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Introduction
Fusarium oxysporum f. sp. lycopersici (Sacc.) W.C. Snyder & 

H.N. Hans is one of the most important pathogens infecting tomato 
worldwide [1,2]. Fusarium oxysporum f. sp. lycopersici (FOL) is a 
widespread pathogen and wilt severity depends on regional cultural 
practices [3]. This pathogen is responsible for important crop losses 
both in open field and protected crops [1,4,5]. 

Use of resistant cultivars, crop rotation and solarization have been 
widely used for the control of soilborne fungal diseases but they did 
not give satisfactory results [6]. Moreover, due to the development of 
resistance mutations and due to the emergence of new physiological 
races, many of synthetic chemicals fungicides and resistant cultivars 
are gradually becoming ineffective in controlling the disease [7].

The control of Fusarium wilt of tomato is so difficult due to the 
endogenous progress of the pathogen via the vascular tissues [8] and to 
the limited range of effective fungicides [9]. Besides, the long survival 
of chlamydospores in the soil, for extended periods without a host, 
limited the suppressive effects of crop rotation [1,8]. Added to these 
constraints, the resistance of tomato cultivars to races 1 and 2 of FOL, 
which has long been adopted as an effective and safe alternative to 
human and the environment, was overcome by the emergence of the 
race 3 of the pathogen in several countries [5,10]. Research studies have 
been more focused on sources of genetic resistance to this emergent 
race and on alternative practices for achieving an effective control of 
this pathogen [10].

Therefore, there is an increasing interest in the development of 
control alternatives.

Biological control was considered as an environmentally safe 
alternative. Given the endogenous progress of the pathogen within 
plant tissues, the use of endophytic microorganisms could better limit 
the disease [11-13].

Endophytic bacteria, used as whole cells [14,15], cell-free culture 
filtrates and/or organic extracts [16,17] gave satisfactory results in 
controlling some plant pathogenic fungi. These biocontrol agents 
(BCAs) have been isolated from a variety of plants because they 
ubiquitously inhabit mostly wild species such as Prosopis strombulifera 
[18], Huperzia serrata [19], Suaeda maritima, Carex scabrifolia, and 
Elymus mollis [20]. Recently, a wild Solanaceae, Nicotiana glauca, was 
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Abstract
Six isolates of culturable bacteria, isolated from stems of wild Solanaceae species (Datura metel, Solanum 

nigrum, S. elaeagnifolium, and Nicotiana glauca), were assessed for their antifungal activity against F. oxysporum f. 
sp. lycopersici (FOL), the causal agent of the tomato Fusarium wilt. Blast analysis of 16S rDNA sequencing genes 
homology showed that the isolates belonged to the genus Bacillus (Bacillus cereus str. S42, B. tequilensis str. 
SV39, B. subtilis str. SV41, B. methylotrophicus str. SV44, B. amyloliquefaciens subsp. plantarum str. SV65, and B. 
mojavensis str. SV104). The mycelium growth of FOL was significantly reduced by 36 to 46% by diffusible metabolites 
and by 18 to 21% by volatile compounds. Cell-free cultures were found to be mostly active when issued from 4 days-
old cultures where FOL growth inhibition significantly varied from 31.1 to 59.5%. Active metabolites present in the 
cell-free cultures were extracted with n-butanol and chloroform. Both organic extracts exhibited antifungal potential 
towards FOL higher than that induced by the two commercial products i.e. Bavistin® (50%, chemical fungicide) 
and Bactospeine® (16000UI/mg, biopesticide). This study clearly indicates that endophytic Bacillus spp. from wild 
Solanaceae species can be used as natural sources of bioactive metabolites towards FOL. Wild Solanaceae are 
frequent in Tunisia and were not explored as potent sources of candidate antagonistic bacteria. In view of the 
endogenous progress of the pathogen via the vascular tissues, the use of endophytic bacteria can suppress tomato 
Fusarium wilt disease.
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used as natural source of beneficial leaf-associated bacteria, especially 
Bacillus spp. [21]. 

Previous studies used endophytic bacteria as BCAs against plant 
pathogenic fungi such as F. oxysporum f. sp. cubense, Colletotrichum 
gloeosporioides, Alternaria alternata, Botrytis cinerea, B. fabae, Pythium 
ultimum, Rhizoctonia solani, Verticillium dahliae, Sclerotium rolfsii, 
Sclerotinia sclerotiorum and Penicillium digitatum [15,22,23]. 

Therefore, searching for new bioactive metabolites from endophytic 
bacteria is a new and safe way of controlling plant diseases [16,24]. 
These metabolites from Bacillus species include lipopeptide antibiotics 
[12,25], cell-degrading enzymes [14,26] and other substances belonging 
to esters, ketones, alcohols, aldhehydes and phthalic acids families [27]. 

In this study, endophytic bacteria isolated from healthy stems of 
wild Solanaceae plants (N. glauca, D. metel, S. elaeagnifolium and S. 
nigrum) were identified and tested in vitro for their antifungal activity 
against FOL. Their cell-free culture filtrates and organic extracts were 
also evaluated for their suppressive effects towards FOL. 

Materials and Methods
Pathogen isolation and culture

The isolate of Fusarium oxysporum f. sp. lycopersici (FOL) used in 
this study was originally isolated from tomato plants exhibiting typical 
symptoms of Fusarium wilt. Stem sections (3-5 cm in length) showing 
vascular discoloration were rinsed thoroughly with tap water. After 
surface-disinfesting in sodium hypochlorite solution (5%) for 2 min, 
the stem pieces (1 cm in length) were rinsed three times with sterile-
distilled water (SDW) and dried on sterile filter paper. They were plated 
onto Potato Dextrose Agar (PDA) medium amended with streptomycin 
sulfate (300 mg/L) (w/v). Fungal cultures were incubated for one week 
at 25°C. The fungal isolate was cleaned up by subculturing successively 
and selected by single-spore isolation. The isolate of FOL selected was 
re-isolated from artificially inoculated tomato cv. Rio Grande plants 
fulfilling Koch's postulates and incubated at 25°C for 7 days before use. 

Plant sampling and endophytic bacteria isolation and culture

Healthy wild Solanaceae species (N. glauca, D. metel, S. nigrum 
and S. elaeagnifolium) growing spontaneously nearby tomato fields 
with a history of severe soilborne diseases, were used for isolation of 
endophytic bacteria. Stems were sampled, at the fruiting stage, on April 
and November 2013 from different ecological sites of the Tunisian 
Centre-East (Chott-Mariem, Bekalta, M'saken). Stems were washed 
with tap water and processed for endophytic bacteria isolation as 
follows.

Five stem Samples (5 cm in length) were individually disinfected 
by soaking into 70% ethanol for 1 min, immersion in 1% sodium 
hypochlorite solution for 10 min then in 70% ethanol for 30 s. They were 
rinsed three times in SDW and air-dried on sterile filter papers. After 
check for the efficiency of the surface sterilization procedure according 
to McInroy and Kloepper [28], two methods of endophytic bacteria 
isolation were used. The first one consisted of transferring aseptically 
twenty pieces (1 cm in length) of sterile stems onto Nutrient Agar 
(NA) medium. This method was used to isolate endophytic bacteria 
from surface-sterilized stems. In the second method, three stem pieces 
were pierced with a sterile-nipper and the liquid exuding from the 
internal tissues was streaked on NA. This method was used to isolate 
endophytic bacteria from internal tissues of stems (Table 1). Before be 
used in the different bioassays, stored cultures in NA supplemented 

with 40% glycerol at -20°C were subcultured on NA and incubated at 
25°C for 48 h.

Characterization and hypersensivity test of endophytic 
bacterial isolates

Colonies of bacterial isolates were observed macroscopically and 
characterized based on their size, shape, margin, elevation, texture, 
opacity, consistency and pigmentation on NA. Morphology, mobility 
and Gram's staining of culturable isolates were performed using light 
microscopy [29]. Isolates were also characterized using conventional 
biochemical tests according to Schaad et al. [30] protocols. 

To check the non-pathogenicity of the isolates tested, 10 µl of 
bacterial suspension (~108 cells/mL) was inoculated to tobacco leaves 
using a syringe. Uninoculated control leaves were treated with SDW 
only (negative control). Tobacco plants (inoculated and uninoculated) 
were incubated at room temperature for 24 h. Isolates inciting the 
development of chlorotic and/or necrotic zone on leaf areas were 
considered as pathogenic and thus, excluded from their eventual 
screening as BCAs [31].

Identification of endophytic bacterial isolates by 16S rDNA 
sequencing gene

Molecular identification of the bacterial isolates was performed after 
extraction of the genomic DNA using the method described by van Soolingen 
et al. [32] for Gram+ bacteria. The 16S rDNA was amplified with the universal 
eubacterial primers 27f (5'-AGAGTTTGATC(A/C)TGGCTCAG-3') and 
1492r (5'-TACGG(C/T)TACCTTGTTACGACTT-3') [4]. Amplifications 
were carried out in Thermal Cycler (CS Cleaver, Scientific Ltd., TC 32/80). 
The cycling conditions were as follows: one denaturing cycle at 94°C for 
4 min, followed by 40 denaturing cycles at 94°C for 30 s, annealing at 
45°C for 30 s, and polymerization at 72°C for 45 s. The amplification was 
terminated with an extension cycle at 72°C for 7 min. The homology of 
the 16S rDNA sequence of a given isolate was performed using BLAST 
program from Genbank database (http: www.ncbi.nlm.gov/BLAST/). The 
six culturable endophytic bacteria (namely S42, SV39, SV41, SV44, SV65, 
and SV104) sequences were submitted to GenBank and were assigned the 
following accession numbers KP993206 KR818070, KR818071, KR818072, 
KR818073 and KR818089, respectively.

In vitro antifungal activity test of endophytic Bacillus spp. 
isolates 

Dual culture method: The antagonistic potential of Bacillus spp. 
isolates against FOL was evaluated using the dual culture method 
on PDA. This method consists to streak bacterial isolates across the 
center of the Petri plate (9 cm in diameter) and perpendicularly to the 

Isolate Plant Source of bacterial 
isolation Locality GPS locality

S42 Nicotiana 
glauca Stems Bekalta N35°37'14.327''; 

E10°59'41.393''

SV39 Datura metel Internal tissues of 
stems Chott-Mariem N35°56'20.451''; 

E10°33'32.028''

SV41 D. metel Internal tissues of 
stems Chott-Mariem N35°56'20.451''; 

E10°33'32.028''

SV44 D. metel Internal tissues of 
stems Chott-Mariem N35°56'20.451''; 

E10°33'32.028''

SV65 Solanum 
nigrum 

Internal tissues of 
stems Chott-Mariem N35°56'20.451''; 

E10°33'32.028''

SV104 S. 
elaeagnifolium 

Internal tissues of 
stems M’saken N35°43'32.073''; 

E10°34'48.90''

Table 1: Endophytic bacterial isolates from wild Solanaceae plants and their 
isolation sources.

http://www.ncbi.nlm.gov/BLAST/
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first streak. Four agar-plugs (6 mm in diameter), removed from the 
growing edge of a 7 day-old culture of FOL, were placed at each side of 
the tested bacterial isolate [33]. The control plates were streaked with 
SDW only. Each individual treatment was repeated four times. After 4 
days of incubation at 25°C, the colony diameter of the pathogen was 
measured. The mycelial growth inhibition rate of the pathogen (IR) was 
calculated using the formula of Dennis and Webster [34] as follows: IR 
℅=[(C2-C1) / C2] × 100 where C2: Mean diameter (two perpendicular 
measurements) of the control colony and C1: Mean pathogen colony 
diameter in the presence of the antagonist. 

Sealed plate method: This method of confrontation permits the 
detection of volatile metabolites produced by the bacterial isolate tested 
against FOL. Bacillus spp. were streaked onto NA in the bottom of Petri 
dish plate. An agar plug (6 mm in diameter), containing mycelium taken 
from 7-day-old pathogen culture, was placed in the center of a second 
Petri dish plate containing PDA amended with streptomycin sulfate 
(300 mg/L) (w/v). The plate containing the pathogen mycelial plug 
was inverted over the bacterial plate and these two dishes were sealed 
with Parafilm in order to avoid evaporation of volatile compounds. In 
the control culture, the Petri dish below contained only NA without 
streaking bacteria [35]. The plates were incubated at 25°C for 7 days. 
Each individual treatment was repeated thrice. The mycelial growth 
inhibition rate of the pathogen was calculated as previously described.

In vitro antifungal activity test of cell-free culture filtrates of 
endophytic Bacillus spp. isolates 

To determine the relationship between growth and production of 
antifungal metabolites, each Bacillus spp. isolate was cultured in Luria-
Bertani broth (LB) medium at 28 ± 2°C for 1, 2, 3, 4 and 7 days and 
under continuous shaking at 150 rpm. Culture samples of 2 ml each 
were taken at various time points and examined for their antifungal 
activity. Liquid cultures obtained were centrifuged for 10 min at 10,000 
rpm. The centrifugation was repeated three times. Supernatant fluids 
were sterilized by filtration through a 0.22 µm pore size filter. The 
control was the LB filtrate. The filtrates were added at the concentration 
of 10% (v/v) aseptically to Petri dishes containing PDA amended 
with streptomycin sulfate (300 mg/L) (w/v). After solidification of 
the mixture, three agar plugs of the pathogen (6 mm in diameter) 
were plated equidistantly in each Petri plate. Fungal cultures were 
incubated at 25°C for 4 days [36]. The colony diameter of the pathogen 
(treated and untreated control) was measured and the mycelial growth 
inhibition rate of the pathogen was calculated as described above. 

In vitro antifungal activity test of organic extracts from 
endophytic Bacillus spp. isolates 

To extract the antifungal metabolites produced by Bacillus spp., 
two types of extraction were carried out: one with chloroform [37] 
and a second with n-butanol [38]. Sixty milliliters (60 mL) of cell-
free culture of each isolate, prepared as described above, were placed 
in a separating funnel. Then, 60 mL of the solvent (chloroform or 
n-butanol) were added carefully. The funnel was reversed several times 
by degassing from time to time. The mixture was allowed to settle for 
few minutes with the cap open. The organic phase (the lower phase 
for extraction with chloroform and the upper one with n-butanol) 
were collected. The aqueous phase was replaced in the funnel and the 
extraction was repeated two other times. The solvent was evaporated in 
a rotary evaporator at 35°C for chloroform and 75°C for n-butanol with 
a slight rotation at 150 rpm. 

The obtained organic extracts were assessed for their biological 

activity against FOL. Each extract was suspended in ethanol (1:1) (mg/
mL) (w/v) and added to Petri dishes containing 10 ml of PDA amended 
with streptomycin sulfate (300 mg/L) (w/v) at two concentrations 2.5 
and 5% (v/v). The control cultures were treated with ethanol only used 
at 2.5 and 5% (v/v). Antifungal activity of the metabolites produced 
by each isolate was compared to two commercial products i.e. 
Bavistin® (50%, chemical fungicide) and Bactospeine® (16000 UI/mg, 
biopesticide). Ethanol was used as negative control. After solidification 
of the mixture, a plug (6 mm in diameter) of FOL, obtained from PDA 
plate grown at 25°C for 7 days, was placed at the center of each plate. 
Fungal cultures were incubated for 7 days at 25°C. The colony diameter 
of the treated and control pathogen were measured and the mycelial 
growth inhibition rate of the pathogen was calculated as described 
above.

Statistical analysis

Data were subjected to a one-way analysis of variance using 
Statistical Package for the Social Sciences (SPSS) software for Windows 
version 16.0. For all the in vitro bioessays, each treatment was repeated 
three or four times. Data of the antifungal activity of whole cells and 
cell-free cultures were analyzed according to a completely randomized 
design. The in vitro essay of organic extracts was analyzed according to 
a completely randomized factorial model with two factors (treatments 
and concentrations). Means were separated using Student-Newman-
Keuls test at P ≤ 0.05.

Results 
Characterization and hypersensivity test of endophytic 
bacterial isolates

All bacterial isolates were found to be Gram positive strains. The 
colony morphology of the six isolates showed an irregular form, rough 
surface and cream color on NA. These isolates were opaque. The 
isolate S42 showed flat elevation. SV39, SV41, SV44, SV65 and SV104 
showed a humped elevation. A macroscopic variability was noted 
between the six isolates in terms of margin which was undulate (S42 
and SV41), curly (SV39 and SV44), lobed (SV65) or irregular (SV104). 
Microscopically, the six isolates were rod-shaped and motile bacteria. 
They were able to produce catalase and indole by tryptophanase. SV39, 
SV41, SV44, SV65 and SV104 used mannitol as a carbon source. S42, 
SV41, SV44 and SV104 used also the simmons citrate as a carbon 
source. Except SV39, all isolates were able to synthesize the nitrate 
reductase. Only the S42 was able to produce the lecithinase. The six 
isolates were oxidative strains. They cannot ferment glucose through 
the mixed acid (MR) but by using the glycol butylene path (PV+). They 
cannot produce hydrogen sulfide, lysine decarboxylase and pyocyanin 
on King A medium. Only SV39 can produce urease. SV41 and SV44 
can produce the tryptophane desaminase (Table 2). 

The hypersensivity test onto tobacco plants revealed, after 24 
h of incubation, that all the inoculated leaves remained healthy. No 
hypersensitive reaction (HR) (chlorotic or necrotic zone) was detected 
on the leaf areas as compared to the inoculated control leaves. Thus, all 
the isolates tested were non pathogenic and were selected for further 
molecular identification and screening of their antifungal activity 
against FOL. 

Molecular identification of the bacterial isolates

Blast analysis of sequenced 16S rDNA gene homology revealed 
that the six endophytic isolates tested belonged to the genus of Bacillus 
with 100% of similarity to B. cereus with strain S42 (KP993206) and 
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99% of similarity to B. tequilensis, B. subtilis, B. methylotrophicus, B. 
amyloliquefaciens subsp. plantarum and B. mojavensis with isolates 
SV39 (KR818070), SV41 (KR818071), SV44 (KR818072), SV65 
(KR818073) and SV104 (KR818089), respectively (Table 3). 

Assessment of the in vitro antifungal activity of Bacillus spp. 
using whole cell suspension

Tested using the dual culture method in PDA, all Bacillus spp. 
isolates showed a significant inhibitory effect (at P ≤ 0.05) against FOL, 
after 4 days of incubation at 25°C, compared to the untreated control. 
The reduction of FOL mycelium growth varied from 36.7 to 46.5%. 
The isolate SV65 of B. amyloliquefaciens subsp. plantarum inhibited 
FOL growth by 46.5% followed by 44.4, 44.1, 42.4, 38.7, and 36.7% 
recorded using the isolates SV41 of B. subtilis, S42 of B. cereus, SV44 of 
B. methylotrophicus (Figure 1a), SV104 of B. mojavensis, and SV39 of 
B. tequilensis, respectively (Table 4). This antifungal potential against of 
FOL may be attributed to diffusible metabolites produced by Bacillus 
spp. 

Results shown in Table 4 revealed also that Bacillus spp. tested, 
using the sealed plate method, also exhibited a significant inhibitory 
effect (at P ≤ 0.05) against FOL. Pathogen growth reduction varied 
significantly from 18.2 to 21.6% as compared to the untreated control. 
The antifungal effect induced by SV44 of B. methylotrophicus (Figure 

1b) was expressed by 21.6% decrease in pathogen growth, as compared 
to the untreated control, followed by SV65 of B. amyloliquefaciens 
subsp. plantarum (20.3%), SV104 of B. mojavensis (20.8%), S42 of B. 
cereus (19.2%), SV39 of B. tequilensis and SV41 of B. subtilis (18.2%). 
This revealed the ability of endophytic Bacillus spp. to inhibit pathogen 
at distance through antifungal volatile compounds.

Assessment of the in vitro antifungal activity of Bacillus spp. 
using cell-free cultures 

Analysis of variance revealed a significant (at P ≤ 0.05) variation 
in the diameter of FOL colonies treated with the cell-free culture of 
Bacillus spp. tested at 10% (v/v) issued from 2-, 3-, 4-, and 7- day-
old culture in LB medium at 28 ± 2°C. However, all cell-free culture 

Figure 1: Antifungal activity of endophytic Bacillus spp. against Fusarium 
oxysporum f. sp. lycopersici attributed to diffusible (a) and volatile (b) 
metabolites, cell-free filtrates from 2 to 4-day-old bacterial cultures (c) 
and organic extracts tested at two concentrations (d) as compared to 
controls. SV44: Whole cell suspension of Bacillus methylotrophicus str. 
SV44; FSV39: Cell-free culture from Bacillus tequilensis str. SV39; Ethanol: 
Negative control; F: Positive control (Bavistin®, chemical fungicide); Bio-F: 
Positive control (Bactospeine®, Bio-pesticide); ESV41: Chloroform extract 
from B. subtilis str. SV41.

Biochemical tests Bacterial isolates
S42 SV39 SV41 SV44 SV65 SV104

Catalase + + + + + +
Red of Methyl - - - - - -

Vosges-Proskauer + + + + + +
Mannitol - + + + + +

Lecithinase + - - - - -
Indole + + + + + +

Simmons Citrate + - + + - +
Urease - + - - - -

Tryptophane 
desaminase - - + + - -

Nitrate reducatase + - + + + +
Glucose + + + + + -
Lactose - - - - - +

Gaz + + + + + -
Hydrogen sulfide - - - - - -

King A - - - - - -

Table 2: Biochemical characterization of the six bacterial isolates from wild 
Solanaceae stems. +: Positive test, -: Negative test. S42: Bacterial isolate from 
Nicotiana glauca stems; SV39, SV41 and SV44: Bacterial isolates from internal 
tissues of stems of Datura metel; SV65: Bacterial isolate from internal tissues of 
stems of Solanum nigrum; SV104: Bacterial isolate from internal tissues of stems 
of S.elaeagnifolium.

Isolate Accession 
number Most related species Sequence homology 

(%)

S42 KP993206 265XY1, Bacillus cereus 100

SV39 KR818070 BD18-B03, Bacillus tequilensis 99

SV41 KR818071 264ZY7, Bacillus subtilis 99

SV44 KR818072 LK6, Bacillus methylotrophicus 99

SV65 KR818073
Hs8-12, Bacillus 

amyloliquefaciens subsp. 
plantarum

99

SV104 KR818089 ifo 15718, Bacillus mojavensis 99

Table 3: Identification of endophytic bacteria isolates by 16S rDNA sequencing 
genes.

Bacterial treatments

Colony diameter (cm) and 
growth inhibition of FOL (%)

Diffusible 
metabolites

Volatile 
metabolites

Untreated control 3.71 a (0)  6.42 a (0) 
Bacillus cereus str. S42 (KP993206) 2.07 b (44.1) 5.18 b (19.2)
Bacillus tequilensis str. SV39 (KR818070 2.35 b (36.7) 5.25 b (18.2)
Bacillus subtilis str. SV41 (KR818071) 2.06 b (44.4) 5.25 b (18.2)
Bacillus methylotrophicus str. SV44 
(KR818072) 2.14 b (42.4) 5.03 b (21.6)

Bacillus amyloliquefaciens subsp. plantarum 
str. SV65 (KR818073) 1.99 b (46.5) 5.12 b (20.3)

Bacillus mojavensis str. SV104 (KR818089) 2.27 b (38.3) 5.08 b (20.8)

Table 4: Mycelial growth inhibition of Fusarium oxysporum f. sp. lycopersici 
by diffusible and/or volatile metabolites produced by endophytic Bacillus spp. 
isolates, as compared to the controls, noted after 4 and 7 days of incubation at 
25°C, respectively. For each column, values followed by the same letter are not 
significantly different according to Student Newman Keuls test at P ≤ 0.05. Numbers 
in parenthesis indicate the percentage (in %) of the mycelial growth inhibition of 
Fusarium oxysporum f. sp. lycopersici as compared to the untreated control.
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filtrates issued from 1 day-old cultures did not decrease significantly 
(2 to 9.9%) pathogen growth. Cell-free cultures were found to be 
mostly effective when extracted from 4 days-old cultures where growth 
inhibition achieved varied from 31.1 to 59.5% as compared to 22.6-
45.6%, 15.2-39.8%, and 11.2-37.9% recorded at 3, 7, and 2 days of 
incubation, respectively. For example, the cell-free culture of SV39 of 
B. tequilensis, issued from 4 days-old cultures, inhibited the pathogen 
growth by 47.8% whereas 38.7, 38.5, 12.6, and 2% were recorded using 
filtrates extracted after 3, 7, 2 and 1 day (s) of incubation, respectively 
(Table 5 and Figure 1c). The highest reduction (37.9, 45.6, 59.5, and 
39.8%) of FOL mycelial growth was recorded using the filtrate of SV65 
of B. amyloliquefaciens subsp. plantarum from 2-, 3-, 4-, and 7-days-
old of cultures respectively, as compared to the controls (Table 5). 
Thus, the optimum incubation duration of Bacillus spp. cultures for 
the production of the most effective antifungal metabolites against FOL 
was found to be of about 3 to 4 days. 

Assessment of the in vitro antifungal activity of organic 
extracts from endophytic Bacillus spp. 

ANOVA analysis revealed a significant (at P ≤ 0.05) variation in the 

average diameter of FOL colonies depending on the organic extracts 
(chloroform and n-butanol extracts) tested and the concentrations 
used, and the existence of a significant interaction between both factors. 
Results shown in Figure 2 indicated that all organic extracts, used 1 
mg/mL (w/v), had inhibited FOL growth by 37 to 90% as compared 
to the ethanol controls. The decrease in FOL growth was higher with 
these organic extracts as compared to Bavistin® (31.3-39.5%) and 
Bactospeine® (40.9-43.2%) whatever the concentration used (Figures 
1d and 2).

All organic extracts of Bacillus spp. were found to be more active 
at the concentration of 5% than at 2.5% (v/v), except the chloroform 
extract of S42 of B. cereus. In fact, all the organic extracts from the 
antagonistic agents used at 5% (v/v) had significantly reduced, by 
57.4 to 90%, FOL growth compared to 37 to 72.4% recorded using 
2.5% (v/v) concentration. Chloroform extracts of isolates SV65 of B. 
amyloliquefaciens subsp. plantarum, SV41 of B. subtilis (Figure 1d), 
and SV44 of B. methylotrophicus decreased pathogen growth by 73.02, 
72.79, and 57.44%, respectively, when applied at 5% (v/v), compared 
to 43.4, 54.8 and 49.9% recorded at 2.5% (v/v) (Figure 2). In addition, 
n-butanol extracts of isolates SV104 of B. mojavensis, SV44 of B. 
methylotrophicus, and SV41 of B. subtilis, applied at 5%, inhibited the 
pathogen growth by 88.4, 88.6 and 83.2% compared to 37, 47.6 and 
48.7% noted with the concentration 2.5% (Figure 2).

The highest inhibition (90%) was achieved using the n-butanol 
extract from SV65 of B. amyloliquefaciens subsp. plantarum followed 
by 88.6, 88.3 and 83.2% obtained with n-butanol extracts from SV44 of 
B. methylotrophicus, SV104 of B. mojavensis, and SV41 of B. subtilis, 
respectively used at 5% (v/v) as compared to the ethanol control (Figure 
2). Tested at 2.5% (v/v), chloroform extracts from SV39 of B. tequilensis 
and S42 of B. cereus exhibited the highest antifungal potential towards 
FOL (72.4 and 71.7 %, respectively) (Figure 2). 

Discussion
Bacillus spp. are known for their diverse range of secondary 

metabolites including antibiotics, lytic enzymes and volatile organic 
compounds with antifungal, antibacterial, nematicidal, insecticidal 
and immunosuppressant activities [39-42]. While a wide range of 
biologically active compounds have been isolated from endophytic 

Treatment 
tested

Duration of bacterial culture incubation (days)
1 2 3 4 7

Control 3.42 a 4.03 a 3.62 a 3.7 a 3.87 a
FS42 3.18 a (2) 3.58 a (11.2) 2.8 b (22.6) 2.55 b (31.1) 3.28 ab (15.2)

FSV39 3.35 a (2) 3.52 a (12.6) 2.22 b (38.7) 1.93 c (47.8) 2.38 b (38.5)
FSV41 3.13 a (8.5) 3.38 a (16.1) 2.37 b (34.5) 2.03 c (45.1) 2.48 b (35.9)
FSV44 3.18 a (7) 3.47 a (13.9) 2.53 b (30.1) 1.88 c (49.2) 3.03 b (21.7)
FSV65 3.18 a (7) 2.5 b (37.9) 1.97 b (45.6) 1.50 c (59.5) 2.33 b (39.8)
FSV104 3.08 a (9.9) 3.48 a (13.6) 2.02 b (44.2) 2.02 c (45.4) 2.47 b (36.2)

Table 5: Effect of cell-free cultures from endophytic Bacillus spp., prepared at 
different durations of incubation, against Fusarium oxysporum f. sp. lycopersici 
mycelial growth noted after 4 days of incubation at 25°C as compared to the 
untreated controls. FS42, FSV39, FSV41, FSV44, FSV65 and FSV104: Cell-
free culture filtrates of isolates S42 of B. cereus, SV39 of B. tequilensis, SV41 
of B. subtilis, SV44 of B. methylotrophicus, SV65 of B. amyloliquefaciens subsp. 
plantarum and SV104 of B. mojavensis, respectively. Control: Luria-Bertani broth 
medium filtrate. For each incubation duration, values followed by the same letter 
are not significantly different according to Student Newman Keuls test at P ≤ 0.05. 
Numbers in parenthesis indicate the percentage (in %) of the mycelial growth 
inhibition of Fusarium oxysporum f. sp. lycopersici as compared to the untreated 
control.
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Figure 2: Effect of chloroform and n-butanol extracts from endophytic Bacillus spp. tested at two concentrations against Fusarium oxysporum f. sp. lycopersici noted 
after 7 days of incubation at 25°C as compared to the control and to the commercial products used. ES42, ESV39, ESV41, ESV44, ESV65 and ESV104: Organic 
extracts from isolates S42 of B. cereus, SV39 of B. tequilensis, SV41 of B. subtilis, SV44 of B. methylotrophicus, SV65 of B. amyloliquefaciens subsp. plantarum and 
SV104 of B. mojavensis, respectively; Control: Ethanol control. F: Bavistin® (Chemical fungicide); Bio-F: Bactospeine® (Bio-pesticide). LSD (Treatments tested × 
Concentrations used): 0.44 cm at P ≤ 0.05.
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organisms, they still remain a relatively untapped source of novel 
natural products [43]. In this study, six culturable Bacillus spp. isolates 
(B. cereus str. S42, B. tequilensis str. SV39, B. subtilis str. SV41, B. 
methylotrophicus str. SV44, B. amylolequifaciens subsp. plantarum 
str. SV65 and B. mojavensis str. SV104), isolated from healthy stems 
of wild Solanaceae species (N. glauca, D. metel, S. nigrum and S. 
elaeagnifolium), were evaluated for their antifungal potential towards 
FOL and they have been explored as potential sources of bioactive 
metabolites. 

Tested using the dual culture method, Bacillus spp. exhibited 
a strong antifungal activity against FOL that may be attributed to 
their diffusible active metabolites. Previous studies have shown that 
endophytic Bacillus spp., isolated from Salvia miltiorrhiza [24] and/or 
Pinus taeda L. [44] may be useful as BCAs and potential sources of 
bioactive molecules. Bacillus species were also reported to produce non-
volatile antifungal metabolites [6,45] and/or volatile compounds [41]. 
In fact, tested using the sealed plate method, all Bacillus spp. isolates 
tested in the current study had significantly reduced FOL growth 
compared to the untreated control. This method of confrontation 
revealed the presence of antifungal volatile metabolites active against 
FOL. The diffusible metabolites from Bacillus spp., tested in the present 
study, caused greater growth inhibition of FOL (38.7 to 46.5%) than 
the volatile compounds (18.2 to 21.6%). However, Chaurasia et al. 
[35] found that the inhibitory effect attributed to volatiles was greater 
than that induced by diffusible compounds where B. subtilis was used 
as an antagonistic agent against F. oxysporum, Alternaria alternata, 
Cladosporium oxysporum, Paecilomyces lilacinus, Paecilomyces variotii, 
and Pythium afertile. 

In order to optimize the production of antifungal metabolites, cell-
free filtrates of the six Bacillus spp. isolates were extracted from cultures 
grown at different times of incubation. Results showed a significant 
inhibition of the pathogen using filtrates issued from 2-, 3-, 4-, and 
7-day-old cultures with a maximum (from 31.1 to 59.5%) recorded 
after 4 days of incubation compared to the untreated controls. Romero 
et al. [38] found that the antifungal activity of the cell-free cultures of 
B. subtilis was detected at the transition phase between exponential and 
stationary phase of growth. This activity increased progressively during 
the later and reached its highest levels after 4 to 5 days of culture when 
bacterial populations were composed mainly by spores. Our findings 
clearly demonstrated the possibility of using B. cereus str. S42, B. 
tequilensis str. SV39, B. subtilis str. SV41, B. methylotrophicus str. SV44, 
B. amyloliquefaciens subsp. plantarum str. SV65 and B. mojavensis 
str. SV104 as sources of biologically active natural products with an 
optimum of metabolites production recorded at 4 days of incubation. 
Other studies also reported secondary metabolites from endophytic 
Bacillus spp. with inhibitory effects against Fusarium spp. and other 
plant pathogens [16,44].

The secondary metabolites produced by Bacillus species exhibited 
diverse chemical structures and biological activities [47]. All organic 
extracts tested had significantly reduced FOL growth by 37 to 90%, 
compared to the ethanol controls, and this depending upon the 
concentrations used. Biologically active metabolites extracted with 
ethyl acetate, diethyl ether, chloroform, n-hexane, acetone and 
n-butanol from endophytic Bacillus species also inhibited the mycelial 
growth of several pathogenic fungi and/or bacteria [42,16,17].

The two types of organic extracts from Bacillus spp. isolates tested 
were found to be more effective at the concentration of 5% than at 2.5% 
(v/v). The highest antifungal potential toward FOL growth (90%) was 
achieved using the n-butanol extract from B. amylolequifaciens subsp. 

plantarum str. SV65 used at 1 mg/mL (w/v). In the same sense, the 
n-butanol extract from endophytic B. subtilis str. ZZ120 (1 mg/mL w/v) 
led to 61.4% decrease in F. graminearum growth [16]. Tested at 2.5% 
(v/v), chloroform extracts from B. tequilensis str. SV39 and B. cereus 
str. S42 reduced pathogen growth by 72.4 and 71.3%, respectively 
as compared to the ethanol control. Bhoonobtong et al. [37] also 
demonstrated the antifungal potential of chloroform extracts from 
an endophtyic B. amylolequifaciens str. D25, isolated from medicinal 
plant, towards Staphylococccus aureus. However, chloroform extracts 
from four strains of B. subtilis (B. subtilis str. UMAF6614, B. subtilis str. 
UMAF6619, B. subtilis str. UMAF6639 and B. subtilis str. UMAF8561) 
were found to be ineffective towards the pathogen Botrytis cinerea [38]. 
Previous studies, using Bacillus spp. extracts showed that the major 
identified chemical substances belonged to the families of aldheydes, 
ketones, benzenes [47], dimethyl disulfide [48] and phthalic acids [27]. 

Conclusion
Plant-associated microorganisms, especially endophytic 

bacteria, represent largely untapped resources of natural products. 
Six nonpathogenic and culturable Bacillus spp. (B. cereus str. S42 
(KP993206), B. tequilensis str. SV39 (KR818070), B. subtilis str. 
SV41 (KR818071), B. methylotrophicus str. SV44 (KR818072), B. 
amyloliquefaciens subsp. plantarum str. SV65 (KR818073) and B. 
mojavensis str. SV104 (KR818089)), isolated from stems of wild 
Solanaceae (N. glauca, D. metel, S. nigrum and S. elaeagnifolium), were 
found to be potential sources of non-volatile and/or volatile bioactive 
metabolites effective against FOL. Chloroform and n-butanol extracts 
from Bacillus spp. exhibited an interesting antifungal potential towards 
FOL higher than that induced by the two commercial products i.e. 
Bavistin® (50%, chemical fungicide) and Bactospeine® (16000UI/mg, 
biopesticide). These endophytic bacterial isolates could be interesting 
for use as bio-fungicides against FOL.

Testing the antifungal activity of cell-free cultures of these Bacillus 
spp. isolates and their organic extracts in vivo may give additional 
information on their effects on Fusarium wilt suppression and tomato 
growth promotion. Chemical analyzes of the most effective organic 
extracts will identify the major compounds. 
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