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Abstract
Nanosized β-Cd(OH)2 were successfully synthesized via simple chemical precipitation method using cadmium 

nitrate as a precursor in a solution of sodium hydroxide. The CdO nanoparticles were harvested from β-Cd(OH)2 by 
thermal decomposition at 400°C. The structural, optical, and magnetic properties of the as prepared and annealed 
products of β-Cd(OH)2 were studied. The morphology of the CdO nanocrystals annealed at 400°C analyzed by FE-
TEM exhibits pseudo spherical morphology with sizes around 60 nm. 
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Introduction 
In the past two decades, new terms with prefix nano have captured 

ample space among the scientific community owing to the unusual 
physical and chemical properties of nanomaterials. Usually on the 
basis of size, morphology and structure applications of nanomaterials 
are justified. Recently, interests in the study of Transparent Conductive 
Oxide (TCO) nanomaterials have gained special attention due to 
their important applications in the current technology. Among the 
transparent conducting metal oxide semiconductor materials, CdO is 
an important n-type semiconductor material with direct band gap of 
2.2-2.7 eV and indirect band gap of 1.36-1.98 eV [1]. CdO finds its 
potential applications in the field optoelectronics devices such as solar 
cells, phototransistors, photodiodes, transparent electrodes, catalysts 
and gas sensors [2-11]. Despite cadmium is toxic, CdO is widely used 
as a photo catalyst for effluent treatment [4,12,13]. Many researchers 
have reported the preparation of CdO nanostructures with different 
methods such as chemical vapour deposition, sol-gel, laser ablation, 
spray pyrolysis and hydrothermal methods. Nowadays, the usage 
of the simple chemical precipitation method in comparison with 
other methods increases among researchers because of its less time 
consuming and less expensive nature. Lotf Ali, et al. have synthesized 
Cd(OH)2 and CdO nanocrystals by the solvothermal method. They 
predicted the conversion of nanosized Cd(OH)2 into CdO at 500°C 
[14]. Siraj et al. have studied the magnetic properties of Al-doped CdO 
thin films and reported their para and ferromagnetic behaviors [15]. 

Herein, we demonstrate a simple chemical precipitation method 
for the synthesis of nanocrystalline β-Cd(OH)2. Nanocrystals of CdO 
can be obtained through the thermal decomposition using the as-
prepared β-Cd(OH)2 as precursor. 

Materials and Methods
Chemicals

Cadmium nitrate hexahydrate [Cd(NO3)2
*6H2O], sodium 

hydroxide [NaOH] were purchased from Merck and were used as 
received since they were of analytical reagent grade with 99% purity. 
Ultra-pure water was used for all procedures of sample preparation and 
dilution. 

Synthesis of CdO nanocrystals

In the preparation of CdO nanocrystals from cadmium nitrate 
hexahydrate (Cd(NO3)2

*6H2O) and sodium hydroxide (NaOH), 0.5 

M of Cd(NO3)2
*6H2O in 50 ml of deionized water and 2 M of NaOH 

in 50 ml water were mixed up dropwise. The entire mixture was 
stirred magnetically until a white precipitate of cadmium hydroxide 
hexahydrate was formed. The resultant precipitate was filtered and 
then washed alternately with deionized water and ethanol for 3 times to 
remove the impurities. Further, the precipitate of cadmium hydroxide 
hexahydrate (Cd (OH)2

*6H2O) was dried in hot air oven at 100°C for 4 
h and cadmium hydroxide was harvested in the nanosize. The obtained 
product was thermally annealed at different temperatures (200, 300, 
400, 600 and 800°C) for 2 h. The formation of CdO took place at 400°C 
upon thermal annealing.

Growth mechanism

Formation of Cd(OH)2 in the presence of NaOH can be explained 
on the basis of buffer action of cadmium ions. Cadmium ions in 
the solution become hydrated and transformed to solid cadmium 
hydroxide through stepwise coordination of hydroxyl ions. However, 
depending upon the concentration of the base and the synthesis 
temperature, cadmium hydroxide is transformed into cadmium oxide 
through dehydration.

Apparatus

The prepared products were characterized by powder X-Ray 
Diffraction (XRD) on a X’PERT PRO diffractometer with Cu-Ka 
radiation (k=1.5406 Å). From the line broadening, the size of the 
particle was estimated by the Scherrer equation. FT-IR analysis was 
made to characterize the functional groups of the precursor and 
nanosized cadmium oxide using SHIMADZU-8400 with a resolution 
of 4 cm-1. The Photoluminescence (PL) emission spectra of the samples 
were recorded with a Spectroflurometer (Jobin Yvon, FLUOROLOG–
FL3-11). Vibrating Sample Magnetometer (VSM) is used to identify the 
nature of magnetic species in the material. To study the morphology 
and size of the nanocrystals FE-TEM (Model JSM 2100F JEOL, Japan) 
analysis was made.
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Results and Discussion
Thermal analysis

To understand the thermal behavior of β-Cd(OH)2, TG-DTA 
analyses were carried out between room temperature and 1000°C with 
a heating rate of 20°C/min in nitrogen atmosphere. Figure 1 shows the 
TG and DTA traces of β-Cd(OH)2. Five prominent weight losses were 
observed at the end set temperatures 157°C (2.63%), 244°C (9.61%), 
398°C (2.79%), 729°C (2.58%), and 1000°C (11.39). The initial weight 
loss of 2.63% observed between room temperature and 157°C could be 
ascribed to the removal of water molecules adsorbed on the surface of 
the Cd(OH)2 nanoparticles. The dehydration process involved in the 
first stage is given by the following chemical equation

Cd(OH)2
*XadsH2O → Cd(OH)2 + X H2O

From the initial weight loss of 2.63%, it is possible for us to estimate 
the amount of water exists in the as prepared Cd(OH)2. From the 
weight loss, the water absorption in molar fraction has been calculated 
as 0.0215 M (moles of H2O per mole of Cd(OH)2). Therefore, the 
possible dehydration reaction is modified as 

Cd(OH)2
*0.0215M H2O → Cd(OH)2 + 0.0215M H2O

The second stage of weight loss occurring between 157-244°C may 
be ascribed to the transformation of β-Cd(OH)2 into γ-Cd(OH)2. The 
third stage of weight loss predicted between 244-398°C is due to the 
decomposition of γ-Cd(OH)2 into CdO. The fourth stage of minimum 
weight loss of 2.58% recorded between 398-729°C indicating the 
improved crystallinity of the CdO. A final and fifth stage of steep weight 
loss of 11.39% ascribed to the transformation of CdO nanocrystals into 
CdO2. The DTA curve of β-Cd(OH)2 shows two endothermic peaks 
at 204°C and 354°C corresponding to the removal of adsorbed water 
and decomposition of Cd(OH)2 into CdO respectively. Further, the 
DTA curve exhibits two exothermic peaks at 272°C and 695°C which 
are related to the phase transformation of Cd(OH)2 and conversion of 
CdO into CdO2 respectively. The obtained DTA results support the 
results of the TG curve. 

XRD analysis

The XRD patterns of as-synthesized and annealed products 
are shown in Figure 2. As synthesized products exhibited twelve 

diffraction peaks corresponding to the (001), (100), (101), (002), (102), 
(110), (111), (200), (201), (112), (103) and (202) planes of hexagonal 
β-Cd(OH)2 nanoparticles. The XRD patterns of the products annealed 
at 200°C show the presence of hexagonal as well as monoclinic (JCPDS: 
20-0179) phases of γ-Cd(OH)2. Further, on annealing at 300°C, in 
addition to the (020), (130) and (031) planes of monoclinic phase of 
γ-Cd(OH)2, a dominating cubic (111) peak of CdO is also seen. After 
annealing at high temperatures of 400 and 600°C, the diffraction peaks 
could be indexed as (111), (200), (220), (311) and (222) planes of cubic 
CdO (JCPDS: 05-0640). The XRD patterns of the sample annealed at 
400°C show the formation of pure cubic phase of CdO. However, the 
sample annealed at 600°C shows sharp diffraction peaks with reduced 
peak width as a result of improved crystallinity. Further annealing of 
the sample at 800°C leads to the formation of both cubic CdO and 
CdO2. 

The average grain size was calculated from the XRD patterns using 
the Debye Scherrer’s formula [16] for the as prepared and annealed 
products. The crystal structure, lattice parameters, and particle size of 
the as prepared and annealed products are given in Table 1. As can be 
seen from the table, the grain size increases with annealing temperature 
and thus the crystallization of the products is improved. The lattice 
constants calculated for all the products almost identical to the JCPDS 
values, especially the lattice parameters of the products annealed after 
400 and 600°C exactly match the JCPDS values. 
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Figure 1: TG-DTA Curves of nanosized Cd(OH)2.
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Figure 2: XRD patterns of as prepared and annealed CdO nanocrystals 
(*Cd(OH)2-Hexogonal; # Cd(OH)2-Monoclinic; + CdO-Cubic; $ CdO2-Cubic).
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FT-IR analysis

FT-IR analysis was used to study the β-Cd(OH)2 powder during 
heating. The heated samples were ground with KBr and pressed into 
pellets. IR spectra were recorded on samples after heat treatment at 
200, 300, 400, 600 and 800°C. As shown in Figure 3 the IR spectra of the 
as-prepared sample annealed at 100°C show a sharp and intense band 
at 3605 cm-1 arising from the stretching vibrations of structural OH 
groups confirming they are β-Cd(OH)2 [11,17]. Usually β-Cd(OH)2 
can show a band at around 3605 cm-1, whereas γ-Cd(OH)2 may 
provide absorption bands at around 3588 and 3531 cm-1. Absorption 
bands observed around 3447 and 1640 cm-1 are respectively assigned 
to the stretching and bending vibrations of H2O molecules. Further, 
on heating at 200°C, the sharpness of the band at 3603 cm-1 decreases 
and a new band at 3522 cm-1 emerges. This indicates the conversion 
of β-Cd(OH)2 into γ-Cd(OH)2. Upon heating at 300°C, the absorption 
band at 3603 cm-1 completely disappeared. Since the absorption bands 
of γ-Cd(OH)2 are predicted at 3524 and 3584 cm-1, the observation 

confirms a complete transformation from β-Cd(OH)2 to γ-Cd(OH)2 
[18]. According to the literature, the bands in between 800-1400 cm-1 
belong to the Cd-O vibration [19]. In addition, peaks around 685 and 
447 cm-1 could be ascribed to the Cd-O stretching mode [14]. After 
being at 400°C, the formation of CdO is characterized by the sharp 
bands positioned at 1383, 686 and 447 cm-1. On further annealing (600 
and 800°C) the characteristic peaks of Cd-O are broadened as a result 
of increased particle size.

Photoluminescence

The room temperature Photoluminescence (PL) spectra of as 
prepared and annealed products with 250 nm excitation are shown in 
Figure 4. All the products show three emission peaks positioned at 343, 
401 and 527 nm. The peak appearing at 343 and 401 nm are assigned 
to the near band edge emission of CdO originating from excitonic 
transitions between the electrons in the conduction bands and the holes 
in the valence bands. The emission peak at 527 nm may be ascribed 
to structural defects such as vacancies and surface traps [20,21]. With 
such visible emission, the CdO nanocrystals can be utilized in the 
industry of high-quality monochromatic laser. 

As a general behavior, the PL spectra of the CdO nanomaterials 
showed a relatively broad less intense UV and visible emission bands 
as the annealing temperature is raised. This is due to the fact that 
the oxygen vacancy concentration decreases after annealing at high 
temperatures. However, the position of the emission bands are not 
majorly changed as the annealing temperature is raised from 200-
800°C. This suggests that these emission bands are weakly associated 
with the band gap properties.
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Figure 3: FT-IR spectra of as prepared and annealed CdO nanocrystals.
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Figure 4: PL emission spectra of as prepared and annealed CdO nanocrystals.
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Figure 5: FE-TEM micrographs of CdO nanocrystals annealed at 400°C.

Temperature
(°C)

Product Crystal 
structure

Lattice parameters (Å) Particle 
size
(nm)Slandered 

values
Calculated 

values
100 Cd(OH)2 Hexagonal a=3.494

c=4.710
a=3.4973
c=4.791

41.29

200 Cd(OH)2 Hexagonal a=3.5002
c=4.8132

38.96

Cd(OH)2 Monoclinic a=5.63
b=10.18
c=3.4127

a=5.0231
b=9.9507
c=3.4127

34.52

300 Cd(OH)2 Monoclinic a=5.0131
b=9.9317
c=3.4012

99.82

CdO Cubic a=4.695 4.7004 19.15
400 CdO Cubic 4.6963 64.63
600 CdO Cubic 4.6960 86.46
800 CdO Cubic a=4.695 4.6984 98.61

CdO2 Cubic a=5.313 5.0789 17.20

Table 1: Crystal structure, lattice parameters, and particle size of the as prepared 
and annealed products.
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Field emission-transmitting electron microscope analysis

FE-TEM analysis was used to evaluate the shape and size of the 
CdO nanoparticles. FE-TEM micrographs of CdO annealed at 400°C 
are shown in Figure 5a and b. The annealed sample is constituted of 
pseudo spherical 60 nm sized particles. The entire observed particles 
have almost same diameter. The value of crystallite size obtained from 
the FE-TEM analysis is in good agreement with the value obtained 
from the Scherrer’s formula. 

Magnetic characterization

The magnetic behavior of CdO nanoparticles has not been much 
investigated so far. Vibrating sample magnetometer was used to study 
the magnetic properties of CdO nanocrystals at different growth 
temperatures. Figure 6 a-e shows the hysteresis loops for as prepared and 
annealed CdO nanocrystals. It can be observed that both as-prepared 
and annealed formulations reveal typical paramagnetic behavior. The 
paramagnetism of the products is clearly shown by coercivity (Hc) 
saturation magnetization (Ms) and remnant magnetization (Mr) listed 
in Table 2. The saturation magnetization is the maximum induced 
magnetic moment that can be obtained in a magnetic field, beyond 

this field no further increase in magnetization occurs. As shown in 
Figure 6c and Table 2, the effect of 400°C of annealing resulted in an 
increase of the saturation magnetization by almost 20%. Coercivity is 
the reverse magnetic field required to reduce the net magnetization to 
zero. For magnetic materials, it is necessary to reduce the coercivity as 
a way to control the energy losses. As shown in second column in Table 
2, as prepared and annealed at 400°C CdO nanocrystals have relatively 
lower coercivity compared with that of other annealed products. 
Simply, remnant magnetization (Mr) can be defined as the remaining 
magnetic momentum after realizing the magnetic field. Low remnant 
magnetization materials are classified as magnetically clean materials. 
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Figure 6: M-H loops of as prepared and annealed CdO nanocrystals.

Temperature (°C) Coercivity (Hc)
Magnetization

×10-6emu
Retentivity

×10-6

As prepared 1921.4 220.90 12.540
200 2839.7 179.67 16.317
400 1895.3 268.10 13.453
600 4078.5 127.14 31.729
800 3095.1 152.68 32.833

Table 2: The paramagnetism of the products is clearly shown by coercivity (Hc) 
saturation magnetization (Ms) and remanent magnetization (Mr) listed.
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In some distinct fields, low remnant magnetization is highly desirable 
for instance in data storage applications. As shown in the last column 
in Table 2, both as prepared Cd(OH)2 and CdO annealed at 400°C have 
low remnant magnetization. 

Conclusion
In conclusion, nanometer sized particles of CdO have been 

successfully synthesized by thermal decomposition of β-Cd(OH)2 at 
400°C. The results of XRD and FT-IR analyses confirmed the formation 
of CdO phase. Thermal annealing on CdO has a considerable effect of 
increasing the particle size. The prepared CdO showed visible emission 
at 527 nm that can be used in the preparation of gas sensors. FE-TEM 
analysis of CdO shows the pseudo spherical particles with diameter 
around 60 nm. The CdO nanocrystals annealed at 400°C show low 
values of coercivity and remnant magnetization suggesting potential 
usage in data storage applications.
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