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Introduction
Differential phenotype between white fat and brite fat

Adipose tissue is not only a type of connective tissue but an endocrine 
organ with two very important roles in the mammalian body: energy 
homeostasis and reproduction [1,2]. Apart from these, fat also prevent 
delicate organs and from mechanical stress. What should be noticed is 
that it is not the number of adipocytes that change in obesity (namely 
hyperplasia) but change in size (hypertrophy of adipocytes) [3]. 

Traditionally, fat can be metabolized into two difference types: 
white and brown fat. White fat could be found in models of obesity 
and metabolic syndrome, which make up the bulk of fatty tissue in 
the animals [4], and brown fat could be seen in the supraclavicular 
and spinal region of infants and rodents, and human adults also have 
brown fat specific depots [5]. White adipocytes are associated with very 
large lipid droplets with an energy storing effect [4], while brown fat 
is associated with smaller lipid droplets can dissipate stored chemical 
energy as an energy releasing phenotype [6]. Brown fat can be activated 
by either cold exposure or β adrenergic signalling and is linked to 
mitochondrial uncoupling protein (UCP1) to uncouple ATP from 
the electron transport chain, and lead energy consumption to combat 
hypothermia, obesity, and diabetes [7]. 

Brown fat comes from a Myf5+/Pax7+ cellular lineage, which is 
different from white fat, and muscle tissue also stems from this cellular 
lineage [8]. Although the cellular lineages are different, the core 
elements of the adipogenic cascade are shared by all types of fat. PPARγ 
is the main manager of fat cell formation, and Zfp423 is a significant 
transcriptional factor of adipocyte lineage with bZIP, CEBPα and β to 
be transcriptional cofactors, and this cascade works for both white and 
brown fat [9,10]. Moreover, CEBPα is locked in a differentiation loop 
with PPARγ, and one increase the other does as well [9]. Ebf2 is an 
important protein that recruits PPARγ in brown fat, and much of the 
specialized brown fat function is controlled by transcriptional cofactors 
such as Ebf2 [11]. Although they don’t bind DNA directly, they both 
control which targets will be bound and which will be activated [12]. The 
SNS plays a critical part in fat development as well, which distributes 
signals to both white adipose and brown adipose [13]. These different 
signals indicated that the effect of cold exposure is very different than 
food deprivation. 

Obesity has a whole body effect and can lead to diabetes, 
hypertension, and all known inflammatory markers are associated in 
obesity [14-16]. Adipocytes are a major source of TNFα and relate 
with recruit macrophages [17]. There are two types of macrophages: 
the classically activated M1 macrophages (release IL-6, are pro-
inflammatory) and the alternatively activated M2 macrophages (release 
IL 10, anti-inflammatory, involved in wound healing) [18]. The ratio of 
M1/M2 shifted to a pro-inflammatory state in obesity body [19], and 
these inflammations can cut off the adipocytes oxygen, resulting in an 
activation of HIF1α (oxygen sensing transcription factor) which lead 
to metabolic dysfunction [20]. Adipocytes are extremely beneficial 
and vital for homeostatic balance in normal body, but these indicated 
over nutrition leads to obesity, and switch the normal balance towards 
inflammation. 

Beside from white and brown fat, there is a third category of fat 
has been elucidated like “beige” or “brite” fat, which is a unique type 
of fat distinct from the other two types of fat [21]. Brite adipocytes are 
not from the same cell lineage like brown fat, they are from either trans 
differentiation of mature white adipose or unique precursor in white 
cells [22]. 

Beige cells could express abundant UCP1 and a broad gene 
program that is unique, and they can switch between an energy storing 
and energy releasing phenotype depends on environmental cues and 
conditions [23]. These brite cells have very low basal UCP1 expression 
like white adipose when unstimulated, while they will have turned to 
have a thermogenic profile similar to brown fat once stimulated [24]. 
Compared to classical brown fat, these cells have a coinciding but 
distinct gene pattern. Brite cell (which with low basal UCP1 expression 
and low uncoupled respiration like white fat) can be unstimulated by 
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Abstract
The increase in the prevalence of obesity represents a worldwide phenomenon and is correlated with several 

metabolic and cardiovascular diseases, and cardiovascular disease remains the leading cause of death worldwide. 
And epoxyeicosatrienoic acid (EET), correlated with heme oxygenase (HO), with emerge to be a promising strategy 
for pharmacological mediation. Moreover, inhibit soluble epoxide hydroxylase (sEH), the enzyme converts EET to 
less potent metabolite, could upregulate EET concentration, which could upregulate HO-1, working together to reduce 
inflammation and increase vasodilation, in order to improve endothelial and cardiac function. The EET-HO pathway 
has been indicated as a most potent target for reversing oxidative stress and pre-adipocyte differentiation, so as to 
moderate oxidative capacity in mitochondrial dysfunction. While EET agonists and sEH inhibitors are becoming one 
of the potential therapies, and some of them are already in clinical trials. This review serves to summarize the ability 
of EET and HO pathway in attenuating the clinical impairments of obesity and associated cardiovascular diseases.

EET Intervention on HO-1 Prevent Obesity Derived Cardiovascular Diseases
Lu Liu, Xin Huang, Jinliao Gao, Yusong Guo, Yanqi Di, Shasha Sun and Jian Cao*
Department of Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China



Citation: Liu L, Huang X, Gao J, Guo Y, Di Y, et al. (2018) EET Intervention on HO-1 Prevent Obesity Derived Cardiovascular Diseases. J Biomol 
Res Ther 7: 163. doi:10.4172/2167-7956.1000163

Page 2 of 12

Volume 7 • Issue 2 • 1000163J Biomol Res Ther, an open access journal
ISSN: 2167-7956

the stimulation with β adrenergic agonists, with the elevated levels 
of UCP1, while uncouple respiration to those of brown fat or above 
[25]. Brite cells are bifunctional; they can be fit for energy storage 
in absence of thermogenic stimuli, and can turn back to an energy 
releasing mechanism when necessary [26]. Moreover, brite fat contains 
a higher proportion of M2 macrophages, demonstrating a lean towards 
a healthier metabolic phenotype [27]. 

There are elements could induce browning of white adipocytes 
such as thyroid hormone T3, irisin, and cardiotrophin [28-30]. Irisin 
is a hormone released by the muscle during exercise, and the irisin 
response may be beige specific [29]. Brown and brite adipose tissues 
have a very different genetic profile, but UCP1 is shared by both types 
even the amount is variable, because brite tissue can change UCP1 
expression it needed [31]. 

PRDM16 is a significant transcriptional factor for brown adipocytes 
[32], and it was shown to be a determining factor in the muscle/brown 
adipose Myf5+ lineage [33]. The cells become muscle when PRDM16 
is knockout and become brown adipose when it overexpressed [31].

Moreover, all types of tissue can release adiponectin, leptin, 
and resistin [34]. Leptin endorses inflammation [35], adiponectin 
is approvingly adipose specific, and resistin is highly white adipose 
specific which could link obesity to insulin resistance [36]. Brown 
adipose may have the same adipokines as white adipose with a lower 
concentration, and it also has its own set of “batokines” such as IL-6 
[37], which indicated by the study that ablation of brown adipose has 
a much higher influence on systemic metabolism than simply UCP1 
deletion. 

There are very noticeable differences between white adipose and 
brown adipose, and brite adipose as a completely separate category on 
its own with a different set of gene, which the ability to switch between 
an energy releasing and storing phenotype, may hold a potential key to 
the obesity problem currently facing the world. 

Obesity and Cardiovascular Diseases
The increase in the prevalence of obesity represents a worldwide 

phenomenon and is correlated with several metabolic and cardiovascular 
diseases. Based on several researches, obesity was emphasized to 
be the central role in the development of metabolic syndrome, 
which is characterized with obesity, hypertension, hyperglycemia 
and hyperlipidemia, as well as to increase the susceptibility for 
cardiovascular disease and diabetes [38]. Obesity, which contain more 
and larger adipocyte, is showed with increases chronic low-grade 
inflammation, and is the key point in the proliferation of interrelated 
hyperglycemia and endothelial dysfunction due to elevated low-
density-lipoproteins (LDL) and oxidative stress [39,40]. High level of 
cardiac oxidative stress is the early stage of heart dysfunction due to 
obesity, and it was always after insulin resistance with altered fatty acid 
and glucose metabolism [41]. The alternations of electron transport 
chain proteins related to mitochondrial ATP production [42], and the 
etiology of obesity is linked to the imbalance in energy consumption 
and expenditure [43], leading to a decrease of the efficiency of cardiac 
work. Most of obese patients without hypertension will have early 
segmental systolic and diastolic dysfunctions even the global function 
is normal [44], and abnormal left ventricular energy metabolism has 
been detected. In obesity patients which developed into heart failure, 
left ventricular (LV) was observed increasing in both chamber size and 
wall thickness (LV hypertrophy), which leads to diastolic dysfunction 
and cardiac ischemia in obesity, and pericardial fat is significantly 

associated with LV diastolic dysfunction [45]. Therefore, obesity is a 
risk factor for cardiovascular morbidity and mortality, as it is associated 
with alterations in cardiac structure [46], and left ventricular changes 
[47], resulting into left ventricular hypertrophy. 

Heart and adipose tissue have a connection in regulation of energy 
metabolism [48]. Leptin was identified as an adipocyte-secreted 
hormone, which functions as a peripheral signal to communicate the 
organism’s energy reserve [49]. While the heart is also included in 
energy network through the regulation of cardiac hormones natriuretic 
peptides identified as blood pressure control [50]. The natriuretic 
peptides stimulate triglyceride lipolysis in adipoctyes, promote 
uncoupling of mitochondrial respiration and thermogenesis in brown 
adipocytes via p38 MAPK [51]. 

Moreover, we know that BMI and fat mass are main independent 
causes of plasma nephroblastoma overexpressed (NOV) concentration, 
and NOV is a circulating protein that is also detected in diverse 
human tissues including the adrenal cortex, central nervous systems, 
kidney, musculoskeletal, heart and blood vessels [52], indicating 
the importance of NOV during cardiac development and vascular 
homeostasis [53]. NOV belongs to CCN family, which composed of 
six members, NOV is CCN3 {PMC5055498}. Studies found out there is 
a significant gender effect on plasma NOV concentration with women 
displaying a higher level of circulating NOV compared to men [52]. 
And it indicated that the plasma lipid profile was connected to plasma 
NOV after adjustment for gender. It is notable that plasma NOV is 
also related to physical activity, which also control plasma triglycerides 
[54]. Moreover, Wnt1 inducible signalling pathway protein 1 (WISP-
1/CCN4) is a novel adipokine, which is upregulated in obesity, and 
induces a pro-inflammatory response in macrophages in vitro [55]. 
Wnts are signaling proteins that could control diverse biological 
processes, such as cell proliferation and angiogenesis [56]. While Wnt1 
is secreted from primary human endothelial cells, and Wnt1/b–catenin 
signalling stimulates angiogenesis [57]. Angiogenesis is vital for the 
restoration of the blood supply to the infarct area, and it has influence 
on the revascularization of the perinecrotic area leading to the recovery 
of viable myocardium [58]. While noncanonical Wnt signalling like 
wnt5a, upregulated in human visceral fat compared with subcutaneous 
fat in obese individuals, contributes to obesity-associated metabolic 
dysfunction by increasing adipose tissue inflammation [59,60]. And 
as NOV, wnt and inflammation are linked, it is important to keep the 
balance so as to treat obesity and associated diseases. 

Now these days, obesity becomes one of the new health problems 
especially when it occurs in cardiovascular diseases and browning 
the cardiac and peri-vascular adipose tissue is important in modulate 
cardiovascular risk [61] (Figure 1).

Mitochondrial Function and ROS in Obesity Induced 
Cardiovascular Diseases

Mitochondria in obese indexes showed decreased bioenergetics 
capacities and fatty acid oxidation, leading to lipid accumulation 
to muscular tissue [62]. And mice fed with high fat diet showed 
respiratory capabilities impaired by mitochondrial dysfunction [63], 
and the mitochondrial deficiency caused by insufficient antioxidant 
defences and overproduction of ROS become a potent source for 
energy-dependent disturbances such as inflammation [64]. ROS can 
be generated from many sources, such as nitric oxide (NO) synthases, 
cytochrome P450 enzymes and nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases [65]. ROS act as a signalling molecule 
in regulation of cellular events such as cell growth. However, 
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correspondence of SIRT expression with adiposity, insulin resistance, 
as well as inflammation and impaired mitochondrial quality 
control [83,84]. The downregulation of SIRT1 has been exhibited to 
subsequently decrease AMP-activated protein kinase (AMPK) [85], 
which acts as a vital role in the regulation of energy balance, could 
induce catabolic cellular states and promote fatty acid oxidation 
by modulating mitochondrial activity [86,87]. Whereas inhibition 
of AMPK could decrease adiponectin level while promote insulin 
resistance, increase abdominal obesity, upregulate LDL cholesterol, 
and reduce mitochondrial biogenesis [88-90], and the dyslipidemia 
subsequent from mitochondrial dysfunction may further deteriorate 
insulin resistance via altered fatty acid metabolism [91], which 
deteriorate obesity and associated metabolic diseases (Figure 1).

Epoxyeicosatrienoic Acids (EETs) Synthesis 
Epoxyeicosatrienoic acids (EETs) are lipid mediators, which 

derived from arachidonic acid (AA) by CYP 450 pathway [92]. It could 
regulate blood pressure, inflammatory and glucose homeostasis [93], 
while it could be further hydrolyzed to lass active diols by the enzyme 
soluble epoxide hydrolase (sEH) [94]. 

Arachidonic acid (AA) is the most biologically relevant omega-6 
polyunsaturated fatty acid (PUFA) and is present in phospholipids 
of the cell membrane, and it is able to constitute the backbone of a 
triglyceride, and the release of AA from phospholipids is achieved 
through the activity of the enzyme phospholipase A2 (PLA2) [95]. 
Eciosanoids are fatty acid metabolites derived from PUFAs. AA 
is subject to three metabolic pathyways: cyclooxygenase (COX) is 
responsible for the prostaglandins, and lipoxygenase (LOX) results 
in the leukotrienes, while cytochrome P450 (CYP) constitute a major 
metabolic pathway [96,97]. AA is oxidize by the CYP enzyme into 
two different reactions: olefin epoxidation, which generates four 
epoxiyeicosatrienoic acids (5, 6-EET, 8, 9-EET, 11, 12-EET and 14, 
15-EET) and hydroxylation (20-HETE) [98,99]. In human, CYP2C9, 
CYP2C19 and CYP2J2 are the major enzymes that convert AA to EETs, 
while 11, 12- and 14, 15-EETs are the main products [100,101]. 

EETs play a vital role in regulating physiological and 
pathophysiological processes, which formed endogenously in 
various tissues and exert potent biological effect on cellular 
functions [102]. However, via the activity of sEH, EET is converted 
into dihydroxyeicosatrienoic acid (DHET), which has a decreased 
activity [103]. sEH is present in many mammalian tissues, including 
the myocardium, adipose, liver, kidney and blood vessels [93]. The 
C-terminal domain of soluble epoxide hydrolase (sEH) enzyme 
is responsible for the hydrolysis of EETs, whereas the N-terminal 
domain has lipid phosphatase activity [71]. Inhibition of she results 
in EET accumulation and retention in tissues [104], and do benefit to 
cardiovascular diseases [103] (Figure 2).

Heme Oxygenase and its Derived Productions 
Studies have indicated that EET could upregulate heme oxygenase-

1(HO-1) activity and expression [97,105], which offers protection of 
vascular and regulation of adipocyte formation [106]. The mechanism 
by which EET increases HO-1 could be related to the increase in 
BACH1 which is a suppressor of HMOX1, regulated by EET through 
glucocorticoid and AP-1 binding sites [107], which subsequently 
increase HO activity. 

HO, an essential stress response protein, has two isoforms: HO-
1(inducible) and HO-2(constitutive) [108], can be metabolized into 
bilirubin, carbon monoxide and iron [109], so as to decrease the injury 

overexpression of ROS is associated with cell dysfunction and 
death [66], and mitochondria have been suggested to be the major 
intracellular site of ROS production [67]. While oxidative stress in 
mitochondrial dysfunction lead to downregulation of NO synthesis 
via upregulation of angiotensin II and 20-HETE, induces hypertension 
and vasoconstriction, oxidizes both low and high-density-lipoproteins, 
facilitates adipocyte differentiation and promotes inflammatory 
signalling [68-70]. 

Mitochondria are the primary source of intracellular energy, 
efficient mitochondrial function is critical [71]. The function of 
mitochondrial network depends on quality control, referring to fusion 
and fission. Mitofusin 1 and 2 (Mfn1 and 2) facilitate the mitochondrial 
fusion process [72], while COX-1 is related to the mitochondrial 
oxidative phosphorylation (OXPHOS) [73]. Brown adipose tissue is 
specialized to expend energy as heat by uncoupling respiration with 
its unique mitochondrial membrane embedded protein uncoupling 
protein-1 (UCP1), a process known as nonshivering thermogenesis 
[26], which increases heat production through an uncoupling oxidative 
metabolism from ATP production [74]. 

Proper mitochondrial function is necessary in tissues and organs 
in high energy demand, and multiple studies have indicated that 
mitochondria play a vital role in energy production, extending 
furthermore into thermogenesis, fatty acid oxidation, heme 
biosynthesis, as well as cell signalling [75,76]. The multifactorial nature 
of mitochondrial biology parallels the numerous pathophysiological 
fluctuations underlying metabolic detriments thought to develop 
as a result of mitochondrial dysfunction and disturbances in energy 
homeostasis [75,77]. 

Uncoupling of the electron transport chain in dysfunctional 
mitochondria results in overproduction of ROS, downregulation of 
ATP, extensive cell damage, and apoptosis of cardiomyocytes [78,79]. 
And in turn, the unbalance of nutrient and oxygen supply and undergo 
metabolic adaptation in cardiovascular diseases, which mitochondria 
is extremely sensitive to, leading to a progressive reduce of the 
mitochondrial function and loss of mitochondria structural integrity, 
associated with abnormalities in the respiratory chain and ATP 
synthesis and increase oxidative stress [80]. And the oxidative stress 
will make adipocyte into white fat, and deregulation of this process 
with failing heart and damaged mitochondria will make the situation 
more adverse.

Another contributor to adipose dysfunction is the NAD+/
SIRT pathway [81,82]. Several studies represented the negative 
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Figure 1: Obesity and associated metabolic diseases.
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from heme and ROS [110,111]. HO-1 can be induced by an extremely 
wide diversity of drugs and chemical agents, such as aspirin, statins, 
eicosanoids like EET and free metals [108].

Carbon monoxide (CO) has been studied in both cell and human 
physiology, and has many benefit including increasing mitochondrial 
function in mesenchymal stem cells [112,113], improving sepsis in 
stem cells [114], and modulating of inflammation [115,116]. Moreover, 
CO can act as a gasotransmitter, a potent regulator of vascular 
homeostasis, decreases vasoconstriction and stimulates vasodilation, 
and instantaneously increases insulin secretion [117]. 

The HO-1 derived bilirubin can prevent oxidant-mediated cellular 
damage and attenuate oxidant stress [118], and have the potential 
benefit to protect obesity and metabolic syndrome through increasing 
insulin sensitivity and suppressing chronic inflammation [119]. 
Moreover, studies indicated that bilirubin can inhibit the oxidation 
of low denisity lipoproteins (LDL) [120], and is associated with a 
decreased risk for coronary artery disease in humans [121,122]. 

The degradation of heme results in the dispersion of iron, which 
is known to dispose the production of ROS [123]. The upregulation of 
HO-1 correspondences a concurrent increase in anti-oxidant ferritin 
[124], the toxic effects of iron-mediated oxidative damage couple a 
parallel rise in ferritin concentrations as a means for anti-oxidant and 
anti-inflammatory response [125,126] (Figure 3).

Impact of EET and HO-1on Adipogenesis and Obesity 
A large evidence suggested that adipocyte oxidative stress is 

fundamental reason in the pathogenesis of obesity, and it can cause 
dysregulation of inflammation-related adipocytokines, leading to 
cardiovascular complications [115]. Adipocytes belong to mesodermal 
origin and bone marrow stromal cells, and serve as a reservoir 
for the preadipocytes recruitment and generation [127,128]. It is 
well known that during adipogenesis, upregulation of ROS will 
differentiate adipocytes produce much more ROS than preadipocytes 
[129]. Morphologically, this adipocyte differentiated under oxidizing 
conditions are investigated by Oil Red O detection of lipid accumulation 
[130]. 

The effect of EETs on adipogenesis and the associated signaling 
cascades involved in adipogenesis including HO-1, adiponectin, AMPK, 
and pAkT have been studied in recent years [131]. And it was known that 
the HO system act as an cellular antioxidant defense system in obesity 

and diabetes [109], whereas epoxides have anti-inflammatory [92] and 
antihypertensive effects [132] and EET suppression could contribute to 
hyperlidemic states. It is indicated that human MSC-derived adipocytes 
could express CYP 2J2 and produce EETs [105], which decreased 
adipocyte differentiation via an increase in HO-1 expression paralleled 
with a decrease in PPARγ, C/EBPα and FAS levels, suggesting that 
EETs can regulate lipid metabolism in developing preadipocytes so as 
to inhibit and/or delay adipocyte differentiation [133]. And EET could 
increase adipocyte proliferation by phenotypically reprogramming 
adipocytes to decrease the expression of PPARγ and mesoderm-
specific transcript (MEST), and form a module to switch to genetically 
reprogram the adipocyte phenotype to express less MEST and prevent 
hypoadiponectinemia [57,131,133]. Moreover, treat human MSCs with 
adipogenic media for two-week and bind with an additional 10 mM of 
glucose (hyperglycemic conditions) lead to an increase in adipogenic 
differentiation. While adipogenic differentiation decreased with the 
treatment of CoPP, demonstrating the predominance of preadipocytes, 
indicating the influence of HO-1 in the regulation of genes controlling 
adipocyte differentiation [134]. Therefore, MSC-derived adipocytes 
are not only a production of environmental stimuli and the right 
balance in ROS, but also the interaction of HO and EET contribute to 
adipogenesis and adipocyte function (Figure 4).

Impact of EET and HO-1on Obesity Induced Hypertension
Obesity is known to relate with an increase in sodium retention 

and volume expansion, which are the risk factors contribute to 
hypertension [135]. And Theken studied the relevance of EETs with 
hypertension in obese patients with or without CAD, and indicated 
that patients with obesity are associated with a low level of EET, and 
the CYP epoxygenase activity is suppressed and sEH metabolic activity 
is increased [136]. And it was studied that treat obese HO-2 KO mice 
with EET agonist could increase EET levels in kidney and vascular, 
with lowered blood pressure and decreased body weight gain and 
reduced subcutaneous and visceral fat, associated with an increase 
insulin sensitivity [106]. 

EETs, both autocrine and paracrine mediators, play an important 
role in the cardiovascular and renal systems [137]. Due to the strong 
vasodilatory actions within the endothelium and kidney, EETs act as an 
endothelium derived hyperpolarizing factor (EDHF) [138]. EETs dilate 
the preglomerular arterioles through Ca (2+)-activated K (+) channels 
in renal smooth muscle cell and hyperpolarize smooth muscle cells 
[139]. And EETs is also the second messengers for many paracrine and 
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hormonal agents such as vasodilatory substances, namely endothelin, 
angiotensin, NO, and PGI2.

It is known that the pleiotropic effects of EET could upregulate HO 
activity, and HO system could increase EET and adiponectin [140]. 
The antioxidant action of HO metabolites is related to extension of 
small adipocyte which associated with an increased adiponectin and 
its downstream signals including pAMPK, peNOS and induced NO 
bioavailability [141,142]. Upregulation of these pathways could improve 
vascular function and dominate of hypertension, and the increase in 
biliverdin from HO-1 could prevent EET from degradation by ROS 
and adiponectin [121]. Moreover, HO-derived CO is a vasodilator, 
which could regulate basal and constrictor induced vascular tone in 
blood vessels [143]. And study showed that chronic CO treatment with 
a CO-releasing molecule (CORM) could protect vascular function 
[144]. High fat diet rats treated with CORM-A1-derived CO showed 
decrease in body fat, insulin and fasting blood glucose, while with 
increase in oxygen consumption and heat production [145]. 

These results establish the interdependence of EET and HO-1 in 
preventing obesity and associated hypertension, activation of these 
pathways could protect the vasculature against damage associated with 
vascular disease (Figure 4).

Impact of EET and HO-1on Obesity Induced Endothelial 
Dysfunction and Arthrosclerosis

Endothelial cell dysfunction, verified by the diminished expression 
of CD31+ and/or thrombomodulin (TM) [146], located within 
atherosclerotic blood vessels, indicating an early feature of chronic 
cardiovascular diseases [147], and related to extra levels of ROS [148]. 
The abnormality of CD31+ gene was showed in the pathogenesis of both 
atherosclerosis and myocardial infarction, whereas a reduction in plasma 
TM was linked to an increased risk of myocardial infarction [149]. 
Reduced expression of CD31+ and TM in endothelial cells indicated 
endothelial cell death, associating with the progression of atherosclerotic 
heart disease [146], and the restoration of their expression could benefit 
atherosclerosis and myocardial infarction [149]. 

Inflammation, as well as endothelial cells injury, is critical 
contributor to atherosclerosis [150], the upregulation of IL-6 and 
TNF-α induced by chronic stress and angiotensin II leading to 
atherosclerosis [151]. Studies indicated that HO-1 suppress the 
proliferation of VSMCs through CO release [152] and inflammation 

alteration [153]. Monocyte chemoattractant protein-1(MCP-1) as a 
strong chemoattractant for macrophages turn mononuclear cells into 
macrophages, and nuclear factors adjust the MCP-1 transcription 
and expression in atherosclerotic plaque [154]. And HO-1 pathway 
could regulate MCP-1 secretion and ICAM-1 expression. Products 
of HO metabolism of heme, bilirubin and CO, upregulate EC-SOD 
and decrease inducible enzymes as seen in iNOS and peroxynitrite 
generation, and act as a countervailing influence to hyperglycemia-
mediated injury in endothelial cells and in sloughing. We have also 
shown that decrease in iNOS and increase in EC-SOD mediated by 
HO-1 derived CO and biliverdin/bilirubin exerts beneficial actions in 
vascular protection [155]. 

Atherosclerosis, a progressive disease characterized by the 
accumulation of lipids and fibrous components in the arteries, 
is the major cause of mortality worldwide [156]. Widespread 
epidemiological evidence strongly verified the connection between the 
plasma cholesterol profile and the development of atherosclerosis. It 
indicated that high-density lipoprotein (HDL) is effectively protective 
against atherosclerosis, whereas low-density lipoprotein (LDL), 
especially oxidized (ox-) LDL, act as a trigger of atherosclerosis [157]. 
LDL stimulates the inflammatory response and formation of foam 
cells, which are fat-laden macrophages that form the fatty streaks in 
plaques [158]. Soluble epoxide hydrolase inhibitors could increase EET 
levels and reduce atherosclerotic lesion formation in mice deficient in 
apolipoprotein (apo) E or LDL receptor [159]. apoE−/− mice displayed 
advanced lesions and an obvious upregulation in the LDL/HDL ratio, 
and administration of sEH inhibitor extensively shrunk serum LDL 
concentrations and secretion of inflammatory factors [160]. And 
recent studies in adipose tissue have confirmed that the administration 
of sEH inhibitor (t-AUCB) develops the CD36-mediated recognition 
and ox-LDL degradation and improves cholesterol efflux by inducing 
ATP-binding cassette A1(ABCA1) expression [161], and ABCA1 
subsequently enhanced plasma HDL concentrations and reversed 
cholesterol transport [162], which may also play a part factor of anti-
atherosclerotic effect. Meanwhile EETs accumulated in the occurrence 
of the sEH inhibitor and activated peroxisome proliferator-activated 
receptor (PPAR) γ, which may be involved in sEH inhibition-induced 
CD36 and ABCA1 expression [162]. Moreover, EET upregulation 
could induce HO-1 expression and activity, altered inflammation and 
reverse endothelial function, so as to prevent atherosclerosis (Figure 4).

Impact of EET and HO-1 on Obesity Mitochondrial Function
Marked mitochondrial dysfunction has been observed in 

myocardial cells in cardiovascular diseases [163], and improve 
mitochondrial function is associated with an improvement in 
myocardial function. More than 50% of disease-related mutations in 
mitochondrial DNA result in cardiomyopathy in humans, and targeted 
mutations disturbing fatty acid transport and oxidation, high-energy 
phosphate transport and shutting. Protection from mitochondrial 
ROS, and mitochondrial DNA proofreading activity all cause profound 
cardiac dysfunction [164]. 

As the intermediary between EET and HO-1, PGC-1α could 
establish homeostatic energy metabolism, normalize mitochondrial 
quality, upregulate mitochondrial biogenesis and respiration, adaptive 
thermogenesis and gluconeogenesis as well as many other metabolic 
processes through the activation of AMPK and SIRT [165,166]. The 
upregulation of this energy sensing network can stimulate the ROS 
formation reduction [167]. And PGC-1α is vital to the amputation of 
mitochondrial ROS through regulation of the expression of plentiful 
enzymes that provoke ROS [168,169]. Novel statistics indicated 
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Figure 4: Expression and activity, altered inflammation and reverse 
endothelial function, so as to prevent atherosclerosis.
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that PGC1α-knockdown mice have an increased exposure to 
neurodegeneration and hippocampus-situated oxidative stress [170]. 
It was reported that endogenous SIRT3-deficient showed an increased 
intracellular ROS, while upregulation of SIRT3 could alleviated ROS 
in brown adipocytes and reestablished uncoupling proteins UCP 
thermogenesis [87]. UCP1 and UCP2 from adipose tissue could 
control of energy as heat and affect energy metabolism efficiency [25]. 
Superior SIRT1 levels could reduce NF-κβ inflammatory transcription 
and result in increase the level of PGC-1α [85,171], which act as a 
potent suppressor of ROS through the stimulation of ERRα and the 
consequent generation of ROS detoxifying agents GPx1 and SOD2 
[172]. 

PGC1α could stimulate biogenesis and restore mitochondrial quality 
control through the transcriptional co-activation of nuclear respiratory 
factor (NRF)-1/2 [173]. NRF-1 and NRF-2 enhance mitochondrial 
transcription factor A (TFAM) localization to the mitochondria, 
resulting in augmented mitochondrial biogenesis and respiration, so 
as to a simultaneous rise in cytochrome C and ATPase [174]. TFAM 
elevation is important in the PGC1α-facilitation of mtDNA replication 
[164]. Based on the role of mitochondrial dysfunction played in ROS 
production underlying metabolic syndrome, PGC1α and concomitant 
SIRT have major implications in the therapeutic mitochondrial 
targeting of obesity, DM, and cardiovascular dysfunction indexes 
[175,176]. 

Impact of EET and HO-1 on Obesity Induced Cardiovascular 
Diseases

As Theken proved that obesity individuals have low level of EETs, 
and the further study presented that both obese and non-obese CAD 
patients had significantly higher plasma EETs with a higher epoxide/
diol ratios, demonstrating that CYP epoxygenase and sEH metabolic 
function are altered in patients with established atherosclerotic 
cardiovascular disease [136]. Treatment with EET agonist 11-(nonloxy) 
undec-8(z)-enoic acid (NUDSA) increases adipose tissue levels of 
EET and HO-1, as well as serum adiponectin in high-fat diet rats, 
associated with a decrease in blood pressure, subcutaneous and visceral 
fat content and inflammation factors (TNF-α and IL-6) [177]. EET 
was known to upregulate the expression of wnt1 canonical signaling 
cascade, attenuate cardiac dysfunction and improve angiogenesis [58]. 
And we know that EET could decrease NOV expression in cardiac 
and adipose tissue, which simultaneously increase PGC-1α mediated 
downstream signaling, enhancing mitochondrial function and energy 
metabolism, and preventing the development of cardiac remodeling in 
cardiomyopathy [178]. 

EET could increase osteoblast differentiation whereas decrease 
adipogenesis differentiation [140,179], which was further, supported 
by the observation that CoPP affected adipocyte differentiation in 
adults rats and developed in bodyweight loss without different food 
consumption [180]. There are many pharmacological agents which 
could increase HO-1 levels and decrease adiposity like the beneficial 
effect of CoPP, named as apolipoprotein A1 mimietic peptides L-4F, 
EET, and peroxisome proliferator-activated receptor (PPAR), which 
also lead to a decrease in visceral subcuntaneous fat and an increase 
in insulin sensitivity [181-184], associated with the reduction of 
large adipocytes number and a lift of smaller healthy adipocytes 
[133,185,178]. 

Enhanced EET has been indicated to reduce myocardial fibrosis 
and inflammation, so as to reduce hypertrophy and improve diastolic 

function of metabolic syndrome rats [186]. Aortic endothelial 
function, peNOS expression and adipose tissue markers of energy 
homeostasis such as pAMPK, pAkt, Sirt1, and fatty acid synthase 
(FAS), are restored in animals with NUDSA treatment [177,187,188]. 
As EET can upregulate HO-1, and we found out that CoPP induction 
of HO-1 decreased circulating free fatty acids and C-reactive protein, 
increased adiponectin, through the activation of AMPK-P13K-eNOS 
pathway [185,189], and adiponectin concentration in human plasma is 
lower in patients with clinical manifestations of CAD than in BMI- and 
age-adjusted control subjects independent of other risk factors {1508} 
[190], while high adiponectin adiponectin is related to a lower risk 
of CAD in male diabetic patients{1567} [191] It should be highlight 
that HO-1 could not increase adiponectin directly, but through HO-1 
mediated antioxidant mechanism with a decreased in heme associated 
with increase in superoxide dismutase, which reduce ROS levels and 
increase adiponectin[176,181,192,193]. 

And PGC-1α has been addressed to control many aspects of oxidative 
metabolism, including mitochondrial biogenesis and respiration 
through coactivation of many nuclear receptors [194]. In cardiac cells 
PGC-1α could induce abundantly of genes, programming for critical 
enzymes in major metabolic programs required for high-efficiency 
ATP production [195,196], and it could upregulate over 70% of the 
subnets in the mitochondrial electron transport chain and the ATPase 
complexes, and markedly increase fatty acid oxidation [197,198]. PGC-
1α expression is stimulated by ischemic conditions in cell culture, and 
a PGC-1α transcriptional coactivators have now arose as a dominant 
regulator of mitochondrial biology in the heart, and the expression of 
PGC-1α is suppressed in numerous heart failure diseases [199,200]. 
Pathologically hypertrophied heart induced by the coarctation of 
the aorta, have a decreased expression of both PGC-1α and its target 
genes of fatty acid oxidation and oxidative phosphorylation [201,202]. 
And after PGC-1α knockout, the heart isolated from the mice showed 
decreased fatty acid oxidation and heart function reduction, and the 
myocardial fibers presented decreased ATP synthesis rates and ATP 
production efficiency [203,204]. Structural analysis demonstrated an 
abnormal mitochondrial cristae density and cytoplasmic accumulation 
of lipids, indicating a reduction in fatty acid consumption paralleled 
with lipotoxicity from increase fatty acid uptake [203]. 

Moreover, PGC-1α also appears to mediate EET-induced HO-1 
activity upregulation [178,205], this mechanism has been observed 
categorically in adipose tissue suggesting the activity of EET in the 
vasculature and in the myocardium in cardiovascular diseases (Figure 
5).

Soluble Epoxide Hydrolase Inhibitor and Clinical Therapy
Soluble epoxide hydrolase (sEH) could degrade epoxides into 

corresponding diols, which are substantially less active than the 
original compound. Inhibition of sEH leads to EETs accumulation and 
retention in various tissues [206,207], which have anti-inflammation 
function, vasodilatory activity and antihypertensive action, while it can 
promote fibrinolysis and inhibit platelet aggregation [98, 106,208-210]. 
While induction of CYP-epoxygenases, administration of EET analogs, 
or inhibition of sEH all result in upregulation of EET concentration, 
and could benefit cardiovascular diseases [103]. sEH is upregulated 
in obesity and associated diseases, with a downregulation of EET, 
and decreased level of EET may lead to more sEH with lass P450-
epoxygenases [211], so sEH inhibitors have been extensively studied 
for the potential value on cardiovascular therapy.

In vitro studies, administration of sEH inhibitor in the MSC culture 
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indicated a decreased adipogenesis and adiposity associated with 
an increased level of EET, and it was known that EET can decrease 
MSC-derived adipocytes [133]. And MSCs, act as pleotropic cells, 
can differentiate to adipocytes or osteoblasts as a result of crosstalk 
by specific signaling pathways including HO-1/2 expression [179]. 
Adipocyte stem cells treated with AUDA showed decrease in adiposity 
with an increased effectiveness of EET [133]. 

In vivo studies have indicated that sEH inhibition can reverse 
inflammation [212], reduce the development of atherosclerosis 
in apoplipoprotein E knowout mice [213,214], and it turned out 
to lower blood pressure in angiotension-dependent hypertension 
[215,216]. And it was studied that Glu287Arg substitution in sEH 
genes, in humans with familial hypercholesterolemia, is related with 
an increased plasma cholesterol level [217], and sEH deficiency or 
inhibition in high fat diet mice has been linked to the reduction of liver 
steatosis and attenuation of endoplasmic reticulum stress in adipose 
tissue [97,218]. Weighty testing of sEH inhibitors indicated they are 
highly selective for sEH, lack significant toxicity, and have potential 
for use in humans [219,220]. Moreover, the connotation between sEH 
and vascular phenotypes has been investigated in 106 patients with 
stable CAD, and there was a significant inverse relationship between 
20-HETE levels and brachial artery flow-mediated dilation, paralleling 
with an inverse relationship between sEH function and a combination 
of MCP-1 and cellular adhesion molecule score, indicating that sEH 
therapy might be effective in human vascular dysfunction [221]. 

GSK2256294A is a reversible binding inhibitor of isolated 
recombinant human sEH, exhibiting a good preclinical pharmacokinetic 
profile with high oral bioavailability in mice [222]. Concurrently, it 
has been detected to reduce the inflammatory response induced by 
repetitive exposures to cigarette smoke, indicating its dose-dependent 
effect with sustaining for up to 24 hours [223]. And it has the promise 
to become one of the vital treatment for obesity and associated diseases.

Conclusion
The obesity associated cardiovascular diseases relies heavily on EET 

system, implementation of the EETs in pharmaceutical synthetics may 
comprise a novel avenue for the treatment of metabolic insults through 
the restoration of mitochondrial integrity and associated adiposity. 
The capacity of EET with induced HO-1 could decrease inflammatory 

cytokines, angiotensin II and oxidative stress, finally lead to heart 
function improvement, rendering it a noticeable target for clinical 
application. The pleiotropic effect of EET synchronously contrast 
the multifactorial etiology of obesity and associated cardiovascular 
diseases, and it acts like a master regulator of multiple components of 
myocardial energetics through the crosstalk with both PGC-1α and HO-
1. sEH inhibitor therapy has been test in vitro and in vivo in animals, as 
well as in human preclinical trials to value the adverse effects of EET. 
As such, the application of the EET-HO-1 module in a clinical setting 
may potentially serve as a potent approach to combatting the unabated 
global epidemic of obesity and associated cardiovascular diseases.
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