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DESCRIPTION
Endosymbiotic bacteria serve as the source of the bioenergetic 
organelles mitochondria and chloroplasts in eukaryotic cells. 
The Electron Transport Chains (ETCs) are similar to those of 
bacteria that is free-living, but they were specifically designed for 
energy conversion inside the host cell. Both reductive and 
expanding actions occur concurrently in mitochondria and 
chloroplasts. On the one hand, eukaryotes lost bacterial 
complexes along with a corresponding loss of metabolic 
flexibility. On the other hand, new complexes have been 
introduced, new subunits have been added to existing bacterial 
complexes, and complicated folding patterns of the thylakoid 
and mitochondrial inner membranes have emerged. Eukaryotes 
independently devised some bacterial mechanisms, such as 
alternate pathways for quinol oxidation or the utilization of 
diverse anaerobic electron acceptors [1].

Understanding of the structure and function of eukaryotic PSI 
was considerably improved by the recent modifications to the 
pea PSI crystal structure. In multiple outstanding recent 
assessments, the structure of the PSI core and the purpose of its 
constituent parts have been carefully studied [2].

A chain of molecules that readily collect or donate electrons 
makes up the electron transport chain. Electrons are pushed 
across a membrane in a given direction by passing step-by-step 
through them. This is associated with hydrogen ion migration. 
This implies that hydrogen ions move along with electrons 
moves. When hydrogen ions are pushed into the lumen, the 
thylakoid's interior, ATP is produced. Ions of hydrogen are 
positively charged. The hydrogen ions desire to avoid one 
another because like in magnets, opposite charges repel one 
another [3]. Through ATP synthase, a membrane protein, they 
are able to leave the thylakoid. Like water flowing through a 
dam, they provide the protein power by passing through it. ATP 
is produced as hydrogen ions pass through proteins and down 
the electron transport chain. This is how plants convert solar 
energy into usable chemical energy [4].In prokaryotes, ATP 
production takes place on the plasma membrane. However, 
the plasma membrane is only used for transport in eukaryotic 
cells. 

Instead, ATP is produced by specialized membranes found 
inside organelles that convert energy. Both plastids, most 
notably chloroplasts, which are found only in plants, and 
mitochondria, which are membrane-enclosed organelles, are 
found in the cells of almost all eukaryotic species 
(including fungi, animals, and plants). The amount of 
internal membrane seen in mitochondria and chloroplasts 
is the most notable morphological characteristic in electron 
micrographs [5]. The framework for a complex series of 
electron-transport processes, which generate the majority of the 
cell's ATP, is provided by this interior membrane [6].

CONCLUSION
The light-dependent processes goal is to transform solar energy 
into NADPH and ATP, which are chemical carriers that will be 
utilized in the Calvin cycle. Two photosystems are present in 
eukaryotes and some prokaryotes. Photosystem II (PSII), the 
first, was given its name based on the order in which it was 
discovered rather than the order in which it performs its job. 
Energy from sunlight is utilized to extract electrons from water 
once a photon strikes the reaction center of Photosystem II 
(PSII). The electrons move to Photosystem I (PSI), which 
converts NADP+ to NADPH, through the chloroplast electron 
transport chain. Energy from the electron feeds proton pumps in 
the membrane that actively propel hydrogen ions against their 
concentration gradient as it travels from stroma into the 
thylakoid space along with electron transport chain.
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