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Introduction
A natural polyphenolic compound Resveratrol (Rsv), which 

is known as a stimulator of  NAD+-dependent deacetylases sirtuin 
(SIRT) family proteins, sirtuin, elongates lifespan of model animals 
[1-5]. Previously, we reported that Rsv moderately activates the 
human SIRT1 and TERT promoters inducing telomerase activity in 
HeLa-S3 cells [6,7]. Moreover, multiple transfection assays showed 
that promoter activities of the genes encoding human telomere 
maintenance factors (shelterin proteins) [8] are up-regulated by Rsv 
treatment [9], suggesting that natural polyphenol compounds, such 
as Rsv may affect chromosomal stabilities. Thus, Rsv and its related 
polyphenols are expected to become candidate drugs for anti-aging 
therapeutics. However, it should be noted that Rsv has cytotoxic effects 
by inducing apoptotic cell death, especially when it is used at higher 
doses [10-12]. Thus, in order to develop safe drugs with anti-aging 
effects, searching for alternative natural compounds that up-regulate 
SIRT1 and shelterin gene expression and elucidation of their induction 
mechanisms are required.

β-Thujaplicin, which is also known as hinokitiol, is a tropolone 
derivative found in the heartwood of cupressaceous plants [13]. It has 
been reported to have a variety of biological effects, including induction 
of apoptosis [14] and differentiation [15], and anti-inflammatory 
[16], anti-bacterial [17] and anti-fungal [18] effects. In this study, we 
examined the effects of thujaplicins on the promoter activities of the 
human SIRT1 and shelterin-encoding genes by multiple transient 
transfection and Luc reporter assay. Here, we show the up-regulating 
effects of three types of thujaplicins (a, b and g) on the promoter 

activities of the human SIRT1 and shelterin-encoding genes by 
multiple transient transfection and Luc reporter assay.  Here, we show 
that b-thujaplicin (hinokitiol) is able to up-regulate these promoter 
activities. Furthermore, we propose that b-thujaplicin could be used as 
one of lead-compounds for developing anti-aging drugs.

Materials and Methods
Materials

trans-Resveratrol (Rsv) was purchased from Cayman Chem. (Ann 
Arbor, MI) [6,7]. α−, β- and γ-thujaplicins were purchased from 
Osaka Chemical Industry Ltd. (Osaka, Japan) [19]. Structures of these 
compounds are shown in (Figure 1).

Cell culture

Human cervical carcinoma (HeLa S3) cells [20] were grown in 
Dulbecco’s modified Eagle’s (DME) medium (WAKO Pure Chemical, 
Tokyo, Japan), supplemented with 10% fetal bovine serum (FBS) 
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Abstract
Resveratrol (Rsv) has been shown to extend the lifespan of diverse range of species to activate sirtuin (SIRT) 

family proteins, which belong to the class III NAD+ dependent histone de-acetylases (HDACs).The protein de-
acetylating enzyme SIRT1 has been implicated in the regulation of cellular senescence and aging processes in 
mammalian cells. However, higher concentrations of this natural compound cause cell death. Therefore, novel 
compounds that have reduced cellular toxicity will be required for anti-aging therapy, especially for dermatological 
treatments. In this study, the Luciferase (Luc) expression vector pGL4-SIRT1 containing 396-bp of the 5’-upstream 
region of the human SIRT1 gene was transfected into HeLa S3 cells and Luc assay was performed. The results 
showed that treatments with the natural compound, α-, β- and γ-thujaplicins increase the SIRT1 promoter activity 
more than that with Rsv. Moreover, we carried out multiple transfection of Luc reporter vectors containing 5’-upstream 
regions of various human telomere maintenance factor encoding genes, and observed that β−thujaplicin (hinokitiol) 
activates TERT, RTEL, TRF1, DKC1, RAP1 (TERF2IP) and TPP1(ACD) promoters. These results suggest that 
that the β−thujaplicin could be used as anti-aging drugs to delay cellular senescence through activating SIRT1 
transcription along with strengthening stability of telomeres.
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(Sanko Pure Chemical, Tokyo, Japan) and penicillin-streptomycin at 
37°C in a humidified atmosphere with 5% CO2.

Construction of Luc reporter plasmids

The Luc reporter plasmid pGL4-SIRT1 carrying 396-bp of the 
human SIRT1 promoter region was constructed as described previously 
[7]. Other Luc reporter plasmids, which contain 300 to 500-bp of 
5’-upstream regions of the human PIF1, RTEL, TRF1, TRF2, TERT, 
TERC, TANK1, DKC1, TIN2, POT1, RAP1(TERF2IP) and TPP1(ACD) 
genes, were constructed as described previously [9,21].

Transient transfection and Luc assay

Plasmid DNAs were transfected into HeLa S3 cells by the DEAE-
dextran method [20-22]. The DNA transfected cells were divided into 
at least four dishes. After 24 h of transfection, Rsv or thujaplicins were 
added to the culture medium. After a further 24 h of incubation, cells 
were collected and lysed with 100 µL of 1 X cell culture lysis reagent, 
containing 25 mM Tris-phospate (pH 7.8), 2 mM DTT, 2 mM 
1,2-diaminocyclohexane-N,N,N’,N’,-tetraacetic acid, 10% glycerol and 
1% Triton X-100, then mixed and centrifuged at 12,000 × g for 5 sec. 
The supernatant was stored at -80°C. The Luc assay was performed 
with a Luciferase assay system (Promega) and relative Luc activities 
were calculated as described previously [20-22]. Multiple transfection 
of human shelterin promoter-containing Luc reporter plasmids with 
96-well culture plate was performed as described previously [8,21].

Results
Effects of thujaplicins on the human SIRT1 promoter

To examine whether the human SIRT1 promoter is affected by 
α−, β− and γ−thujaplicins [19], transient transfection and Luc assays 
were carried out. Luc activities of pGL4-SIRT1 transfected cells were 
normalized to that of non-treated control cells. As shown in Figure 
2A, the relative Luc activity of pGL4-SIRT1-transfected cells was 
prominently augmented by the addition of Rsv (10 µΜ) or α−, β− and 
γ-thujaplicins (10 µM) to the culture medium.

To examine the dose-dependent response to β-thujaplicin 
(hinokitiol), HeLa S3 cells were treated with 0 to 100 µM of 
β-thujaplicin after 24 h of transfection and collected after further 24 

h incubation (Figure 2B). The half maximal effective concentration 
(EC50) was estimated as 3.1 mM.  These results indicate that 10 mM of 
m-thujaplicin is enough to induce SIRT1 promoter activity equal to Rsv 
(10 mM) treatment. 

Effect of β−thujaplicin on the 5’-upstream regions of human 
genes encoding telomere maintenance factors

Multiple transcription experiments were carried out with various 
Luc reporter plasmids containing 5’-flanking regions of the human 
shelterin encoding genes (Figure 3) [9]. By performing the multiple 
Luc assay, the effect of b-thujaplicin on these transcription-regulatory 
regions were examined.  The results showed that b-thujaplicin (10 mM) 
could induce up-regulation of relative promoter activities of the RTEL, 
TRF1, TRF2, TERT, DKC1, TIN2, RAP1(TERF2IP) and TPP1(ACD) 
genes (Figure 3).  Approximate 1.5 to 2-folds increases as compared 
with non-treated cells were observed in a similar manner as the 396-bp 
of the SIRT1 promoter (Figure 2A).

Discussion
It has been suggested that both cellular senescence and aging 

of organisms are accelerated by various factors, such as telomere-
shortening [23-25] and DNA damaging reactive oxygen species 
(ROS) that are mainly generated from mitochondria [26,27]. On the 
other hand, an important fact for anti-aging is the demonstration that 
caloric restriction elongates lifespans of organisms [28], suggesting that 
metabolism regulatory systems could control lifespan. Genetic analyses 
of C.elegans showed that several genes encoding insulin/IGF1 receptor 
and transcription factor FoxO play important roles in controlling the 
lifespan [29]. Moreover, studies of budding yeast showed that Sir2, 
a member of the sirtuin proteins with an NAD+-dependent protein 

Figure 1: The structures of trans-Resveratrol and thujaplicins.
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Figure 2: Effects of thujaplicins on the human SIRT1 promoter activity. (A) The 
Luc reporter plasmid, pGL4-SIRT1 [6,7], was transfected into HeLa S3 cells as 
described under Materials and Methods. After 24 h of transfection, cells were 
treated with Rsv (10 μΜ), then harvested after a further 24 h incubation. (B) A 
similar (experiment was performed as in (A) with 0 to 100 μM of β-thujaplicin. 
The results show relative Luc activities of the indicated Luc reporter plasmid-
transfected cells relative to those of non-treated cells. The values are the mean 
+ SD of four independent assays.
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deacetylase activity, has silencing action on chronological aging of 
yeast cells [30]. Many proteins, including PGC-1α, p53, FOXO1, 
HIF1α, UCP2 and PPARγ, have been reported to be the targets of 
SIRT1, which is known as mammalian homologue of Sir2 [31]. Because 
these protein factors function as metabolism regulators, SIRT1 could 
become a key regulator of healthspan of organisms [31].

In this study, we have examined promoter activities of the 396-bp 
5’-flanking region of the human SIRT1 gene to find out its response to 
the treatments with three types of thujaplicins (a, b and g) in HeLa-S3 
cells. The 396-bp region has no apparent TATA-box but contains 
several well known transcription factor binding elements, including 
CREB, C/EBPβ, c-ETS, USF, SREBP1, Sp1, GATA and c-MYC binding 
motifs [7]. It has been shown that FOXO1, CREB, PPAR proteins and 
PARP2 play roles in regulation of the SIRT1 promoter [31]. However, 
at present, the Rsv or β-thujaplicin-responsive elements in the SIRT1 
promoter region have not been precisely determined. Previously, it 
was indicated that the 5’-upstream regions of the WRN, BLM, TERT, 
p21 (CDKN1A) and HELB genes possess one or more Sp1/GC-box 
elements and that they positively respond to Rsv treatment in HeLa S3 
cells [6,32]. The GC-box consensus sequence of the Sp1 transcription 
factor binding site is: 5’-(G/T)GGGCGG(G/A)(G/A)(C/T)-3’ or 5’-
(G/T)(G/A)GGCG(G/T)(G/A)(G/A)(C/T)-3’ [33]. It has been shown 
that two GC-boxes, 5’-AGGGCGGGGG-3’ and 5’GGGGCGGGTC -3’ 
(-83 to -74 and -66 to -57, respectively), play important roles in the 
SIRT1 promoter activity [34]. As shown in Figure 3, the 5’-upstream 
regions of the RTEL, TRF1, TRF2, TERT, DKC1, TIN2, RAP1 and TPP1 
genes positively responded to the treatment with β-thujaplicin. All of 
the 5’-upstream regions in the Luc-reporter vectors except pGL4-RTEL 
have at least one Sp1/GC-box. Although TF search analysis did not 
find Sp1/GC-box, 5’-CGGGCGGGAC-3’, 5’-TTTCCGCCGG-3’ and 
5’-TGCGCGCCTC-3’, namely GC-box like sequences are contained 
in the pGL4-RTEL. Taken together, the Sp1 binding motif is possibly 
one of the candidate elements that respond to β-thujaplicin. Moreover, 
Rsv is known to up-regulate cAMP level to activate CREB, which plays 

important roles in hormonal metabolism, including that of the insulin 
signaling system [35]. The CREB element is located in the 5’-upstream 
regions of the RTEL [21] and TPP1 [9] genes. This suggests that the 
CREB element in the human SIRT1 promoter region (-288 to -281) 
may respond to the b-thujaplicin treatment.

It should be noted that β−thujaplicin (hinokitiol) has been shown 
to stabilize transcriptional active HIF-1α in HeLa and HepG2 cells 
to increase transcription of the VEGF gene [36]. On the other hand, 
SIRT1 deacetylates HIF-1α to suppress its activity [37]. Therefore, the 
induction of SIRT1 gene expression by β−thujaplicin might function 
to reduce over-stimulated HIF-1a for the maintenance of cellular 
homeostasis. Moreover, it has been reported that β-thujaplicin induces 
G1 arrest via down-regulation of phosphorylated Rb and Skp2 ubiquitin 
ligase [38]. This cell cycle arrest is accompanied with an increase of p27 
and p21 protein levels. Although the precise molecular mechanisms are 
remain unclear, these biological properties of β-thujaplicin including 
transcriptional regulation and antiviral activity [16,36] might originate 
from its specific structure (Figure 1) that can act as a chelator of 
divalent metal ions [39]. In this study, we observed the up-regulation 
of the SIRT1 and shelterin-encoding gene promoter activities by the 
treatment of β−thujaplicin. Moreover, the comparisons of 5’-upstream 
regions of those genes suggested that transcription factors, including 
Sp1, may control lifespans of organisms responding to β-thujaplicin. 
The core structure of the thujaplicins could be applied to design lead 
compounds for novel anti-aging drugs, which could simultaneously 
activate the SIRT1 and shelterin-encoding gene promoter activities.
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