. Unlike ERGAS, SAM is useful when the primary 
concern is the spectral accuracy of the reconstructed image rather 
than spatial details. 

Peak Signal-to-Noise Ratio (PSNR): PSNR is a widely used metric 
for quantifying the quality of reconstructed or enhanced images, 
including those produced by super-resolution algorithms. It 
computes the ratio between the maximum possible power of the 
original signal and the power of the noise that affects the fidelity 
of the reconstruction. A higher PSNR value signifies better image 
quality.
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Where Max is the maximum possible pixel value. PSNR evaluates 
image reconstruction quality by first computing the MSE between 

Evaluation measures for image super resolution 

In our project, we used the following six quantitative measures 
known as Performance Quality Indices (PQI) on the test dataset 
to rigorously assess the performance of our proposed hyperspectral 
image super-resolution method. The image reconstructed at a high 
resolution was compared against the ground-truth image using 
these measures. 

Cross-Correlation (CC): CC is used to measure the degree of linear 
association between the reconstructed hyperspectral images and the 
corresponding ground truth data. Cross-correlation helps quantify 
image similarity by measuring how well one image “slides” over 
another image results in matching intensity patterns. It essentially 
calculates how much the pixel intensities of two images overlap 
at different positions. A high correlation value indicates a good 
overlap, suggesting the images are similar. A higher CC value 
indicates a stronger alignment and similarity between the images.
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where 𝑦 is the image reconstructed at high resolution; 𝑔𝑡 is 
ground-truth image. While cross-correlation is a common tool for 
image similarity, it is limited by noise and with rotations, scaling, 
distortion, deformation, or lighting changes between the images. 
This is because it relies heavily on exact pixel values. For more 
strong similarity measures, consider methods like SSIM which 
look at patterns, Histogram of Oriented Gradient (HOG) which 
focuses on gradients, or Scale-Invariant Feature Transform (SIFT) 
which identifies key features-all offering some level of invariance to 
common image variations.

Spectral Angle Mapper (SAM): SAM quantifies the spectral 
similarity between two hyperspectral images by calculating the 
angular difference between their spectral vectors. Unlike cross-
correlation which focuses on pixel intensity values, SAM analyses 
the spectral signature of each pixel, which provides a more 
comprehensive understanding of the material composition. A 
lower SAM value signifies a greater level of spectral similarity. A 
smaller SAM indicates a higher degree of similarity between the 
spectral signatures of the pixels, suggesting they likely represent the 
same material.
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SAM enhances the spectral information, making it more strong to 
variations in lighting or illumination compared to methods based 
on intensity values alone. The spectral angle has a physical meaning, 
relating directly to the spectral characteristics of the materials. 
Calculating the spectral angle for every pixel in an image can be 
computationally expensive for large datasets. While methods like 
cross correlation rely on intensity values, SAM provides a more 
material-specific perspective. This makes it valuable in situations 
where lighting variations might affect intensity but not necessarily 
the underlying spectral properties of the materials.

Root Mean Squared Error (RMSE): RMSE serves as a measure of 
the average magnitude of the differences between corresponding 
pixel values in the reconstructed and ground-truth images. A lower 
RMSE value indicates smaller differences and a higher degree 
of image-reconstruction fidelity. RMSE calculates the average 
squared difference between corresponding pixels in two images. A 
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the original and reconstructed images, measuring the average 
squared difference between corresponding pixels. It then normalizes 
the MSE by dividing the maximum possible pixel value squared 
by the MSE to ensure relative assessment. Applying a logarithmic 
transformation enhances PSNR’s sensitivity to subtle differences 
and scaling the result by 10 provides the PSNR value in decibels, a 
standard unit for expressing signal-to-noise ratios. 

PSNR lacks sensitivity to perceptual differences and structural 
distortions, focusing solely on pixel-wise errors. Additionally, 
PSNR’s dependence on image content and insensitivity to spectral 
fidelity make it less suitable for tasks where preserving perceptual 
and spectral quality is important. For example, images with high 
levels of detail or texture may exhibit lower PSNR values even if 
they are visually pleasing. PSNR assumes a fixed dynamic range 
for all images, which may not be suitable for datasets with varying 
dynamic ranges or different bit depths. 

Structural Similarity Index (SSIM): SSIM measures the structural 
similarity between the reconstructed and reference original 
hyperspectral images, considering factors such as luminance, 
contrast and structure. The Structural Similarity Index (SSIM) 
goes beyond pixel-by-pixel intensity differences and offers a more 
comprehensive measure to quantify the performance of image 
super-resolution techniques. A higher SSIM value indicates greater 
structural similarity and higher image quality. 

( )( )
( )( )

1 2

2 2 2 2
1 2

2 2y gt yg

y gt y gt
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Where  yµ ,  gtµ  are mean, yσ , gtσ   are standard deviation, ygσ  is 
covariance of 𝑦 and 𝑔𝑡 and C1, C2 are small constants for stability. 

SSIM computes the metric as a product of three comparisons: 
luminance (mean) comparison, contrast (variance) comparison and 
structural (covariance) comparison. The SSIM score ranges between 
-1 and 1, where 1 indicates perfect similarity between the images. 
Higher SSIM values suggest higher perceptual similarity and better 
image quality. Its performance can vary depending on the content 
of the images being compared and may not handle scaling or 
translation differences effectively. SSIM may also lack sensitivity 
to high-frequency details and compression artefacts, limiting its 
applicability in certain scenarios. Additionally, SSIM’s complexity 
and subjectivity in parameter selection pose challenges and it 
should be used alongside other metrics and subjective evaluations 
for a comprehensive assessment of image quality. 

SSIM, while effective in measuring structural similarity, lacks 
in assessing spectral fidelity compared to metrics like SAM or 
ERGAS, which excel in remote sensing and hyperspectral imaging 
applications. 

Additionally, SSIM’s sensitivity to image content variations and its 
computational complexity may limit its applicability in scenarios 
where strong spectral assessment or computational efficiency is 
important. Therefore, SAM and ERGAS may offer advantages in 
such contexts. 

One advantage of SSIM over SAM and ERGAS in image super-
resolution is its ability to consider local structural information, 
luminance and contrast, which align more closely with human 
perception of image quality. This holistic approach enables 
SSIM to capture subtle details and textures, making it effective 
in assessing perceptual similarity between the original and super-
resolved images. Additionally, SSIM’s computational efficiency and 
simplicity compared to SAM and ERGAS make it more practical 
for real-time applications or large-scale image processing tasks. 
Additionally, SSIM’s capability to handle scaling and translation 
differences more effectively compared to PSNR makes it more 
suitable for evaluating the quality of super-resolved images that 
undergo geometric transformations. 

The best possible values for these indices are defined as follows: 
1 for CC and SSIM, 0 for SAM, RMSE and ERGAS and +∞ for 
PSNR. The min and max values for each metric are as follows: CC 
(0 to 1), SAM (0 to ∞), RMSE (0 to ∞), ERGAS (0 to ∞), PSNR (0 
to ∞), SSIM (0 to 1).

RESULTS AND DISCUSSION

The study is centered around the overarching goal of reducing 
computation time while optimizing the super-resolution of 
hyperspectral images. To achieve this, we explored various 
approaches and compared their outcomes to the results from a 
referenced research paper [19]:

Approach 1: Evaluation with full dataset replication 

As a part of our extensive assessment, we undertook an experiment 
encompassing the entire dataset, comprising 3,700 samples. 
The objective was to faithfully reproduce the parameters and 
configurations closer to SSPSR paper results by Jiang et al., (Table 
1), thereby subjecting our method to a rigorous validation process 
[19]. The experimental setup entailed 40 training epochs, batch 
size of 32 with an initial learning rate of 1e-4 which decays by a 
factor of 10 when it reaches 30 epochs, the deployment of 8 groups 
for super-resolution and the inclusion of 2-band overlap sections, 
meticulously mirroring the parameters specified in the reference 
SSPSR paper. Our results harmoniously converged with the 
parameters and outcomes articulated in the paper, consolidating 
our confidence in the effectiveness of our approach. This alignment 
provides a strong foundation for future exploration and fine-tuning 
in the pursuit of hyperspectral image super-resolution. 

Table 1: Comparative performance metrics of SSPSR model approaches. This table enumerates the outcomes of various super-resolution approaches 
against the benchmark SSPSR paper results, showcasing the balance between model accuracy, as reflected by MPSNR and MSSIM and efficiency, as 
denoted by Time/Epoch.  

Model MPSNR MSSIM ERGAS SAM Cross correlation RMSE Time/Epoch

SSPSR paper results 40.361 2 0.941 3 4.9894 2.353 0.9565 0.0114 NA

Approach 1: Evaluation with full dataset replication 40.334 2 0.943 6 4.9563 2.377 0.95643 0.0115 600 sec

Approach 2: Spectral prioritization for super-resolution 39.647 7 0.936 0 5.3932 2.64 0.9491 0.0123 240 sec

Approach 3: Prioritizing bands with high PSNR 39.182 6 0.931 7 5.7464 2.865 0.9435 0.0129 300 sec
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expected results in practice. The high PSNR bands were limited and 
the downsizing of the training dataset introduced challenges, such 
as overfitting, as the model had to generalize from a smaller and 
potentially biased sample. These insights underscored the intricate 
trade-off between computational efficiency and image quality 
preservation, offering valuable insights for the next approach. 

Approach 4: Efficient band selection 

The bands were selected based on their mean values and spectral 
characteristics. For 8 bands, the selected wavelengths were 450 nm, 
500 nm, 550 nm, 600 nm, 650 nm, 700 nm, 750 nm and 800 
nm. In our fourth approach, we selectively trained the model on 
hyperspectral data with varying band counts, ranging from 8, 16, 
32, 64 to 128 bands. The results are presented in Table 2. The 
primary objective was to pinpoint the optimal trade-off that would 
lead to the most efficient yet high-quality super-resolution results 
without reducing training sample size. After training our model 
using the above approach, the results produced by the trained 
models were enlightening. In the comparison below, we present 
the ground truth image, the original low-resolution (compressed) 
training image and the reconstructed output images generated 
by models trained with 8, 16, 32, 64 and 128 bands, respectively. 
The images encapsulate the journey from low-resolution to high-
resolution, highlighting the potential of hyperspectral image super-
resolution (Figure 5).

Approach 2: Spectral prioritization for super-resolution 

Our approach drew inspiration from the paper’s emphasis on 
leveraging spectral information for super resolution. We sought 
to prioritize spectral bands with mean values exceeding 0.1. 
The rationale behind this approach was to exploit the wealth of 
distinctive spectral information that brighter regions contained 
within the hyperspectral data. This allowed us to focus on 700 
out of 3000 training samples, significantly narrowing down the 
computational load to 240 sec/epoch. However, some discrepancies 
emerged in the results, notably in the SSIM and PSNR metrics. 
Additionally, reducing the training sample size could be considered 
a drawback, highlighting the challenge of working with limited data 
in hyperspectral image super-resolution tasks. 

Approach 3: Prioritizing bands with high PSNR 

We aimed to optimize computational efficiency while maintaining 
high-quality super resolution. We accomplished this by selecting 
spectral bands with PSNR values surpassing 40 for prioritized super 
resolution, which led to a reduced set of 650 training samples, down 
from the original 3,000. This approach resulted in a remarkable 
reduction in training time, with 300 sec/epoch. However, a closer 
examination of the outcomes uncovered minor disparities, notably 
in the PSNR, SAM, ERGAS and SSIM metrics. Furthermore, 
while this criterion seemed promising in theory, it didn’t yield the 

Table 2: Efficiency and effectiveness of 8-band model in hyperspectral image super-resolution. This table presents the performance metrics of models 
trained with different numbers of spectral bands, highlighting the balance between computational efficiency and image quality.

No. of channels MPSNR MSSIM ERGAS SAM Cross correlation RMSE Time/Epoch

128 40.3612 0.9413 4.9894 2.3527 0.9565 0.0114 600 sec

64 40.2946 0.9433 4.9774 2.4083 0.9561 0.0115 180 sec

32 40.3262 0.9434 5.1336 2.3719 0.9547 0.0115 120 sec

16 40.2565 0.9423 5.486 2.4046 0.9503 0.0116 80 sec

8 40.3096 0.9419 6.0014 2.4311 0.9439 0.0116 55 sec

Figure 5: A progression of image resolutions, featuring the ground truth image, an original low-resolution (compressed) training image and reconstructed 
images produced by models trained with 8, 16, 32, 64 and 128 bands respectively.  
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number of pixels;   and   are the 𝐿2 norms of the reconstructed and 
ground truth vectors, respectively. 

Structural Similarity Index Measure loss (SSIM): Preserves 
structural integrity in reconstructed hyperspectral images; provides 
a perceptually relevant measure of image quality. This metric has 
been explained in the previous section. 

In the subsequent section, we will delve into the tuning process for 
the hyper parameters (α, β, γ, δ) of the new loss function, ensuring 
optimal performance and adaptability across diverse hyperspectral 
image super-resolution scenarios. These hyper parameters govern 
the relative weightage and importance of each loss term in the 
overall loss function containing 4 distinct terms. 

Hyper parameter tuning 

In our exhaustive exploration of hyper parameter tuning for the 
SSPSR model, we observed intricate dynamics between the loss 
function weights (α, β, γ, δ) and the overall model performance. 
The results in Table 3, shed light on the delicate balance required to 
prevent overfitting and model divergence while achieving optimal 
hyperspectral image super-resolution. 

For the optimization process, we focused on the hyper parameter 
alpha (α), which scales the L1 loss, also known as fidelity loss, 
in the model’s loss function. By adjusting alpha, we were able 
to control the importance of pixel-wise accuracy in the model’s 
training objective. A higher alpha value placed greater emphasis 
on minimizing these differences, thereby prioritizing fidelity in 
the super-resolution process. However, we observed that as alpha 
was reduced beyond a certain threshold, specifically below 0.1, 
the model began to struggle with generalization, leading to an 
overfitting issue. Overfitting was particularly noticeable when the 
fidelity loss was weighted too heavily (α>1), causing a neglect of 
other critical aspects such as image smoothness and spectral fidelity, 
which ultimately diminished the model’s performance on the test 
data. 

Conversely, the total variation loss hyper parameter (β), responsible 
for promoting spatial and spectral smoothness, demonstrated 
a similar sensitivity. Lower values (β<0.001) compromised the 
model’s ability to reduce noise and preserve image details, negatively 
impacting performance metrics. However, overly emphasizing 
smoothness with higher β (β>1) values led to model divergence, as 
the optimization process favoured overly simplistic reconstructions, 
lacking sufficient detail and fidelity. 

The SAM loss (γ) and SSIM loss (δ) played pivotal roles in preserving 
spectral and structural features. We found that lower values of γ 
and δ (γ, δ<0.01) resulted in diminished spectral similarity and 
structural integrity, leading to suboptimal super resolution. On 
the other hand, excessively high values (γ, δ>1) caused divergence, 
as the model struggled to strike a balance between accuracy and 
smoothness. 

Notably, the best-performing set of hyper parameters (α=0.1, 
β=0.001, γ=0.01, δ=0.01) struck a harmonious equilibrium. This 
combination allowed for pixel-wise accuracy, smoothness, spectral 
fidelity and structural integrity, contributing to the highest MPSNR 
and MSSIM values. (α=0.1, β=0.001, γ=0.01, δ=0.01) 

The metrics MPSNR, MSSIM, ERGAS, SAM, Cross Correlation 
and RMSE are utilized to evaluate image super-resolution quality. 

To our surprise, we found that models trained with only 8 bands 
produced results that were remarkably close to those trained with 
a more extensive set of bands. Notably, this approach considerably 
improved computation efficiency, reducing the time per epoch to 
just 55 sec. While there were slight variations in PSNR and SSIM 
metrics, the efficiency gains made this approach an appealing 
choice for hyperspectral image super-resolution objective.   

In conclusion, after assessing various approaches to optimize 
hyperspectral image super-resolution, we have chosen to finalize 
our focus on the 8-band model for refining loss functions and 
further hyper parameter tuning. The first approach validated 
our method, aligning our results with paper results (Table 1). 
However, the second and third approaches, emphasizing spectral 
prioritization and high PSNR bands, highlighted challenges in 
balancing computational efficiency and image quality with limited 
data. The last approach demonstrated the efficiency of the 8-band 
model, producing outcomes closely comparable to models with 
more bands. Despite slight variations in metrics, the 8-band model 
significantly reduced computation time to 55 sec/epoch, making 
it an agreeable choice. Our decision of 8-band model reflects a 
strategic compromise between computational efficiency and high-
quality super resolution, aligning with our project’s goal of reducing 
processing time while maintaining satisfactory performance.

Loss function 

The original SSPSR deep-learning model utilizes a dual-component 
loss function (L1+TV) for hyperspectral image super-resolution. 
However, a thorough assessment of the SSPSR model outcomes 
indicates the need for refinement of the loss function to improve 
fidelity and perceptual quality. To address these limitations, a new 
loss function   was incorporated. The integration of SAM and SSIM 
in the new loss function established a multifaceted optimization 
approach, effectively balancing pixel accuracy, spatial smoothness, 
spectral fidelity and perceptual quality. 

Fidelity loss (L1): Measures absolute differences between predicted 
and actual pixel values, ensuring precise reconstruction while being 
strong to outliers.

{ }
{ 1} | |
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i i iy gt

L y gt
N
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Where y   is reconstructed and gt  is ground truth vectors; N is 
number of pixels.

Total Variation loss (TV): Promotes spatial and spectral smoothness, 
minimizing noise while preserving image details.
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Where y  is reconstructed;  gt  is ground truth pixel vectors at  
locations in the x and y directions

Spectral Angle Mapper loss (SAM): Ensures spectral similarity for 
material identification and classification; provides a scale-invariant 
angle measurement. SAM was described in the previous section. 
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higher predictive accuracy. Together, these indices provide a 
comprehensive evaluation of the spatial and spectral quality of the 
super-resolved images. 

The results below in Table 3, underline the nuanced interaction 
of hyper parameters in achieving optimal performance and the 
findings from this tuning process provide valuable insights into 
crafting a well-balanced SSPSR model for hyperspectral image 
super-resolution; with the best combination highlighted.

MPSNR and MSSIM measure signal quality and structural 
similarity, respectively, with higher values indicating better fidelity 
to the original image. ERGAS assesses the relative error and lower 
values represent a more accurate reconstruction. SAM compares 
the angle between spectral data vectors, with smaller angles 
suggesting higher spectral accuracy. Cross Correlation examines 
the linear relationship between the predicted and reference images, 
where higher values mean better correlation. RMSE calculates the 
standard deviation of prediction errors, with lower values denoting 

Table 3: Hyper parameter tuning of loss function weights for 8-band hyperspectral image. Best performance is at the top of the list.  

Alpha (α) Beta (β) Gamma (γ) Delta (δ) MPSNR MSSIM ERGAS SAM Cross correlation RMSE

1 1 0 0 40.4 0.941 4.99 2.35 0.957 0.011

1 1 1 1 39.8 0.932 7.37 2.71 0.92 0.0129

1 1 2 2 38.6 0.922 9.59 5.77 0.908 0.0178

1 0.1 0.1 0.1 40.6 0.942 6.88 2.52 0.931 0.0117

1 1 0.01 0.01 40.5 0.941 6.96 2.6 0.929 0.0119

1 0.1 0.01 0.01 40.8 0.944 6.82 2.47 0.932 0.0115

1 0.1 0.05 0.05 40.7 0.942 6.85 2.54 0.931 0.0117

1 0.1 0.01 0.001 40.7 0.943 6.84 2.53 0.931 0.0116

1 0.1 0.001 0.01 40.5 0.941 6.91 2.6 0.93 0.0119

1 0.1 0.001 0.001 40.7 0.943 6.86 2.56 0.931 0.117

1 0.1 0.00001 0.00001 40.3 0.942 4.78 2.42 0.924 0.116

1 1 0.01 0.01 40.5 0.941 6.96 2.6 0.929 0.0118

1 2 0.01 0.01 38.6 0.931 9.39 5.57 0.918 0.0166

1 3 0.01 0.01 37.4 0.916 11.9 7.43 0.902 0.0205

2 1 0.01 0.01 36.5 0.911 10.6 4.74 0.903 0.0197

1 0.01 0.01 0.01 40.7 0.944 6.83 2.49 0.931 0.0116

1 0.001 0.01 0.01 40.7 0.943 6.83 2.48 0.931 0.0115

0.1 0.001 0.01 0.01 40.7 0.949 6.81 2.48 0.931 0.0115

0.001 0.001 0.01 0.01 40.2 0.937 7.08 2.51 0.925 0.0124

0.0001 0.0001 0.01 0.01 38.4 0.923 8.39 2.52 0.907 0.0149
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the spectral data’s complexity, while varying the filters helps 
optimize the model’s ability to capture detailed spectral and 
spatial information. Specifically, we experimented with different 
configurations of blocks and filters to evaluate their effects on the 
model’s performance. The results presented in Table 4, illustrate 
the performance of the modified architectures compared to the 
baseline, considering both Scale=4 and Scale=8.  

In summary, the exploration of refined architectures offers valuable 
insights into the intricate interplay of model parameters and their 
ramifications on hyperspectral image super-resolution. In Scale=4 
and Scale=8 super-resolution experiments, performance improved 
with an increase in blocks, peaking at 3 blocks, with 256 features. 
However, fewer features, like 16 and more blocks like 7 resulted in 
performance decline across metrics. Optimal outcomes materialize 
with a configuration using three blocks, each housing 256 features. 
These findings emphasize the necessity for a customized approach in 
designing hyperspectral image super-resolution models, recognizing 
the distinct challenges presented by the high-dimensional nature of 
spectral data. 

Modification of architecture with tuned loss function 
weights 

In the pursuit of enhancing the capabilities of the SSPSR model, 
modifications were introduced to its architecture, specifically 
targeting the number of spatial-spectral blocks and filters. The 
objective was to strike a delicate balance between computational 
efficiency, model complexity and the preservation of spectral and 
spatial information intrinsic to hyperspectral data. The SSB serve 
to partition the spectral data into manageable segments, thereby 
facilitating the extraction of intricate spatial and spectral features. 
Filters, on the other hand, refer to the convolutional kernels used 
within these blocks to process the data. The augmentation of SSB 
branches, as described in the Model and Branch Architecture 
section, aimed to bolster the model’s proficiency in extracting these 
features, while variations in the number of filters were implemented 
to assess their impact on information flow within the network.  

In this experiment, the hyper parameters tuned included the 
number of SSB branches and the number of filters per block. 
Adjusting the number of blocks allows for better handling of 

Table 4: Hyper parameter tuning of model architecture for 8-band model in hyperspectral image super-resolution for scale 4 and scale 8 super-resolution 
of the hyperspectral images in the Chikusei Dataset. Best performance is highlighted.

Scale=4

Scale Parameters MPSNR MSSIM ERGAS SAM Cross correlation RMSE

4 SSPSR 40.4 0.941 4.98 2.352 0.956 0.0114

4 1 block, 256 features 40.5 0.938 6.96 2.59 0.928 0.012

4 3 blocks, 16 features 39.3 0.921 7.71 3.094 0.911 0.0137

4 3 blocks, 64 features 40.1 0.934 7.15 2.703 0.923 0.0124

4 3 blocks, 256 features 40.8 0.943 6.81 2.48 0.931 0.0115

4 3 blocks, 512 features 40.3 0.936 7.19 2.679 0.927 0.012

4 5 blocks, 256 features 40.8 0.943 6.81 2.495 0.931 0.0115

4 7 blocks, 256 features 40.7 0.942 6.9 2.534 0.931 0.0116

Scale=8

8 SSPSR 35.8 0.862 4.31 4.01 0.877 0.019

8 1 block, 256 features 36.7 0.857 9.64 4.17 0.849 0.019

8 3 blocks, 16 features 35.9 0.837 10.3 4.67 0.825 0.021

8 3 blocks, 64 features 36.5 0.854 9.78 4.26 0.845 0.019

8 3 blocks, 256 features 36.8 0.862 9.58 4.06 0.853 0.019

8 3 blocks, 512 features 36.6 0.856 9.75 4.28 0.848 0.019

8 5 blocks, 256 features 36.8 0.863 9.53 4.06 0.853 0.019

8 7 blocks, 256 features 36.8 0.863 9.59 4.08 0.852 0.019
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optimized) is needed to capture and process more complex features 
and patterns in the data. Despite these differences, global branch 
layers maintain consistent parameters across both scales, ensuring 
the stability of shared model features and efficient parameter 
sharing. (number of filters or neurons).

A quantitative assessment of each model’s performance is 
summarized in Table 5. While the increased parameter space for 
Scale=8 allowed for a higher resolution, it resulted in higher errors, 
as indicated by elevated RMSE and SAM values. The lower MPSNR 
and MSSIM values also suggest a potential sacrifice in terms of 
image quality. In contrast, the Scale=4 model with lower resolution 
exhibited better quantitative metrics, indicating lower errors and 
higher image quality. The results highlight the inherent trade-off 
between higher resolution scaling and model accuracy (number of 
filters or neurons) (Figures 6 and 7).

Model architecture and performance comparison for 
scale=4 and scale=8 

This section undertakes a comprehensive examination of the 
architectural differences between two hyperspectral image super-
resolution models, optimized for Scale=4 and Scale=8. The 
comparison between Scale=4 and Scale=8 is made in Table 5. 
These models were configured with a tuned loss function and the 
optimal setup obtained (in the above results), involved 3 blocks 
and 256 features. The differences in specific layers and parameters 
significantly influence their ability to process hyperspectral data at 
different upscaling factors. Notable differences include the shapes of 
layer parameters within the up sample, trunk and branch structures 
of SSB (described in Branch and Model Architecture section). 
This is because, for Scale=8, a larger parameter space (range of 
possible values for the hyper parameters of the SSPSR model being 

Table 5: Hyperspectral image super-resolution performance metrics for different scales.

Scale MPSNR MSSIM ERGAS SAM Cross correlation RMSE

4 40.4 0.941 4.99 2.35 0.956 0.011

8 35.8 0.862 4.31 4.01 0.877 0.019

Figure 6: A) Ground-truth high-resolution image; B) Low-resolution version of the ground-truth image; C) Training image and reconstructed image 
produced by the deep-learning model trained with 8 bands to achieve super resolution at a scale of 4 on the Cave dataset using Chikusei Model.

Figure 7: A) Ground-truth high-resolution image; B) Low-resolution version of the ground-truth image; C) Training image and reconstructed image 
produced by the deep-learning model trained with 8 bands to achieve super resolution at a scale of 8 on the Cave dataset using Fine-tuned model.

A B C

A B C
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determine whether a model trained on airborne agricultural 
and urban scenes could effectively classify objects in a different 
hyperspectral dataset. Furthermore, we explored the potential of 
fine-tuning on a new dataset (Cave), to ascertain if the fine-tuning 
could improve the super-resolution performance.  

The Chikusei model, Cave model and fine-tuned Chikusei model 
results are listed in Table 6. Cave model refers to training from 
scratch using Cave data. Chikusei model refers to the model trained 
on the Chikusei dataset. Fine-tuned Chikusei model refers to the 
model trained on the Chikusei dataset and then fine-tuned on 
the Cave dataset. The results use MPSNR and MSSIM for model 
comparisons as they are widely recognized metrics for assessing 
image quality and reconstruction accuracy. The results demonstrate 
that fine-tuning significantly improves the model’s performance 
on the Cave dataset compared to training from scratch. The fine-
tuned model outperforms the original model, suggesting that the 
additional training data provided by the Cave dataset allowed 
the model to learn more effectively. This finding highlights the 
potential of transfer learning for hyperspectral image classification 
tasks (Figures 8-10).

Data pre-processing (CAVE) 

The Cave dataset is a multispectral image dataset that comprises 
32 scenes of everyday objects with spatial dimensions of 512 x 512 
and 31 spectral bands ranging from 400 nm to 700 nm at 10 nm 
intervals. For training, 20 hyperspectral images were randomly 
selected, with 2 reserved for evaluation. Patches of 64 x 64 pixels 
(32 pixels’ overlap) were used for up sampling factor d=4. For 
up sampling factor of d=8, patches of 128 x 128 pixels (with 64 
pixels’ overlap) were used. Bicubic down-sampling generated 
low-resolution hyperspectral images with factors of 4 or 8. The 
remaining 12 hyperspectral images were allocated for testing, 
treating the originals as ground truth. 

Fine tuning 

Our final Chikusei model (fine-tuned), is characterized by its 
trained weights, utilization of 8 spectral bands and architecture 
comprising 3 blocks with 256 features each. This model was 
trained on the Chikusei dataset to enhance its performance and 
accuracy in processing high-dimensional spectral data. To assess 
the generalizability of the model, we evaluated its deployment 
performance on the Cave dataset. This evaluation aimed to 

Table 6: Fine tuning results for the Cave dataset.

Scale Dataset Model name MPSNR MSSIM

4 Chikusei Chikusei model 40.7 0.943

8 Chikusei Chikusei model 36.8 0.862

4 Cave Chikusei model 29.4 0.867

4 Cave Fine-tuned model 30.5 0.913

4 Cave Cave model 29.8 0.897

8 Cave Chikusei model 28.5 0.793

8 Cave Finer Tuned Chikusei model 29.9 0.864

8 Cave Cave model 29.5 0.855

Figure 8: A) Ground-truth high-resolution image; B) Low-resolution version of the ground-truth image; C) Training image and reconstructed image 
produced by the deep-learning model trained with 8 bands to achieve super resolution at a scale of 8 on the Cave dataset using Chikusei model.

A B C
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by presenting a comprehensive framework for model optimization, 
evaluation and generalization. These findings are poised to advance 
the use of deep learning in hyperspectral image processing and pave 
the way for future innovations in remote sensing and land cover 
mapping applications.
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