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Abstract
Discovery of microRNAs (miRNAs) as negative regulators of gene expression at post-transcriptional level 

has revealed a new layer of finest regulation of cell signaling mechanisms in normal development and abnormal 
growth. The pathogenesis in most of the tumors including malignant neuroblastoma, a childhood malignancy in most 
cases, is now known to be linked to aberrant expression of a wide range of miRNAs, which can be oncogenic or 
tumor suppressor molecules. Many miRNAs seem to be involved in avoiding differentiation and apoptotic death 
while driving the growth of human malignant neuroblastoma. So, modulation of expression of specific oncogenic and 
tumor suppressor miRNAs may provide us novel therapeutic opportunities to enhance induction of differentiation and 
apoptosis and also inhibition of autophagy, proliferation, multidrug resistance, migration, invasion, and metastasis in 
human malignant neuroblastoma. 
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Introduction
Recent excitement in cancer research is mainly around microRNAs 

(miRNAs or miRs) that are small (~22 nucleotides long), highly stable, 
and evolutionarily conserved non-coding RNAs for finest regulation 
of gene expression at post-transcriptional level by moving the RNA-
induced silencing complex (RISC) to the partial complementary 3´ 
untranslated region (3´UTR) of the target messenger RNAs (mRNAs) 
for either their degradation or inhibition of their translation depending 
on degree of complementarity between the miRNAs and the 3´UTR of 
the target mRNAs [1]. Several kb long primary miRNA (pri-miRNA), 
which is derived from RNA polymerase II activity, assumes a stem-
loop structure for recognition and cleavage by Drosha (a nuclear 
RNA III endonuclease) to generate 60-70 nucleotides long precursor 
miRNA (pre-miRNA) for exportation to the cytoplasm where the pre-
miRNA is further processed by Dicer (another RNA III endonuclease) 
to the final ~22 nucleotides long miRNA duplex for attachment of 
its 5´ end of the strand with the weakest base pairing to the RISC 
and movement to the 3´UTR of the target mRNA [2]. One miRNA 
is capable of inhibiting expression of multiple mRNAs directly or 
indirectly, indicating that suppression or promotion of expression and 
function of even a single miRNA may have profound consequences in 
cell signaling pathways. The main mechanism of action of a miRNA is 
inhibition of expression of the target gene or genes; however, in rare 
cases miRNAs may modulate transcription [3,4] or activate translation 
[5]. Because miRNAs in almost all cases kill the messenger, they are 
readily recognized as the negative regulators of the gene expression. 
It is now widely acknowledged that expression of more than 30% of 
human protein-coding genes is controlled by miRNAs. Emerging 
results suggest that miRNAs play important roles in cell cycle, 
proliferation, differentiation, apoptosis, and metabolism. As such, 
aberrant expression of miRNAs is linked to cancer development, cancer 
stem cells, autophagy, multidrug resistance, epithelial-mesenchymal 
transition (EMT), migration, invasion, and metastasis [6-8]. EMT, 
a process by which epithelial cells lose cell to cell contact proteins 
such as E-cadherin and γ-catenin to become mesenchymal cells with 
expression of vimentin and fibronectin, is a prerequisite for cancer 
metastasis [9,10]. Cells that undergo EMT are able to disconnect from 
the primary tumor and then migrate, leading to cancer metastasis. 
Depending on their targets, miRNAs can act as oncogenes and/or 
tumor suppressors to influence tumorigenesis. Oncogenic miRNAs 
kill the mRNAs of the tumor suppressor genes while tumor suppressor 
miRNAs kill the mRNAs of the oncogenes. Each tumor type has its 

distinct miRNA profile that differs from that of other tumor types and 
its normal tissue counterpart. Each human malignant neuroblastoma, 
which is a deadly tumor mostly found in pediatric patients, also harbors 
highly characteristic miRNA profile [11]. Therefore, specific miRNA 
signatures can serve as biomarkers for diagnosis, drug response 
prediction, and prognosis of the malignant neuroblastoma patients 
[11]. Most importantly, direct or indirect manipulation of expression 
of specific miRNAs in human malignant neuroblastomas can provide 
us highly promising therapeutic opportunities to control their growth 
and thereby save the children. 

miRNAs in Malignant Neuroblastoma 
Neuroblastomas, originated from immature neuroblasts of 

the peripheral nervous system, are the most common extracranial 
solid tumors that mainly occur in infants and young children and 
account for about 10% of all childhood cancers and 15% of childhood 
death [12]. Neuroblastomas are highly noted for their high degree 
of heterogeneity in clinical behaviors, ranging from spontaneous 
regression to aggressive growth and metastasis leading to death of the 
patients. Deregulation of miRNAs may be an important mechanism 
that contributes to pathogenesis and heterogeneity of neuroblastomas 
[11,13]. Clinical behaviors of neuroblastomas may be considerably 
correlated with their specific genetic (e.g., amplifications, deletions, 
point mutations) abnormalities [12] and relatively rapid epigenetic (e.g., 
DNA methylations, histone modifications) changes [14]. Abnormally 
high or low levels of specific miRNAs ultimately can affect the levels 
of expression of target genes, causing the malignant neuroblastoma 
cells promote autophagy and proliferation, avoid differentiation 
and apoptosis, and increase angiogenesis, migration, invasion, and 
metastasis. Deregulation of expression of miRNAs in malignant 
neuroblastomas may be due to N-Myc amplification, chromosomal 
deletion, or abnormal epigenetic regulation [11,15]. About 25% of all 
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malignant neuroblastomas are associated with N-Myc amplification 
and poor outcome irrespective of age [16]. Expression of N-Myc, which 
is a helix-loop-helix leucine zipper transcription factor, is restricted 
mainly to the peripheral and central nervous system [17]. N-Myc has 
been shown to bind to the promoter region of a wide range of miRNA 
genes for regulation of their expression. As many as 37 miRNAs are 
differentially expressed in malignant neuroblastomas with N-Myc 
amplification relative to tumors without N-Myc amplification [18]. 
Several oncogenic miRNAs (miR-17-5p, miR-92, miR-93, miR-99, 
miR-106a, and miR-221) are upregulated due to N-myc amplification 
in malignant neuroblastoma. Loss of 1p36 heterozygosity causes low 
expression of miR-34a, which is a potent tumor suppressor miRNA, 
in human malignant neuroblastoma with N-Myc amplification. 
Also, N-Myc is responsible for activation of methyltransferases for 
methylation of target genes. Promoters of miRNAs can be aberrantly 
modified by the deregulated epigenetic machinery for aberrant 
expression of miRNAs in malignant neuroblastoma. For example, 
a novel integrated approach recently identified 67 miRNAs under 
epigenomic regulation in malignant neuroblastoma [19]. Some tumor 
suppressor miRNAs (let-7, miR-101, and miR-202 that target N-Myc; 
miR-9 that targets TrkC, REST, ID2, and MMP-14; miR-34a that targets 
E2F3, Bcl-2, and N-Myc; miR-340 that targets SOX2; miR-184 that 
targets Akt2; and miR-335 that targets MAPK1, LRG1, and ROCK1) in 
malignant neuroblastoma are silenced by aberrant DNA methylation 
or histone modification [20]. Therefore, epigenetic inactivation of 
tumor suppressor miRNAs is currently recognized as a major hallmark 
of malignant neuroblastoma, without any notable opposition yet to this 
concept.

Inhibition of Oncogenic miRNAs in Malignant 
Neuroblastoma 

Inhibition of expression of powerful and specific oncogenic 
miRNAs can be an exciting therapeutic strategy for controlling 
growth of malignant neuroblastoma. Because aberrant expression of 
oncogenic miRNAs in malignant neuroblastoma play highly crucial 
regulatory roles in maintaining neuroblastoma stem cells (NSCs) and 
tumorigenesis [20-22], it is very obvious that oncogenic miRNAs will 
be useful not only in diagnosis but also in designing novel therapy 
for controlling growth of NSCs as well as of other neuroblastoma 
cells in the tumors. Chemically modified antago-miRNAs or anti-
miRNAs (antisense oligonucleotides as miRNA inhibitors) can be 
successfully used for decreasing abundance and activity of powerful 
oncogenic miRNAs in malignant neuroblastoma cells in culture and 
animal models. Growth of malignant neuroblastoma with N-Myc 
amplification is linked to transactivation of miR-17-5p-92 cluster 
that inhibits translation of p21 (a negative regulator of cell cycle by 
inhibiting a broad range of cyclin/Cdk complexes) and Bim (Bcl-
2 interacting mediator of cell death, which is a potent pro-apoptotic 
BH3-only protein that binds with high affinity to all pro-survival Bcl-
2 proteins) [23]. Antago-miR-17-5p treatment abolished growth of 
therapy-resistant human malignant neuroblastoma in vitro as well as 
in vivo due to upregulation of p21 and Bim leading to inhibition of cell 
cycle and induction of apoptosis, respectively [23]. Use of the enhanced 
green fluorescent protein reporter construct carrying the 3´UTR of 
reversion-inducing cysteine-rich protein with Kazal motifs (RECK) 
identified RECK as the direct target of oncogenic miR-15a to induce 
expression of matrixmetalloproteinase-9 (MMP-9), providing the new 
insights into the characteristics of the miR-15a-RECK-MMP-9 axis in 
promoting migration and invasion of malignant neuroblastoma [24]. 
So, suppression of this oncogenic miR-15a upregulated expression of 

RECK and significantly decreased MMP-9 and migration of malignant 
neuroblastoma cell lines [24].

Induction of Tumor Suppressor miRNAs in Malignant 
Neuroblastoma

Induction of expression of poorly present or re-expression of totally 
absent tumor suppressor miRNAs can be another important avenue 
to control the growth of malignant neuroblastoma. Enhancement of 
biogenesis of tumor suppressor miRNAs can be an ideal approach 
for development new drugs for inhibition of tumorigenesis. Tumor 
suppressor miRNAs may be over expressed and also re-expressed in 
human malignant neuroblastoma using synthetic miRNA mimics or 
miRNA mammalian expression vectors that carry either a pre-miRNA 
sequence or an artificial miRNA hairpin sequence. For example, 
functional analysis following transfection of miR-34a mimics showed 
targeted degradation of mRNAs of Bcl-2 and N-Myc, cell cycle arrest, 
and induction of apoptosis in human malignant neuroblastoma cell 
lines with 1p36 hemizygous deletion [25]. Also, functional data from 
miR-184 ectopic over expression using a pre-miR-184 expression vector 
demonstrated that miR-184 directly targeted and degraded mRNA of 
Akt2, a major downstream effector of the phosphatidylinositol 3-kinase 
(PI3K) pro-survival pathway, for significant reduction of tumor growth 
and increase in overall survival in an orthotopic mouse model of 
malignant neuroblastoma [26]. The tumor suppressor miR-128, which 
is upregulated during all-trans retinoic acid mediated differentiation of 
human malignant neuroblastoma SH-SY5Y cells, inhibits expression 
of Reelin (a glycoprotein that plays a role as a guide for migration) and 
DCX (doublecortin located on chromosome X, which is a microtubule-
associated protein required for neuroblastic migration) to reduce 
neuroblastoma cell motility and invasiveness [27]. Also, ectopic 
overexpression of miR-128 using the DpA-miR-128 plasmid vector 
(encoding for miR-128) suppressed expression of Reelin and DCX and 
thereby reduced motility, invasiveness, and growth of neuroblastoma 
cells [27]. 

Activation of Epigenetically Silenced Tumor Suppressor 
miRNAs in Malignant Neuroblastoma

Activation of epigenetically inactivated tumor suppressor 
miRNAs may also provide therapeutic opportunities in malignant 
neuroblastoma. Recently, it has been shown that epigenetically 
silenced miRNAs highly contribute to pathogenesis in malignant 
neuroblastoma [19]. It is now known that N-Myc amplification 
in malignant neuroblastoma transcriptionally down regulate 
epigenetically controlled tumor suppressor miRNAs. A recent study 
reports the existence of LIN28B-let-7-N-Myc axis, in which LIN28B 
down regulates the tumor suppressor let-7 to upregulate N-Myc and 
drive the growth of malignant neuroblastoma [28]. Also another recent 
study demonstrates that N-Myc transcriptionally down regulates 
the epigenetically controlled miR-335 (which is a tumor suppressor 
miRNA), overexpression of which targets multiple genes in the 
TGF-β non-canonical pathway leading to inhibition of migration 
and invasion of malignant neuroblastoma cells [29]. Therefore, 
therapeutic approaches can be designed to modulate expression of the 
epigenetically regulated miRNA genes. Targeting epigenetic regulators 
can give some advantages: epigenetic modifications are easily reversible 
and responsive to specific chemotherapeutic agents. For example, low 
doses of DNA methyltransferase inhibitors such as azacitidine (AZA) 
and 5-aza-2’-deoxycytidine (DAC) demonstrate therapeutic effects 
in cancer patients [30,31]. However, high doses of the epigenetic 
inhibitors (AZA and DAC) have no effect on epigenome and can 
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cause extreme toxicities [32,33]. Low concentrations of AZA or DAC 
can reduce self-renewal of the tumor cells both in culture and animal 
models, maintaining global DNA demethylation and re-expression of 
important tumor suppressor genes [34]. All these studies strongly and 
clearly suggest the enormous potential of epigenetic therapy for re-
expression of the tumor suppressor miRNA genes in human malignant 
neuroblastoma.

Modulation of Expression of a miRNA to Enhance 
Efficacy of a Therapeutic Agent in Malignant 
Neuroblastoma

In a combination setting, suppression of an important oncogenic 
miRNA or overexpression of a potential tumor suppressor miRNA 
can act additively or synergistically with a natural or synthetic 
chemotherapeutic agent for increasing its anti-tumor effects in 
malignant neuroblastoma. Plant-derived flavonoids, which specifically 
target malignant cells, have shown efficacy in inducing cysteine 
proteases for apoptosis in human malignant neuroblastoma cells 
[35]. However, combination therapy with a retinoid and a flavonoid 
in human malignant neuroblastoma very effectively inhibit the overall 
pro-survival mechanism autophagy [36] and also induce differentiation 
and apoptosis in vitro [37] and in vivo [38,39]. Controlling the 
growth of human malignant neuroblastoma with combination of 
retinoid and flavonoid involves alterations in expression of specific 
oncogenic miRNAs and tumor suppressor miRNAs [40]. It is now 
widely recognized that different plant-derived natural compounds 
such as curcumin, flavonoids, resveratrol do down regulate oncogenic 
miRNAs and upregulate tumor suppressor miRNAs in human 
malignant cells for inhibition of cell growth, induction of apoptosis, 
reversal of EMT, or enhancement of anti-cancer effects of conventional 
and natural cancer therapeutics [41,42]. Over expression of the 
tumor suppressor miR-7-1 potentiated the anti-tumor properties of 
flavonoids in human malignant neuroblastoma cell lines [42]. Also, 
overexpression of the tumor suppressor miR-138 increased anti-
tumor effects of another flavonoid in human malignant neuroblastoma 
in vitro and in vivo [43]. Distinct mechanisms of drug resistance in 
malignant neuroblastoma may be associated with high levels of the 
anti-apoptotic protein Bcl-2 and also the tyrosine-related kinase B 
(TrkB) receptor that activates PI3k/Akt pro-survival pathway. Use of 
luciferase reporter assays indicated that the tumor suppressor miR-
204 could directly target the 3´UTR of Bcl-2 and TrkB mRNAs and 
therefore transfection of malignant neuroblastoma cells with miR-
204 mimics showed significant increase in sensitivity to cisplastin and 
etoposide for induction of apoptosis [44]. Modulation of expression of 
specific miRNAs have also been helpful in increasing chemosensitivity 
in other malignancy [45], indicating the right direction and the huge 
promise of targeting miRNAs as a therapeutic strategy. Therefore, 
investigations for modulation of expression of miRNA should be 
continued and accelerated to increase anti-tumor effects of natural and 
synthetic therapeutic agents in malignant neuroblastoma cells in vitro 
as well as in vivo.

Conclusion
In conclusion, recent studies on the whole RNA transcriptome 

have revealed complex regulatory networks of the miRNA-to-mRNA 
interactions whose effects now appear to be more pervasive than 
previously thought in many human malignancies including malignant 
neuroblastoma. Tactful manipulation of expression of specific 
miRNAs, more precisely suppression of a powerful oncogenic miRNA 
and overexpression of a poorly expressed tumor suppressor miRNA, 

may provide great advantages to an experimental therapeutic agent for 
enhancement of its anti-tumor effects in malignant neuroblastoma in 
preclinical studies. Validation of mechanisms of efficacy and perfection 
of delivery methods of these miRNA based therapeutic approaches 
in both ecotopic and orthotopic animal models of human malignant 
neuroblastoma and lack of severe side effects will hopefully prompt 
clinical trials of miRNA based therapeutic strategies for treatment 
of malignant neuroblastoma in pediatric patients in the near future. 
Currently, a cutting-edge topic of research is miRNA in all malignant 
diseases. Studies on miRNAs in many other malignancies are being 
reported at an exponential rate every year, while only less than 150 
studies so far have been reported on the emerging roles of miRNAs 
in malignant neuroblastoma. So, this status of the field indicates that 
further studies in the future will reveal the involvement of many other 
miRNAs in the life and death of human malignant neuroblastoma. 
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