eISSN: 09748369, www.biolmedonline.com

Effect of Rohitakarista (RHT), an ayurvedic formulation, on the lipid profile of rat plasma after chronic administration

¹M Obayed Ullah^{*}, ²Kaiser Hamid, ³K Ashfaqur Rahman, ³MSK Choudhuri

 ¹ School of Chemistry and Molecular Bioscience, The University of Queensland, QLD, Australia.
² Department of Pharmacy, Southeast University, Banani, Dhaka, Bangladesh.
³ Department of Pharmacy, Faculty of Biological Science, Jahangirnagar University, Savar, Dhaka - 1342, Bangladesh.

*Corresponding Author: obayed.obhi@yahoo.com

Abstract

Rohitakarista (RHT), a popular Ayurvedic formulation, is the preparation of *Tecomella undulate* with other medicinal plants. In this study, the lipid profile of rats' plasma was studied after chronic administration of RHT usually used in the disease of spleen, abdomen and localized abdominal swelling or tumor. The animal was albino rats (*Rattus novergicus*: Sprague-Dawley strains) and RHT was administered per oral route at a dose of 100mg/kg body weight, once daily, up to 46 days for all the experiments. Forty rats, equally of both sexes, were randomly grouped into four where one male and one female group were used as control and other groups were used as test. In both of the male and female rats there was a statistically very high significant decrease in the Triglycerides (p=0.001***). On the contrary, a statistically very highly significant increase in the total cholesterol (p=0.001***), VLDL (p=0.001***) and HDL (p=0.001***) was noted. Similar results were observed in case of female rats. Also the increase in LDL (p=0.028*) was statistically significant for both of the sexes of RHT treated rats.

Keywords: Lipid profile; Rohitakarista; RHT; Ayurvedic formulation; Rat plasma.

Introduction

Ayurvedic drugs remains as one of the most ancient and yet living traditions practiced widely in various parts of the world including India, Sri Lanka and other countries and has a sound philosophical and experiential basis (Dahanukar and Thatte, 2000; Chopra and Doiphode, 2003). Ayurvedic practice offers an integrated approach for the prevention and healing through a system of lifestyle interventions and natural therapies.

"Rohitakarista" is an OTC drug in Avurvedic treatment and used traditionally for the treatment of pliha (disease of spleen), udara (disease of abdomen), gulma (localized abdominal swelling or tumour). Actually, it is the preparation of Tecomella undulate stem and bark with some other medicinal plants in small amount (Ullah et al., 2008). Tecomella undulata (Smith) Seem commonly known as `Rajasthan Teaka is one of the codominant species in the desert of western Rajasthan (Arya et al., 1992). Isolation of different chemical constituents including two flavones namely cirsimaritin and cirsilineol (Azam and Ghanim 2000) have been reported from Tecomella undulate. Among the other plants of this formulation the oil of Cinnamomum zeylanicum has shown various therapeutic (Lawless, 2002) actions which includes antimicrobial, antioxidant (Baratta et al., 1998a) fungicidal activity and against

26

anthracnose and crown rot pathogens (Ranasinghe et al., 2002). Elettaria cardamomum (Linn.) which is an herbaceous perennial of the ginger family (Zingiberaceae) has been traditionally used to treat skin condition and in digestion (Nair et al, 1998). Piper longum Linn. is a member of the family piperaceae used traditionally for the treatment of intestinal ailments (Satayvati et al., 1987). Terminalia bellerica belongs to the family Combretaceae and routinely used as traditional medicine to get remedies from several ailments such as fever, cough, diarrhea, skin diseases and oral thrush (Rastogi et al., 1999). Emblica officinalis is a principal constituent of many Ayurvedic preparations (Scartezzini and Speroni, 2000). E. officinalis which is a gastroprotective (Al-Rehaily et al., 2002), cytoprotective, and immunomodulating (Sai Ram et al., 2002) possess radiation protective activity (Scartezzini and Speroni, 2000), antidiabetic activity (Sabu and Kuttan, 2002), inhibits clastogenicity of benzopyrene and cyclophosphamide (Sharma et al., 2000; Haque et al., 2001), Terminalia chebula (Family, Combretaceae), is commonly known as Black Myroblans in English and Harad in Hindi, indigenous in Pakistan and India among many Asian and African countries, is a popular folk medicine used for the treatment of cancers (Hartwell, 1982). In the present study,

the investigation for the effect of this formulation on lipid profile will help us to develop a new traditional medicine for the hyperlipidemic patient especially with diabetic complication.

Materials and Methods

Chemicals and Reagents

All other reagents and chemicals that were used in this work were of analytical grade and were prepared in all glass-distilled water. To evaluate the lipid profile of Rohitakarista (RHT), it was collected from Sree Kundshawri Aushadhalaya Ltd, Chittagong.

Dose and route of administration

The liquid Rohitakarista was administered at a volume such that it would permit optimal dosage accuracy without contributing much to the total increase in the body fluid. For investigating the lipid profile, the drugs were administered per oral route at a dose of 100mg/kg body weight. For all the studies, the drug was administered orally [per oral (p.o.) route]. Ketamine were administered intraperitoneally (500 mg/kg i.p.).

Experimental animals and Management

Forty eight-week old albino rats (Rattus novergicus : Sprague-Dawley strain,) of both sexes, bred and maintained at the Animal House of the Department of Pharmacy. Jahangirnagar University, were used in the toxicological experiment. These animals were apparently healthy and weighed 50-70 g. The animals were housed in a well ventilated hygienic experimental animal house under environmental and adequate constant nutritional conditions throughout the period of the experiment. All of the rats were kept in plastic cages having dimensions of 30 x 20 x 13 cm and soft wood shavings were employed as bedding in the cages. Feeding of animals was done ad libitum, along with drinking water and maintained at natural day night cycle. They were fed with "mouse chow" (prepared according to the formula developed at BCSIR, Dhaka). All experiments on rats were carried out in absolute compliance with the ethical guide for care and use of laboratory animals.

Before starting an experiment the animals were carefully marked on different parts of their body, which was later used as identification mark for a particular animal, so that the response of a particular rat prior to and after the administration could be noted separately. A group of equal number of rat as the drug treated group was simultaneously employed in the experiment. They were administered with distilled water as placebo as par the same volume as the drug treated group for the same number of days and this group served as the control. Prior to the experiment, they were randomly divided into 4 groups of 10 animals / sex. Thus ten rats were taken for each group for both control and the experimental group.

Preparation of the Plasma for intended Test

At the due of the 90-day treatment period, the animals were fasted for 18 hours and also twenty-four hours after the last administration. the animals were anaesthetized using i.p. Ketamine (500 mg/kg i.p.). Blood samples were collected from post vena cava and transferred into heparinised tubes immediately. Blood was then centrifuged at 4,000 g for 10 min using bench top centrifuge (MSE Minor, England) to remove red blood cells and recover plasma. Plasma samples were separated and were collected using dry Pasteur pipette and stored in the refrigerator for analyses. All analyses were completed within 24 h of sample collection.

Determination of Lipid profile

Triglycerides, Total Cholesterol and HDL concentration were evaluated according to the instruction of manufacturer of assay kits (purchased from Sigma Chemical Co, St Louis, MO, USA). According to Friedewald's formula (Friedewald et al., 1972), VLDL and LDL were calculated as: VLDL cholesterol = TG/5 and LDL cholesterol = TC – (VLDL+HDL cholesterol).

Statistical Analysis

The group data are expressed as Mean \pm SEM (Standard Error of the Mean). Unpaired "t" tests were done for statistical significance tests. SPSS (Statistical Package for Social Science) for WINDOWS (Ver. 11) was applied for the analysis of data. Differences between groups were considered significant at p < 0.05, 0.01 and 0.001.

Results

In the male rats there was a statistically significant decrease in the Triglycerides $(p=0.001^{***})$. On the contrary a statistically very highly significant increase in the total cholesterol $(p=0.001^{***})$, VLDL $(p=0.001^{***})$ and HDL $(p=0.001^{***})$ was noted. Also the increase in LDL $(p=0.028^*)$ was statistically significant. Like male, the decrease of Triglycerides was statistically very high significant $(p=0.001^{***})$ for female rats. Similar

results were found for total cholesterol $(p=0.001^{***})$, VLDL $(p=0.001^{***})$ and HDL $(p=0.001^{***})$ which were statistically very high significant. For female, the increase in LDL $(p=0.034^{*})$ was statistically significant (Table 1, Figure 1 and Figure 2).

Discussion

During the study, for both of male and female rats, similar trend of changes of parameters of lipid profile was found. For both of the sexes there was a statistically significant decrease in the Triglycerides level. On the contrary, a statistically very highly significant increase in the total cholesterol. VLDL and HDL was noted in case of male and female. Irrespective of sexes, also the increase in LDL was statistically significant. The increase in plasma cholesterol, triglycerides, LDL and VLDL and decrease in HDL is related with blood glucose level (Mitra et al., 1995) where hormonesensitive lipase (HSL) enhance release of free fatty acids from adipose tissue (Al-Shamaony et al., 1994). The excess fatty acids in the plasma converted to phospholipids and cholesterol in the liver which later release into blood in the form of lipoproteins (Bopanna et al., 1997). There are some other factors also related to the increase of lipid components in plasma. There is no clear correlation among the changes of lipid components as TG is decreased but other component like TC, LDL and VLDL is increased which is unusual. RHT reduced TG, like other plants constituents (Lee et al., 2000), which could be interpreted that RHT increased lipase acivity which hydrolysed TG. However, the increase in TC, LDL and VLDL contribute in the development of hyperlipidemia (Ross, 1999), demands further study for exact interpretation of the result. Increase of these components are a risk factor for coronary heart disease (Mironova et al, 2000) may have relation with blood glucose level (Pushparaj et al, 2000; Pepato et al, 2003) although it was not studied. RHT may potentiate the activity of hydroxyl-methylglutaryl-CoA reductase is the main factor for cholesterol biosynthesis. Although the highly significant increase in HDL is positive, the changing pattern of HDL is not usual with the changes of TC, LDL and VLDL as they were also increased high significantly.

Conclusion

The result of triglycerides is not congruent with the results of other lipid components. Further study may help to interpret the result precisely. More investigations are necessary to come to a decision for the use of this formulation in diabetic complications.

References

Al-Shamaony L, Al-Khazraj SM, Twaij AA, 1994. 1Hypoglycaemic effect of *Artemisia herba alba*. II. Effect of a valuable extract on some blood parameters in diabetic animals, Journal of Ethnopharmacology, 43: 167-171.

Al-Rehaily AJ, Al-Howiriny TA, Al-Sohaibani MO, Rafatullah S, 2002. Gastroprotective effects of "amla" *Emblica officinalis* on in vivo test models in rats. Phytomedicine, 9: 515–522.

Arya S, Toky OP, Harris SM, Harris PJC, 1992. *Tecomella undulata* (rohira): A valuable tree of the Thar desert. International Tree Crops Journal, 7: 141-147.

Azam MM, Ghanim A, 2000. Flavones from leaves of *Tecomella undulate* (Bignoniaceae), Biochemical Systematics and Ecology, 28 (8): 803-804.

Baratta MT, Dorman HJ, Deans SG, Biondi DM, Ruberto G, 1998b. Chemical composition, antimicrobial and antioxidative activity of laureal, sage, rosemary, oregano and coriander essential oils. Journal of Essential Oil Research, 10: 618– 627.

Bopanna KN, Kannan J, Sushma G, Balaraman R, Rathod SP, 1997. Antidiabetic and antihyperlipaemic effects of neem seed kernel powder on alloxan diabetic rabbits. Indian Journal of Pharmacology, 29: 162-167.

Chopra A, Doiphode V, 2002. Ayurvedic medicine: Core concept, therapeutic principles, and current relevance. Medical Clinics of North America, 86: 75–89.

Dahanukar S, Thatte U, 2000. Ayurveda Revisited, Popular Prakashan, Mumbai, 3rd edn.

Friedewald WT, Levy RI, Fredrickson DS, 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6): 499-502.

Haque R, Bin-Hafeez B, Ahmad I, Parvez S, Pandey S, Raisuddin S, 2001. Protective effects of *Emblica officinalis* Gaertn. In cyclophosphamidetreated mice. Human and Experimental Toxicology, 20: 643–650.

Hartwell JL, 1982. Plants Used Against Cancer. Quarterman Publications, Incorporated, Lawrence, MA, USA.

Lawless J, 2002. The encyclopedia of essential oils: the complete guide to the use of aromatic oils in aromatherapy, herbalism, health & well-being. Thorsons: London. Mitra SK, Gopumadhavan S, Muralidhar TS, Anturlikar SD, Sujatha MB, 1995. Effect of D-40, a herbomineral preparation on lipid profile, glycated hemoglobit, Indian Journal of Experimental Biology. 33: 798-800.

Nair S, Nagar R, Gupta R, 1998. Antioxidant phenolics and flavonoids in common Indian foods. Journal of Association of Physicians (India), 46: 708-710.

Pepato MT, Baviera RC, Vendramini MP, Perez IC, Kettelhut, Brunetti IL, 2003. *Cissus sicyoides* (Princess wine) in the long term treatment of streptozotocin-diabetic rats. Biotechnology and Applied Biochemistry, 37: 15-20.

Pushparaj P, Tan CH, Tan BK, 2000. Effects of Averrhoa bilimbi leaf extract on blood glucose and lipids in streptozotocin-diabetic rats. Journal of Ethnopharmacology, 72: 69-76.

Ranasinghe L, Jayawardena B, Abeywickrama K, 2002. Fungicidal activities of essential oils of Cinnamomum zeylanicum (L.) and Syzigium aromaticum. Letters in Applied Microbiology, 35: 208–211.

Rastogi P, Mehrotra BN, 1999. Compendium of Indian Medicinal Plants, Drug research perspective, CDRI Lucknow and NISCOM, New Delhi, 2: 1-859. Sabu MC, Kuttan, Ramadasan, 2002. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. Journal of Ethnopharmacology, 81: 155–160.

Sai Ram K, Rao CV, Dora BM, Vijay Kumar K, Agrawal VK, Goel RK, 2002. Antiulcerogenic effect of methanolic extract of Emblica officinalis: an experimental study. Journal of Ethnopharmacology, 82: 1–9.

Satayvati GV, Gupta AK, Tandon A, 1987. Medicinal Plants of India, ICMR Publications, New Delhi, 2: 425-456.

Scartezzini P, Speroni E, 2000. Review on some plants of Indian traditional medicine with antioxidant activity. Journal of Ethnopharmacology, 71: 23–43.

Sharma N, Trikha M, Raisuddin S, 2000. Inhibitory effect of *Emblica officinalis* on the in vivo clastogenicity of benzo(*a*)pyrene and cyclophosphamide in mice. Human and Experimental Toxicology, 19: 377–384.

Ullah MO, Uddin J, Hamid K, Kabir S, Rahman MA, Choudhuri MSK, 2008. Studies of various biochemical parameters of rat plasma following chronic administration of "Rohitakarista" - An Ayurvedic Formulation. Pakistan Journal of Biological Sciences, 11 (16): 2036-2039.

Name of Plants	Used Parts	Botanical Name	Family	Amount		
Rohitaka	Stem & Bark	Tecomella undulata	Bignoniacea	4 800 kg		
Water for decoction						
reduced to						
Guda (Molasses or Brawn sugar)						
Amalaki	Fruit powder	Embelica officinalis	Euphorbiaceae	48 g		
Bibhitaka	Fruit powder	Terminalia beleracia	Combretaceae	48 g		
Cavya	Stem	Pipper retrofractum	Piperaceae	48 g		
Citraka	Root	Plumbago zeylanica	Plumbaginaceae	48 g		
Dhataki	Flower	Woodfordia	Lythraceae	768 g		
		fruticosa				
Ela	Sod	Elettaria	Scitaminaceae	48 g		
		cardamomum				
Haritaki	Fruit powder	Terminalia chebula	Combretaceae	48 g		
Pippali	Fruit	Pipper longum	Piperaceae	48 g		
Pippali mula	Root	Pipper longum	Piperaceae	48 g		
Rohitaka patra	Leaf	Tecomella undulata	Bignoriacea	48 g		
Sunthi	Rhizome	Zingiber officinale	Zingiberaceae	48 g		
Tvak	Stem & Bark	Cinnamomum	Lauraceae	48 g		
		zeylanicum				

Table 1: The plants and ingredients used in the formulation of Rohitakarista (RHT).

Parameters	Male Rats			Female Rats		
	Control (n=	RHT (n= 10)	P values	Control (n=	RHT (n= 10)	P values
	10)			10)		
Triglycerides	96.47 ± 1.1113	42.7500 ± 1.2076	0.001***	97.9667 ± 3.5946	70.3778 ± 1.3073	0.001***
					0	1
Total	69 19 + 1 6064	70.0000 + 4.0050	0.001***	75 2444 + 1 6415	88 4889 + 2 0884	0.001***
cholesterol	00.10 ± 1.0904	78.2300 ± 1.6352	0.001	70.2444 ± 1.0410	00.4000 ± 2.0004	0.001
		37.7800 ± 0.7223	0.001***	34.3778 ± 1.0118	42.1000 ± 1.3489	0.001***
HDL	33.01 ± 0.8822	0				
	10.1 ± 0.7734	21.5800 ± 0.6883	0.028*	19.6556 ± 0.6976	22.2556 ± 0.8686	0.034*
LDL	19.1 ± 0.7734		0.004***	17 7444 . 0 4295	20.0779 + 0.2279	0.001***
	14.75 ± 0.7606	19.1400 ± 0.7850	0.001***	17.7444 ± 0.4385	20.9776±0.2278	0.001
VLDL						

Table 2: Changes in lipid profile after chronic administration (100 mg Kg⁻¹) RHT.

Graph 1: Comparative graphical representation of lipid profile between control and drug male rats.

Graph 2: Comparative graphical representation of lipid profile between control and drug female rats.