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Introduction
The boundary layer theory had been presented in 1904 by Prandtl 

[1]. The problem of boundary layer flow and heat transfer over a moving 
or stretching surface is of interest in numerous industrial applications 
such as polymer extrusion processes where the object enters the fluid 
for cooling below a certain temperature, hot rolling, paper production, 
wire drawing, aerodynamic extrusion of plastic sheets, the boundary 
layer along a liquid film and condensation process of metallic plate in 
a cooling bath and glass.

The boundary layer behaviour on moving surfaces in a viscous fluid 
at rest is considered by Sakiadis [2,3] whose work was subsequently 
extended by [4-14]. Lin and Shih [15,16] considered the laminar 
boundary layer and heat transfer along horizontally and vertically 
moving cylinders with constant velocity and found that the similarity 
solutions could not be obtained due to the curvature effect of the 
cylinder.

The steady flow of viscous and incompressible fluid outside of 
a stretching hollow cylinder in an ambient fluid at rest is studied by 
Wang [17]. General boundary-layer equations governing steady, 
laminar, hydromagnetic flow and heat and mass transfer over a 
permeable cylinder moving with a linear velocity in the presence of heat 
generation/absorption, chemical reaction, suction/injection effects and 
uniform transverse magnetic field are developed by Chamkha [18].

In the present work, the effect of magnetic field on flow and heat 
transfer of an incompressible viscous fluid over a stretching horizontal 
cylinder in the presence of heat source or sink with suction/injection 
is discussed numerically. The similarity solutions may be obtained by 
assuming that the cylinder is stretched with linear velocity in the axial 
direction. The present study may be regarded as an extension of Ishak 
and Nazar [19].

Mathematical Formulation
Consider a steady, axisymmetric boundary layer flow of an 

incompressible viscous fluid along a continuously stretching 
horizontal cylinder of radius R  subjected to a uniform magnetic 
field of intensity 0B  in the radial direction as shown in Figure 1. The 
cylinder is being stretched and the fluid is being moved along the 
axial direction x  and the radial coordinate r  is perpendicular to the 
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Abstract
Effect of magnetic field on flow and heat transfer of an incompressible viscous fluid over a stretching horizontal 

cylinder in the presence of heat source or sink with suction/injection is discussed numerically. The governing 
boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to 
solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made 
with previously published results in some special cases, and found to be in a good agreement.

cylinder axis. The stretched surface has the velocity 0( ) ( )wU x U x= 

and the temperature distribution 0( ) ( )n
wT x T T x∞= +  . If a heat 

source (sink) is existed and the effect of the induced magnetic field is 
neglected, the continuity, momentum and energy equations governing 
such type of flow will be written as
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subject to the boundary conditions

( ), , ( )w wu U x v V T T x= = = at Rr = ,

0,u T T∞→ → as r →∞ ,                                                                     (4)

where V  is the uniform velocity of suction ( 0V < ) or injection ( 0V > ).

The equation of continuity is satisfied if we choose a stream 
function ( , )x rψ  such that 1u r rψ−= ∂ ∂  and 1v r xψ−= − ∂ ∂ . The 
similarity transformations
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will be substituted into equation (2) and equation (3) to obtain the 
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following system of ordinary differential equations

( ) 21 2 2 0,f f f f f M fγ η γ′′′ ′′ ′′ ′ ′+ + + − − =
                                     (6)

( ) ( )1 2 2 Pr 0,f n fγ η θ γ θ θ θ δ θ′′ ′ ′ ′+ + + − + =
                                 (7)

subject to the boundary conditions

0(0) , (0) 1, (0) 1,f f f θ′= − = =

( ) 0, ( ) 0,f θ′ ∞ → ∞ →                                                                            
(8)

where the primes denote the differentiation with respect to ,η  
( )1 21

0R Uγ ν−=   is the curvature parameter, ( ) ( )2
0 0M B Uσ ρ=   

is the magnetic parameter, Pr ν α=  is the Prandtl number, 
( ) ( )0 0Q Uδ ν κ=   is the heat generation ( 0)δ >  and absorption 

( 0)δ <  parameter and 1 2
0 0( )f U Vν=   is the suction 0( 0)f <  or 

injection 0( 0)f >  parameter.

The physical quantities of interest here are the skin friction 
coefficient fC  and the local Nusselt number xNu  which are defined as

2
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where ( )w r R
u rτ µ

=
= − ∂ ∂ the surface is shear stress and 

( )w r R
q T rκ

=
= − ∂ ∂  is the surface heat flux. Substituting the similarity 

transformations equation (5) into equation (9) yields
1 Re (0)
2 fC x f ′′= − , Re (0),uxN x θ′= −                                       (10)

where x x=   and Re wU ν=  .

Numerical Solution
Equations (6) and (7) subject to the boundary condition (8) are 

converted into the following simultaneous system of first order 
differential equations as follows:

1 2,y y′ =

2 3,y y′ =

2
3 3 1 3 2 2

1 2 ,
1 2

y y y y y M yγ
γ η

 ′ = − − + + +

4 5,y y′ =

5 5 1 5 2 4 4
1 2 Pr Pr ,

1 2
y y y y n y y yγ δ

γ η
′  = − − + − +                        (11)

where 1y f=  and 4y θ= .

The initial conditions are

1 0 2 3 1 4 5 2(0) , (0) 1, (0) , (0) 1, (0)y f y y s y y s= − = = = = ,                  (12)

where 1s  and 2s  are priori unknowns to be determined as a part of 
the solution.

By using Mathematics, a function 1 2( , )F s s  is defined such that
1 2[ , ] [ (11 12)]F s s NDSolve system= − . The values of 1s  and 2s  

are determined upon solving the equations, 2 max( ) 0y η =  and
4 max( ) 0y η = . A suitable value of η  is taken and then increased to 

reach maxη  such that the difference between two successive values of 
1s  and those of 2s  is less than 710− . Once 1s  and 2s  are determined, 

the system will be closed and can be solved numerically again using 
NDSolve to get the final results.

Result and Discussion
The computations have been carried out for various values of the 

previously defined parameters , , Pr, ,M nγ δ  and 0f . The accuracy 
of the numerical scheme is checked out by performing various 
comparisons at different conditions with previously published papers. 
The results for the local Nusselt number, (0),θ′−  are compared with 
those reported in the references [8] for 0γ =  (flat plate), 0M =  (no 
magnetic field), 0δ =  (no heat source or sink) and 0 0f =  (no suction/
injection) with different values of Pr  and n  and they are found to be in 
a good agreement as shown in Table 1.

It is obvious that the value of skin friction coefficient, (0)f ′′− , is 
positive for all values of the different parameters as shown in Table 
2 and Table 3. Physically, the positive value of (0)f ′′−  means the 
surface exerts a drag force on the fluid which is suitable for our present 
problem because the stretching cylinder will induce the flow. The value 
of (0)f ′′−  is neither influenced by the variance of the Prandtl number 
Pr , the variance of the heat generation/absorption parameter δ  nor 
the variance of the surface temperature exponent n  while the value 
of (0)f ′′−  is increased by increasing the curvature parameter γ  or 
the magnetic parameter M  as shown in table 2 and table 3. On the 
other hand, value of (0)f ′′−  is decreased by increasing the suction/
injection parameter 0f . Hence, in order to minimize the skin friction 
value which we usually look for in an industrial application, one needs 
to decrease the magnetic field intensity and increase the radius of the 
stretching cylinder and the suction/injection velocity.

The value of local Nusselt number, (0)θ′− , is increased by increasing 
the curvature parameter γ  which means that the skin friction as well 
as the heat transfer rate at the surface are larger for a cylinder compared 
to the flat plate. Also, the value of (0)θ′−  is increased by increasing the 
surface temperature exponent n  and increasing the Prandtl number 
Pr  which explained by the fact that the higher Prandtl number fluid 
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Figure 1: Physical model and coordinate system.

Pr  n Grubka and Bobba [8] Ishak and Nazar [24] Present results

1 -2
-1
0
1
2

-1.0000
0.0

0.5820
1.0000
1.3333

-1.0000
0.0

0.5820
1.0000
1.3333

-1.0000
0.0

0.5820
1.0000
1.3333

10 -2
-1
0
1
2

-10.0000
0.0

2.3080
3.7207
4.7969

-10.0000
0.0

2.3080
3.7207
4.7969

-10.0000
0.0

2.3080
3.7207
4.7969

Table 1: Comparison of  (0)θ ′−  for various values of Pr   and n   when
0 0M fγ δ= = = =  .
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has a lower thermal conductivity (or a higher viscosity) hence its 
thermal boundary layer will be the thinner and its heat transfer will 
be the higher. On the other hand, the value of (0)θ′−  is decreased 
slightly by increasing the magnetic parameter M  due to the increase of 
resistance, produced by the transverse magnetic field Lorentz force, to 
the fluid transport phenomena hence the fluid thermal boundary layer 
will be thick and its heat transfer will decrease. Also, it is decreased 
by increasing the heat generation/absorption parameter δ  which is 
expected since the heat generation mechanism creates a layer of hot 
fluid near the surface which in turn reduces the rate of heat transfer 
from the surface. Finally, it is decreased by increasing the suction/
injection parameter 0f  which is expected since the suction velocity 
will slow down the flow.

The velocity profiles for various values of , Mγ  and 0f are 
presented in the figures from Figure 2 to Figure 4, respectively. Also, 
the temperature profiles for various values of , , Pr, ,M nγ δ  and 0f  
are presented in the Figures from Figure 5 to Figure 10, respectively. 
From Figure 2 and Figure 5, a cross over is found for varying the 
curvature parameter. The velocity and the temperature near the 

stretching surface decrease with raising the curvature parameter 
γ  while far from the stretching surface. If the magnetic parameter 
M  is increased, the velocity boundary layer is decreased while the 

temperature boundary layer is slightly increased as shown in Figure 
3 and Figure 6. The influence of increasing the Prandtl number Pr  
or the surface temperature exponent n  is to decrease the temperature 
boundary layer as shown in Figure 7 and Figure 8, respectively. On the 
other hand, increasing the heat generation/absorption parameter δ  
leads to increase the temperature boundary layer as shown in Figure 9. 
The effect of suction/injection parameter 0f  is to increase the velocity 
and the temperature boundary layers as shown in Figure 4 and Figure 
10 respectively.

Parameters (fixed values) Parameter (dif-
ferent values) (0)f ′′−          (0)θ ′−

0Pr 0.7, 0.3, 1, 0.5, 1M n fδ= = = = − =
                      
γ

0
0.5
1

0.7449
0.9291
1.1004

0.8071
1.0063
1.1881

   
01, Pr 0.7, 1, 0.5, 1n fγ δ= = = = − = M

0
1
2

0.9497
1.3880
1.7139

1.2084
1.1541
1.1215

01, 0.3, 1, 0.5, 1M n fγ δ= = = = − = Pr
0.7
3
10

1.1004
1.1004
1.1004

1.1881
1.2266
1.3152

01, 1, Pr 0.7, 0.5, 1M fγ δ= = = = − = n -2
-1
0
1
2

1.3880
1.3880
1.3880
1.3880
1.3880

0.3567
0.6593
0.9216
1.1541
1.3636

     
01, 1, Pr 1, 1, 1M n fγ = = = = = δ

-1
-0.5
-0.2

1.3880
1.3880
1.3880

1.3880
1.1616
0.9855

   
1, 0.3, Pr 0.7, 1, 0.5M nγ δ= = = = = − 0f

-1
0
1

2.0656
1.5160
1.1004

1.8482
1.4858
1.1881

Table 2: The values of  (0)f ′′−  and  (0)θ ′−  for various values of , , Pr, ,M nγ δ   
and  

0f .
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Figure 2: The velocity profiles ( )f η′   for various values of γ   at
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Conclusion
Numerical solutions have been obtained for the laminar boundary 

layer flow along a horizontal cylinder affected by a uniform magnetic 
field in the radial direction in the presence of heat source or sink with 
suction/injection. An appropriate similarity transforms were used to 
transform the momentum and the energy equations into a set of or-
dinary differential equations which are solved by using Mathematical. 
Numerical computations show that the present values of the rate of heat 

transfer are in a great agreement with those obtained by previous inves-
tigations. The following results are obtained:

1. The fluid velocity and temperature increase with the increase in 
the curvature parameter far from the stretching surface while 
they show the reverse near the stretching surface.

2. The fluid velocity increases with the increase in the suction/
injection parameter while it decreases with the increase in the 
magnetic parameter.

3. The fluid temperature increases with the increase in the magnet-
ic, heat generation/absorption and the suction/injection param-
eters while it decreases with the increase in the Prandtl number 
and the surface temperature exponent.

4. The skin friction can be minimized by decreasing the magnetic 
field intensity and increasing the radius of the stretching cylin-
der and the suction/injection velocity.

Nomenclature
 0B - Magnetic field intensity

 fC - Local skin friction coefficient

 f - Dimensionless stress functions

 0f - Suction/injection parameter

 M - Magnetic parameter
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at Pr 0.7, 1, 1,nγ= = =  00.5, 1fδ = − = .
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Pr 0.7, 0.3, 1,M γ= = =  1, 0.5n δ= = − .
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uxN - Nusselt number

n - Surface temperature exponent

 Pr - Prandtl number

 0Q - Uniform volumetric heat generation or absorption constant

wq - Surface heat flux

 Re - Reynolds number

T - Fluid temperature

wT - Temperature distribution of the stretching surface

0T - Reference temperature of fluid

T∞ - Ambient temperature of fluid

u - Fluid velocity along the  -axis

 wU - Stretching surface velocity

 0U - Reference velocity

v - Fluid velocity along the  -axis

V - Suction/injection velocity

r - Radial coordinate perpendicular to the cylinder axis

x - Axial coordinate of the cylinder

Greek letters

 α - Thermal diffusivity

δ - Heat generation/absorption parameter
γ - Curvature parameter
η - Dimensionless variable

θ - Dimensionless temperature function
κ - Thermal conductivity
µ - Fluid dynamic viscosity

ν - Fluid kinematic viscosity
ρ - Fluid density

σ - Electrical conductivity

wτ - Surface shear stress
ψ - Stream function



- Characteristic length

Superscript

' - Differentiation with respect to η  

Subscripts

w - Stretching surface conditions

0 - Fluid reference conditions

∞ - Fluid ambient conditions
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