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Introduction
Geospectrally decomposable, QuickBird, visible and near infra-

red(NIR) (www.digitalglobe.com), sub-meter (m) resolution (i.e., 
0.61m), sub-mixel (i.e., mixed pixel), endmember (i.e., reference 
biosignature) fractions of incident radiation reflected, transmitted 
and absorbed by prolific, georeferenced, canopied, larval habitats of 
Similium damnosum s.l., a black fly vector of onchocerciasis, is crucial 
in implementing control strategies in African riverine environments 
[1]. Onchocerciasis is a parasitic disease caused by the filarial worm 
Onchocerca volvulus which is transmitted through the bites of 
infected blackflies of Simulium species (http://www.who.int/topics/
onchocerciasis). For any given remotely sensed, georeferncable, logical 
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Abstract

We interpolated a geospectrally decomposed 5 meter (m) RapidEye™,Red Edge, Normalized Difference Vegetation 
Index (NDVI), unmixed, endmember, biosignature of a georeferenced, larval habitat of Similium damnosum s.l.,a black fly 
vector of onchocerciasis. We did so to identify unknown, unsampled, prolific, habitats in African riverine environments. The S. 
damnosum s.l.larval habitat was initially geosampled in a riverine village in Burkina Faso and overlaid onto the 5m resolution 
data. The Band Mathfunction of ENVI 4.8TM was employed to calculate the RedEdge NDVI.  Before applying the spectral 
index to the imagery raw mixel (“mixed pixel”) values, digital numbers(DN)] were converted into physically meaningful units 
to differentiate absorption reflectance spectra and immature Similium productivity based on habitat size.Linear regression 
was used to equate and quantitate band data to DN and the reflectance values which in the geospectral,sub-mixel, risk 
analysis was equivalent to removing the solar irradiance and the atmospheric path radiance in the object-based classifier. 
A radiometric calibration tool then calibrated the spaceborne sensor data to radiance and top-of-atmosphere (ToA) 
reflectance.Additionally,Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH®)removed the effects of 
multiscattering in the scene.We calculated the internal relative reflectance which normalized the image to a scene average 
spectrum. ENVI’s Log Residuals Correction Tool removed the instrument gain, topographic effects, and albedo effects from 
the reflectance, transmittance, wavelenght emissitivities. The instantaneous fraction of direct beam radiation intercepted 
by the habitat canopy was calculated and described as fPAR = 1 - exp (-k (leaf area index)/cosθs) where the extinction 
coefficient k was a function of leaf angle distribution.We employed a successive progressive algorithm, a two stream radiative 
atmospheric transfer analyses, a geometric-optical model and a bidirectional reflectance distribution function to unmix the S. 
damnosum s.l., larval habitat,canopied endmembers.The non-parametric, residual, explanatorial, decomposed, sub-mixel 
estimators derived from the RapidEye™data were then used to construct a Boolean model.Therefater,the imaged larval 
habitat and its geospatially, ecohydrological, within-canopy pigments (e.g., chorophyll, zeathinins) were  defined and a Red 
Edge,NDVI, endmember biosignature was  decomposed in ENVI. An autocorrelation uncertainty matrix was deconvolved 
into combinations of the unmixed canopied endmembers.Subsequently, the NDVI, endmember biosignature, decomposed,  
canopied endmembers with its multiple ToA noise-adjusted coefficients were kriged in Geospatial Analyst of ArcGIS 10.3®to 
identify unknown, unsampled, prolific, S. damnosum s.l., georeferencable, larval habitats along a northern Ugandan riverine 
ecosystem. Of the forecasted prolific, shaded, larval habitats by the canopy model, 72% were found to contain S. damnosum 
s.l. larvae when field verified. The sensitivity of the test was 78.26 while the specifity was 100.
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and object-based technology (e.g., ENVI technology) may aid in 
implementing control strategies for robustly, targeting, seasonally 
productive, S. damnosum s.l., larval habitats. Object based methods, aim 
to delineate readily usable objects from imagery while at the same time 
combining image processing and GIS functionalities in order to utilize 
spectral and contextual information in an integrative fashion (www.
esri.com). Geospectrally unmixing, optimal, photosynthetic and non-
photosynthetic (NPV), time series dependent, canopied explanators 
(e.g., trailing vegetation LULC-oriented, seasonal  catchment  variables 
such as slope coefficients) and quantizing the non-linearizable, 
canopied, covariate, parameter estimator, reflectance, wavelenght 
emissivities may reveal shaded and sparsely shaded, S. damnosum 
s.l.,larval habitat canopy Euclineanized distances between unmixed 
transmission spectrum of leaves and their light absorbing compounds 
(e.g chlorophylls, carotenoids, water, cellulose, lignin, starch, proteins, 
etc.). Autopredicted probabilities may reveal eco-epidemiological, 
regressed variables may then be quantitatively geospatially associated 
with imaged, seasonal, immature, blackfly, productivity. Geo-
spatiotemporal, forecastable, Arc-GIS- derived, object-based classifiers 
may generate, risk maps  capturing spatial foraging oviposition behavior 
for understanding canopy emissivities and seasonal shifts in terms of 
immature Similium productivity for implementing control strategies 
[e.g., Intergrated Vector Management (IVM)]. Rather than relying on 
a single method of vector control (e.g chemical spraying), IVM stresses 
the importance of first understanding the local vector ecology and local 
patterns of disease transmission, and then choosing the appropriate 
vector control tools from the range of options available (http://www.
who.int/). It is remotely conceivable that environmental management 
interventions  generated employing  ArcGIS cyberenvironments and 
object-based technology [e.g., Spectral Angle Mapper (SAM) and 
Spectral Information Divergence (SID) classification algorithms] 
significantly lower immature seasonal Similium productivity and act 
as an incentive to enhance community participation and sustainability.

Optimally geospectrally decomposed, S. damnsoum s.l., riverine, 
larval habitat, sub-resolution, sub-mixel, canopy vegetation, LULC 
reflectance derivative, endmember, forecast spectra rendered 
in object-based technology may reveal a function of tissue (i.e. 
foliage clumping leaf, orientation) for controlling explanatorily 
interpolatable, geomorphologically disturbed landscape reflectance 
biosignatures. Viewing geometrically synthesized variables in ArcGIS 
cyberenvironments may be found to be seasonally, geospatially 
associated with hyper/hypo, immature, habitat productivity. Object-
based technologies are technologies in which objects have encapsulation 
[2]. Object-based image analysis (OBIA), a technique employed to 
analyze digital imagery, was developed relatively recently compared to 
traditional, mixel-based, image analysis (http://wiki.landscapetoolbox.
org/doku). Optical remote sensing has expanded from the use of 
panchromatic and multispectral sensors to off-nadir instruments 
and object-based classifers in ArcGIS [4]. While sub-mixel-based, 
endmember, image analysis is based on the reflectance emissivity and 
transmisstance information, OBIA is based on information from a 
set of similar image objects [2]. More specifically, in OBIA geospatial 
processing, optical solutions, image objects are groups of mixels that are 
similar to one another based on a measure of spectral properties (i.e., 
color, size, shape, and texture) as well as context from a ecogeographically 
parameterized neighborhood surrounding the mixels. Remote 
sensing LULC imagery for vector entomological investigations (e.g., 
vulnearbility, mapping hyperendemic and mesoendemic transmission 
zones) necessitates  the captured  wavelenght, emissivity data to be 
converted into tangible georeferncable field explanatorial information 

material, the optical spectrum is a plot of fractionalized reflectance, 
emissivity transmittance, log-transformed as a function of the incident 
wavelength which makes it possible to identify different canopied, land 
use land cover (LULC geo-classified), classes and separate them by 
their endmember, spectral curves (http://fas.org/irp/imint/docs/rst/). 
Disturbances in empirically, decomposable, ecogeographical, processes 
or, time series dependent, vegetated canopied, LULC-oriented, 
biophysical attributes, for example of imaged, sub-meter resolution, 
shaded and sparsely-shaded regressively quantitatively, delineated, 
georeferncable, seasonally geosampled, S. damnosum s.l., riverine, 
larval habitat, covariate, parameter estimators (e.g., refractive fraction 
of leaf weight, leaf- and plant constituent spectra) can alter radiative 
interactions with the surface and, thus the amount of radiation-related, 
wavelenght, emissivities and transmittance received by a remote 
sensing detector [1,2].

The ability to unambiguously interpret time series, probabilistically 
regressed, geoclassified, vegetation-related, LULC, canopied, 
endmember, emissivity wavelenght derivative spectra and unmixed, 
decomposable, biogeochemical, photosynthetic, radiance estimates 
(e.g., foliar lignin) for a geosampled, georeferencable, shaded or 
sparsely-shaded, prolific, S. damnosum s.l., larval habitat may hinge 
directly on the ability to resolve the multitude of remotely sensed, 
riverine, ecohydrological, erroneous, wavelenght, transmittance co-
factors (e.g atmospheric correction of at-sensor radiances and the 
consequent, uncertainties in a retrieved turbidity-related, reflectance, 
emissivity,  parameterized estimator) in an ArcGIS cyberenvironment, 
simulids constitute important components of riverine ecosystems and 
breed in fast flowing highly oxygenated water [1]. Based on empirical 
work, a number of possible innovative algorithms in ArcGIS (e.g., 
Geospatial Analyst) may be employed for exploiting sub-mixel, canopy 
scale, photosynthetic responses for a geo-spatiotemporally, geosampled, 
seasonal, georeferencable, canopied, productive, S. damnosum s.l., 
riverine, larval habitat. The  interpolatable decomposable data may be 
optimally determined by plotting isoclines yield in eco-geographical 
space of regressed canopy densities and light environment explanators. 
An isocline is a curve through points at which the simplest parent 
function's slope will always be the same, regardless of initial conditions 
[2,3]. Histograms in ArcGIS can be used to interpret the significance 
of an operationizable, unmixed dataset of  prolific, riverine, larval 
habitat, seasonal,  geo-spatiotemporally  regressed,  LULC, endmember 
changes induced as a response to an empiricial dataset of independent 
categorical variables representing decreases in the benthic light 
environment, for example, which may reveal Poissonized probabilities, 
for precisely quantitating seasonal  ecogeographic, riverine  predictors 
(productivity, disturbance rate, plant functional composition and 
species richness gradients) and non-ecogeographic (control of sub-
mixel transitions in the composition of high-latitude, riverine, 
canopied vegetation endmembers during droughts, etc) against 
seasonal, geosampled, immature count. Quantitating the complex 
interplay between immature  Similium productivity, physical and 
biotic disturbances, seasonal canopy plant functional composition and 
richness in an  ArcGIS cyberenvironment  may be vital for developing 
optimal control strategies. Regression information about spatial and 
temporal heterogeneities in seasonal productivity is key for designing 
effective vector entomological management programs [4].

Rational decision-making processes for the employment of 
resources currently for vector control of immature Similium include 
improving the efficacy, cost-effectiveness and bioecological soundness 
for sustainability (http://www.who.int/). Pursuing multivariate, 
regressive, probabilistic, quantitative, estimation algorithms in ArcGIS 
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in ArcGIS. By so doing,the data may be utilized in conjunction with 
other seasonally, probabilistically, regressable, eco-epidemiological data 
(e.g., unmixed, shaded endmember, S. damnosum s.l., riverine, larval 
habitat, canopy, foliar nitrogen, reflectance emissity, transmittance) 
within a gridded autoregressive, weighted,  matrix. As long as mixel 
sizes remain typically coarser than, or at the best, similar in size to the 
entomological objects (e.g.,imaged prolific, canopied, S. damnosum 
s.l., riverine habitat) of interest, emphasis may be placed on per-mixel 
analysis, or even sub-mixel analysis in OBIA for this conversion, 
but with increasing spatial resolutions alternative paths may require 
deriving disturbed objects that are made up of several mixels. In 
contrast to typical Landsat resolutions, moderate and high resolution 
images in ArcGIS cyberenvironments support several scales within 
their images (www.esri.com).

Through a comprehensive literature review several thousand 
abstracts have been screened, and more than 820 OBIA-related 
articles comprising 145 journal papers, 84 book chapters and nearly 
600 conference papers, have been scrutinized in detail [4]. It becomes 
evident that the first years of the OBIA/geospatial object based image 
analysis (GEOBIA) developments were characterized by the dominance 
of ‘grey’ literature, but that the number of peer-reviewed journal 
articles has increased sharply over the last four to five years (e.g 1). The 
mixel paradigm is beginning to dissolve and the OBIA methods are 
making considerable progress towards a spatially explicit information 
extraction workflow, such as is required for optimal spatial planning 
as well as for many environmental monitoring programs (e.g.,IVM) 
for vector entomology. OBIA builds on older segmentation, edge-
detection, feature extraction and classification concepts employed in 
remote sensing. Image segmentation in OBIA, from an algorithmic 
perspective is generally divided into four categories: (a) point-based, 
(b) edge-based, (c) region-based and (d) combined (www.esri.
com). Segments have additional geospectral information compared 
to single mixels (e.g. mean values per band, and also median values, 
minimum and maximum values, mean ratios, variance etc.) (http://
www.exelisvis.com/docs). The primary advantage of OBIA offers other 
than the diversification of explanatorial, time series, geospectral value 
descriptions of geosampled, geospatial objects in Cloud technology, is 
the additional band information for precise, georeferencable, forecast, 
eco-epidemiological, eco-innovational, seasonal vulnerability, risk 
mapping of decomposable objects of interest (e.g georeferncable, 
seasonally flooded, S. damnosum s.l. riverine larval habitats). 

By sequentially, algorithmically, unmixing, productive, 
georeferencable, geosampled, S. damnosum s.l., larval habitat, canopy, 
photosynthesizing organs with their seasonal illumination conditions 
in riverine, LULC, ecogeograhically and non-ecogeographically 
classified scenes, in, an OBIA, [e.g., ENVI Feature Extraction Module 
(ENVI FX] may be optimally iteratively quantitated with the habitat’s 
respective wavelength reflection proportions which may then be 
subsequently regressed in an ArcGIS cyberenvironment against 
seasonal habitat productivity count values. By so doing, robust, 
forecasting, vulnerability eco-epidmiological, risk maps may be 
generated. Photosynthesizing organs significantly affect important 
planetary biogeochemical cycles [2]. Cartographically quantizing, 
time series dependent, ecogeographiclly and non-ecogeographically,  
explanatorial, time series dependent, probabilistic relationships 
between canopy shaded riverine, larval habitat, immature, seasonal 
productivity with leaf optical characteristics and plant biochemical 
properties may establish  seasonal changes in oviposition behavior 
response to leaf aging or environmental stresses (e.g., droughts). 

Mature canopy leaves of a seasonally imaged georefernced, productive 
canopied, S. damnosum s.l., riverine, immature habitat may tend to 
have reduced chlorophyll content during specific sample frames (e.g., 
dry season), which in turn, may increase both the reflectance and 
transmittance in the visible spectrum when geospatially, correlating, 
immature, seasonal productivity with decomposed, endmember, 
wavelength spectrum. Since leaf intrinsic scattering properties reveal 
very little explanatorial, geospectral variation, leaf optical properties 
of a geo-spatiotemporally, geosampled, shaded and non-shaded, 
prolific, decomposed, S. damnosum s.l., riverine, larval habitat in  an 
ENVI model may be seasonally related to their canopy absorption 
properties based on larval productivity. As such, vulnerability time 
series,  forecastable,  vulnerability, transmission-oriented, endemic, risk   
maps may be parsimoniously generated in ArcGIS for implementing 
targeted environmental management (IVM) based on a sound 
understanding of the seasonal heterogeneity in immature, riverine, 
Similium productivity.

Imaging spectrometry is a unique type of optical remote sensing 
as the surface, canopy, LULC radiance transmittance is geosampled 
incontiguous, narrow spectral bands. Narrow spectral bands can 
measure many individual emissitivty absorption features of interest 
to entomologists or experimenters such as pigment composition and 
content, canopy water content, canopy dry plant litter (i.e., senesced 
leaves and stems), or wood and other aspects of foliar chemistry. This 
unmixed OBIA data may then be subsequently geospatially attached to 
georefernced, shade canopied, Similium habitat, eco-epidemiological 
data in ArcGIS to determine hyper/hypo seasonal, productive habitat 
geolocations. Many contributions in GIS literature have applied similar 
tactics in other disciplines. For example, in Suplick-Ploense et al. [3] 
narrow-band canopy spectral reflectance within 400 to 1100 nm was 
employed for imaging different canopied LULC, turf grass species 
and cultivars under drought stress. Sods of four Bermuda grasses 
(Cynodon dactylon L. × C. transvaalensis), three seashore paspalums 
(Paspalum vaginatum Swartz), Zoysiagrass (Zoysia japonica), and St. 
Augustine grass (Stenotaphrum secundatum), and three seeded tall 
fescues (Festuca arundinacea LULCs) were geospectrally evaluated. 
Turf quality decreased 12% to 27% and leaf firing increased 12% to 55% 
in 12 canopied grasses in response to drought stress imposed over three 
dry-down cycles. The peak correlations occurred at 673 to 693 nm and 
667 to 687 nm for quantitatively regressing, geospectrally decomposing 
quality and leaf firing in Bermuda grasse-related, canopied, LULC 
variables, respectively. 

All three tall fescues had the strongest correlation at 671 nm for 
both canopy turf quality and leaf firing. The highest correlations in the 
NIR at 750, 775, or 870 nm were found in three seashore paspalums, 
while at 687 to 693 nm, the transmittance emmisivities were reflected by 
Zoysiagrass and St. Augustine grass LULC. Although all the canopied 
grass LULCs exhibited some correlations between the geosampled, 
regressed, covariate, parameter estimators and turf quality or leaf firing, 
significant correlation coefficients were only observed in five grasses. 
Multivariate regression models based on selected canopy wavelengths 
for turf quality and leaf firing were observed for 7 turf quality and 9 
leaf firing grasses in ENVI. Wavelengths in the photosynthetic region 
at 658 to 700 nm and NIR from 700 to 800nm predominated in the 
canopy LULC models of most grasses. This experiment proved that turf 
quality and leaf firing may be well forecasted in tall fescue by employing 
remotely sensed, time series dependent, explanatorial, forecastable, 
canopy optical, eco-epidemiological, risk models, evidenced by a 
coefficient of determination (R2) above 0.50. The results indicated that 
correlations of canopy leaf reflectance versus turf quality and leaf firing 
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varied with turf grass species and cultivars, and photosynthetic regions 
specifically from 664 to 687nm which were relatively important in 
robustly optically regressively  quantitating turf quality and leaf firing 
in selected canopied Bermuda grass, tall fescue, Zoysiagrass and St. 
Augustine grass LULCs under drought stress. 

Regressed, experimental, remotely sensed measurements of 
canopied, LULC, explanatorial, leaf optical properties in ArcGIS has 
progressed in GIS literature. Multiple, deterministic approaches based 
on diverse representations of light interactions with canopy plant leaves 
have been developed in ArcGIS [2]. These models are distinguished 
by the underlying physics and by their ability to map geometerical 
complexities of the leaf. In these optical models, individually 
decomposed cells may be described in detail by their shape, size, 
position, and biochemical content. The simplest, unmixing, ArcGIS, 
sequential algorithms can even consider the blade as a single scattering 
and absorbing layer. At a minimum, these physically realistic models 
can render precise information about the refractive index and the 
specific geo-spatiotemporal, eco-hydrological, absorption coefficients 
of the decomposed, canopied, leaf constituents. Canopy height, 
topography and the vertical distribution of canopy elements may be 
optimally derived. Generalized linear and additive models, as well as 
binary hierarchical regression trees may be constructed in ArcGIS 
which may reveal that the absorption spectrum of geospectrally, 
unmixed, geosampled, remotely quantized canopy chlorophyll can 
expand over the entire visible region from 400 nm to 750 nm, with 
a minimum at 550 nm, for example. The absorption spectrum of 
canopy water starts at wavelengths longer than 950 nm, with three 
main absorption peaks [4]. The absorption spectrum of a geospectrally 
derived, georeferencable, prolific, flooded, riverine, S. damnosum s.l. 
larval habitat canopy leaf dry matter may be minimal (~<0.1,) in the 
visible and NIR, and stronger at wavelengths longer than 1100 nm, for 
example. Spectral analogies may be however observed between sub-
mixed, resolution wavelengths for which the optical properties (i.e., 
absorption, reflectance, or transmittance) of the canopied elements 
are similar. Green plants show the full range of variation of canopy 
leaf optical properties [2]. The relationship between canopy reflectance 
and leaf reflectance LULC measured in ArcGIS concurrently over a 
georeferencable, seasonally geosampled, riverine, productive, riverine, 
larval habitat could simulate canopy reflectance over the whole domain 
from leaf reflectance spectra measured over the whole spectral domain. 
These results may reveal that remotely quantized, seasonal, canopy, 
spectral analogies of immature Similium riverine habitat emissivity 
transmittance allows accurate reconstruction of the canopy reflectance 
endmember spectra in ENVI. Explicit assumptions about the very low 
spectral variation of leaf intrinsic scattering properties may be thus 
indirectly justifiable for a geo-spatiotemporal, geosampled, seasonally 
imaged, productive shade, canopied, georeferencable, S. damnosum 
s.l. riverine larval habitat interpolation-oriented , eco-epidemiological, 
forecasting,ArcGIS -derived risk model. 

Jacob et al. [1] geospectrally regressively quantized the sensitivity of 
canopy reflectance (ρc) to QuickBird imaged leaf optical properties of a 
geosampled, shade, canopied, S. damnosum s.l. riverine, larval habitat 
in Togo. The authors investigated, concurrent, unmixed, regressively 
quantitated, leaf reflectance variations of the habitat canopy employing 
(∂ρc/∂λ) and (∂ρl/∂λ): ∂ρc/∂ρl = (∂ρc/∂λ) (∂ρl/∂λ)−1 in ArcGIS. The 
canopied, image endmembers of the georeferenced, riverine habitat 
and its associated environmental attributes were extracted from 
ENVI®’s spectral library. Several spectra corresponding to the different 
backgrounds in the geosampled S. damnosum s.l. habitat (i.e., pre-
Cambrian rock and spectral riffled water mixel components) had to 

be included since multiple diffuse scatterings between floating canopy 
leaves in the habitat, for example, and a bright soil background 
increased the NIR reflectance. Sub-meter resolution class representative 
mixels were then selected and compared to a reference training dataset. 
During the segmentation procedure, image objects were generated 
based on several adjustable criteria of homogeneity such as colour, 
shape, and texture. 

Data pre-processing involved converting Digital Number (DN) 
values to radiance atmospheric correction employing fast-line-sight-
atmospheric-analysis-spectral hypercubes (FLAASH™) and co-
registration techniques. FLAASH™ is a first-principles atmospheric 
correction tool that corrects wavelengths in the visible through NIR 
and shortwave infrared regions, up to 3 µm (www.itvis.com). Image 
classification was conducted using the object-oriented approach. 
FLAASH™ generated a model (i.e., gmd file) that was subsequently 
converted to the image’s DN to at-sensor radiance and computed 
at-sensor reflectance which was normalized thereafter employing 
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Band N was the reflectance for Band N, LbandN was the DN for Band 
N, D was the normalized earth-sun distance and EbandN was the 
solar elevation angle. The estimated accuracy for the explanatorily, 
geospectrally, extracted data was then optimally calculated: 
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where, x=number of correct 

identified mixels, n=total number of mixels in the sample, θ=was 
the classifier identified S. damnosum s.l. habitat and the habitat’s 
geospatially associated pre-Cambrian rock and riffle water which was 
remotely regressively quantized not larger than 0.4 ha. The model 
revealed satisfactory results (92.1%) with a lower detection limit of 0.1 
ha. However, the authors found that this expression was strictly valid 
only when the habitat canopy optical properties of the soil background 
LULC endmember elements were either geospectrally flat or did not 
contribute significantly to reflectance. 

Leaf structure and function are shown to result in distinctive 
variations in the absorption and reflection of solar radiation from 
plant canopies [4]. The leaf properties that determine the radiation-
interception characteristics of geo-spatiotemporally imaged, shade, 
canopied, prolific, S. damnosum s.l. riverine geosampled, and 
larval habitat canopies may be directly linked to photosynthesis, 
stomatal resistance and evapotranspiration which may be inferred 
from measurements of reflected solar energy. The effects of off-
nadir viewing and atmospheric constituents, coupled with the need 
to measure changing canopy vegetated, LULC-oriented, surface 
conditions may emphasize the need for multitemporal measurements 
of reflected radiation if seasonal immature Similium production is to 
be estimated. ArcGIS simulations employing time series dependent, 
canopy geo-spatiotemporal, endmember, risk-related, forecasting, eco-
epidemiological models may demonstrate that the sensitivity of canopy 
reflectance to leaf reflectance is significant for large vegetation covered 
LULC, radiance fractions in geospectral domains where absorption is 
low in a canopied, seasonlly prolific, S. damnosums. l., larval habitat. 
In these conditions, multiple scattering may enhance the canopy leaf 
absorption features od the habitat in ArcGIS. 

To override the limitations of propagational, reflectance 
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emissitity, transmittance, probabilistic uncertainties in the descriptors 
canopy architecture, ArcGIS simulations may be conducted on the 
experimental data. Concurrent canopy and leaf reflectance spectra may 
be measured for a range of seasonally productive riverine canopies. The 
results may reveal good agreement with other ecohydrological-related, 
canopied species habitats and their theoretical findings. Conclusions 
may be drawn about the applicability of these findings, with particular 
attention to the potential detectability of leaf biochemical composition 
from unmixed, regressed canopy vegetative, LULC reflectance 
sensed from eco- geographic and non-ecographic space for targeting 
unsampled, unknown seasaonlly productive riverine habitats.

Seasonally shaded NPV such as standing litter may 
disproportionately affect qualitatively regressively quantitating, shaded, 
discontinuous, georeferenced, S. damnosum s.l.-related, riverine, 
hyperproductive, immature habitats. Mapping ecogeographical 
canopy radiation fields and their bidirectional radiance transmittance 
in ArcGIS may be an effective way to remotely, geo-spectrally, 
explanatorily quantize, canopy density by dividing the canopy LULCs 
into many small equal-sized units through rasterization, Therefater by 
comparing the number of aboveground returns to the total number 
of lidar returns, for example, unmixed, canopy vegetated, LULC 
reflectance may be seasaonlly quantiated with immature seasonal, 
Similium productivity. In ArcGIS multiple LULCs may be geo-
classified. Examples include grasslands, shrublands, savannas, and 
open woodlands, LULCs which collectively cover over many African 
arid and semi-arid riverine environments. NPV may be then defined 
in ArcGIS cyberenvironments as dead or simply dormant, canopy 
vegetated LULC, geospatial, geospectral objects (e.g grasses between 
rainfalls surrounding a georefernced, productive, S. damnosum s.l., 
ecohydrological, riverine habitat), for example. Plant material lacking 
chlorophyll are also referred to as NPV which include materials such 
as dry leaf matter (e.g., dry grass and litter) [4]. Also included in the 
NPV category for categorizing the decomposed riverine habitat data 
in an OBIA may be woody structures including stems, and branches 
in the canopy.

The presence of NPV in an empirical datset of non-linear, 
explanatorily decomposable, canopy endmembers, NPV biosignatures 
can be geospatially optically quantized and geospectrally associated 
with NIR transmission and scattering of green, vegetation, LULC 
reflectance. If the canopied LULC radiance is unquantated in a 
forecasting, explanatory, regression-related, eco-epidemiological, risk 
model, the residual forecasts of important georeferncable, riverine, S. 
damnosum s.l., larval habitat, NPV covariate, time series, reflectance, 
emissivity transmitatnce, parameter estimators may be susceptible to 
large sources of error and probabilistic uncertainties especially over 
canopied explanators representing atmospheric conditions. Further, 
in many canopies, much of the NPV is obscured below a potentially 
closed leaf canopy; thus the wavelengths employed to measure NPV 
(e.g., shortwave infrared) may be unable to penetrate through the 
upper canopy to interact with this NPV. 

When exposed, NPV scatters photons very efficiently in the 
shortwave infrared (IR) range, in direct contrast to green vegetation 
which absorbs strongly in the shortwave IR range [4]. As such, only 
exposed NPV on a geosampled, explanatorial, georeferenced, S. 
damnosum s.l., riverine, larval habitats will have a significant effect 
on geospectral, eco-epidemiological, ecohydrological reflectance as 
emitted from riverine, canopy, vegetated LULCs. In general, photons 
in the visible wavelength region are efficiently absorbed by live, 
green canopy vegetation LULCs. Likewise, photons in the SWIR-2 

region of the spectrum are efficiently absorbed by water. In contrast 
to live vegetation, dead, dry, or senescent canopy vegetation scatters 
photons very efficiently throughout the spectrum, with most scattering 
occurring in the SWIR-1 and SWIR-2 ranges. Models of canopy 
gross photosynthesis generally incorporate a description of light 
interception and attenuation through the canopy and of single leaf 
gross photosynthesis in response to irradiance, or photon flux density. 
These illumination variables are then combined to give the rate of 
canopy gross photosynthesis [4].

The description of canopy photosynthesis and respiration lies 
at the core of most biophysical simulation models in ArcGIS. These 
models may be catalyzed by acclimatory responses of protein, 
including photosynthetic enzymes, to environmental conditions of 
light, temperature and CO2 during growth, as this will affect the rate 
of photosynthesis demand in a geo-spatiotemporally, geosampled, 
S. damnosum s.l., riverine, larval habitat. Models may be presented 
that have been several developments since then with different 
degrees of complexity. ArcGIS models may consider homogeneous 
light distribution through a geo-spatiotemporally, geosampled, S. 
damnosum s.l. larval habitat canopy, while later developments may 
separate it into direct and diffuse beams, and include other factors 
such as the movement of the sun across the sky in a African riverine 
environment. For leaf photosynthesis, early models had a fixed light 
response curve for photosynthesis while later models include variation 
in leaf nitrogen through the canopy [2]. Most descriptions of leaf 
photosynthesis in canopy photosynthesis models are based on the non-
rectangular hyperbola, which is a versatile semi-empirical approach for 
describing the light response for leaf photosynthesis [4]. Whereas the 
initial focus may be to explore the influence of light interception and 
attenuation on canopy leaf photosynthesis in ArcGIS as it influences 
canopy photosynthesis, later models may address issues such as the 
importance of diurnal variation in irradiance and temperature of the 
riveine habitat canopy.

It is well established that the photosynthetic potential of canopy 
leaves is influenced by the environment in which they are grown, 
including irradiance, temperature, nitrogen availability and CO2 
concentration. The inclusion of acclimation into canopy photosynthesis 
models has generally focused on the acclimation of photosynthetic 
potential to light and its subsequent variation through the depth 
of the canopy [4]. Charles-Edwards (1981) assumed that the light-
saturated, leaf, photosynthetic potential for leaves within the canopy 
may be proportional to the attenuation of light at that position in the 
canopy. This has been applied widely in literature. A fixed quantity of 
canopy foilar for example, within a geo-spatiotemporally, geosampled, 
S. damnosum s.l., riverine habitat canopy may be optimally, 
cartographically delineated by seeking an optimum distribution such 
that canopy photosynthesis variables are maximized, employing a 
similar expression to Charles-Edwards' assumption theoretically. 
Canopy foliar biomass defined as the product of leaf dry matter 
content and leaf area index, is an important measurement for global 
biogeochemical cycles.

The change in geospectral explanatorial, unmixed LULC reflectance 
due to increasing amounts of NPV may be captured in OBIA. 
The absorbing and scattering properties of a geo-spatiotemporal, 
geosampled, S. damnosum s.l., seasonal, riverine, larval habitat, 
discontionous NPV covariate, parameter estimator reflectance, 
emitted transmittance may be then defined by their chemical bonds of 
NPVs and by their three- dimensional (3-D) structure in ArcGIS. In 
ArcMap, 3D Analyst new surfaces may be created from GIS data for 
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analyzing canopy negative LULC surfaces by querying attribute values 
at a geolocation on the surface, for analyzing the visibility of parts of 
the surface from different landscape geolocations (www.esri.com). As 
such, an entomologist or experimenter could optimally determine total, 
shaded, and non-shaded, vegetated LULC, geometerical, explanatorial, 
surface area and the volume above S. damnosum s.l., seasonal, riverine, 
larval habitat-related or below the LULC surface, for example, while  
simultaneously generating profiles along a 3D line on the surface.

High spatial resolution, 3-D, measurements of canopy vegetation 
LULC by remote sensing are advancing ecological research and 
environmental management. However, substantial logistical costs 
limit this application, especially for observing phenological dynamics 
in riverine ecosystem structures and remotely diagnosing, time series, 
canopy, spectral traits of a decomposable, productive, shade canopied, 
riverine, productive, S. damnosum s.l., larval habitat. Recently a new 
aerial remote sensing system enabling routine and inexpensive aerial 
3D measurements of canopy structure and geospectral attributes, 
with properties similar to those of lidar, but with red-green-blue 
(RGB) geospectral attributes for each canopied point, enabled 
high frequency observations within a single growing season. This 
“Ecosynth” methodology applied photogrammetric “Structure from 
Motion” computer vision algorithms to a large empirical dataset of 
highly overlapping low altitude (< 130 m) aerial photographs acquired 
employing off-the-shelf digital cameras mounted on an inexpensive, 
lightweight, hobbyist-grade, unmanned aerial system (UAS). Ecosynth 
3D point clouds with densities of 30–67 points m− 2 were rendered 
using commercial computer vision software from digital photographs 
acquired repeatedly by UAS over three 6.25 ha (250 m × 250 m) 
temperate, LULC, Deciduous forest, LULC sites in Maryland USA. 

Ecosynth point clouds were georeferenced with a precision of 1.2–
4.1 m horizontal, radial, root mean square error (RMSE) and 0.4–1.2 m 
vertical RMSE. Understory digital terrain models (DTMs) and canopy 
height models (CHMs) were generated from leaf-on and leaf-off point 
clouds in ArcGIS using procedures commonly applied to lidar point 
clouds. At two sites, Ecosynth CHMs were strong predictors of field-
measured tree heights (R2s of 0.63 to 0.84) and were highly correlated 
with a lidar CHM (R2 of 0.87) acquired 4 days earlier, though Ecosynth-
based estimates of aboveground biomass densities which included 
significant errors (31-36% of field-based estimates). Repeated scanning 
of a 50 m × 50 m forested area at six different times across a 16 month 
period revealed ecogeographically significant dynamics in canopy color 
at different heights and a structural shift upward in canopy density, as 
demonstrated by changes in vertical height profiles of point density and 
relative RGB brightness. Changes in canopy relative greenness were 
highly correlated (R2=0.87) with the regressed, MODIS, time series 
data for the same area and vertical differences in canopy color revealed 
the early green up of the dominant canopy species, Liriodendron 
tulipifera, which subsequently revealed strong evidence that Ecosynth 
time series measurements can capture vegetation-oriented, LULC, 
structural and spectral, phenological dynamics at the spatial scale of 
individual trees. The ability to observe canopy phenology in 3D may 
represent a breakthrough in imaging seasonal riverine, canopy shaded 
S. damnosum s.l. larval habitat ecohydrological processes. Inexpensive 
user-deployed technologies for multispectral 3D scanning of vegetation 
at landscape scales (< 1 km2) heralds a new era of participatory remote 
sensing by field ecologists, community foresters and the interested 
public [4].

Quantitative regressive estimation of fractional canopy cover of 
NPV and bare soil geoclassified, LULC in ArcGIS and an OBIA classifier 

may be critical for natural resource management and for seasonally 
modeling carbon dynamics in a geo-spatiotemporally, geosampled, 
decomposable, seasonally productive, georeferencable, S. damnosum 
s.l. riverine larval habitat endmember, and eco-epidemiological, 
forecasting risk model. Despite the widely recognized importance of 
accumulated carbon storage in-canopied ecosystems, (e.g geospatial 
cluster of highly productive, georefernced, shaded, S. damnosum s.l. 
larval habitats in an African meandering riverine pathway), geospectral 
explicit, real-time, mapping and monitoring of carbon stocks in these 
habitats have remained a challenge due to excessive heterogeneity of 
green canopy, vegetation-oriented LULC, unmixed endmembers, 
diffusion and ubiquitous patterns of LULC and inexact, geospectral 
unmixing technologies. Regional, high resolution,  probabilistic, 
regression-related, eco-epidemiological, forecast, risk mapping of 
LULC canopied  vegetation cover and biomass in ArcGIS and in OBIA 
may be central to qualitatively remotely regressively quantitating 
terrestrial carbon cycles in a flooded, georefernced, seasonally prolific, 
riverine, larval habitat, for example, especially in the context of 
canopy carbon management. In the context of terrestrial, seasonal, 
carbon sink mechanisms, the potential role played by decomposable, 
georeferencable, LULC, time series, regressable, parameter estimator 
reflectance, emissity transmissitance, covariate coefficient, wavelenght, 
empirical values may be stressed in an ArcGIS geodatabase to remotely, 
qualitatively, geospectrally quantitate, extractable photosynthetic 
and NPV variables for enhancing mapping processes driven by 
canopy cover [2]. A carbon sink is a natural or artificial reservoir that 
accumulates and stores some carbon-containing chemical compound 
for an indefinite period [4]. The process by which carbon sinks remove 
carbon dioxide (CO2) from the atmosphere is known as carbon 
sequestration [2].

Carbon sequestration is the process of capturing long-term 
storage of atmospheric CO2 and may refer specifically to the process of 
removing carbon from the atmosphere and depositing it in a reservoir 
(e.g., a discontinous canopy gap in a geosampled, seasonally productive, 
georeferenced, riverine, shaded, S. damnosum s.l larval habitat). When 
carried out deliberately in ArcGIS, this process may also be referred 
to as carbon dioxide removal, which is common in geoengineering 
disciplines. Carbon capture and storage occurs, where carbon dioxide 
is removed from flue gases (e.g discontinous riverine canopy vegetation 
LULC readings at power stations) before being stored in underground 
reservoirs. Natural biogeochemical cycling of carbon between the 
atmosphere and reservoirs, such as by chemical weathering of rocks 
may be remotely captured in time series LULC change analyses 
in ArcGIS (www.esri.ccom). Jacob et al. [1] decomposed a 0.61 m 
reflectance signal emitted from a weathered, pre-Cambrian rock, 
georeferenced, S. damnosum s.l. riverine, larval habitat, biosignature 
by establishing the sensitivity and dynamic ranges of a 3-D, canopy-
oriented, radiative model, for field verifying a ArcGIS constructed 
stochastically forecasted, eco-epidemiological, vulnerability, risk map 
generated by unmixed canopied, endmember spectra.

Nitrogen fixing shrub Dichrostachys cinerea in a mesic savanna 
in Zambia was recently unmixed and was remotely qualitatively 
regressively quantitated for delineating pools in ArcGIS of soil nitrogen 
phosphrous and carbon availabilities [4]. The authors evaluated 
whether these effects induced feedbacks upon the growth of understory 
vegetation and encroaching shrubs. Dichrostachys cinerea shrubs 
increased total nitrogen and phosphrous pools, as well as resin-absorbed 
nitrogen and soil extractable phosphorous in the top 10-cm soil. Shrubs 
and understory grasses differed in their foliar nitrogen and phosphrous 
concentrations along gradients of increasing encroachment, suggesting 
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that the eco-graphically imaged grassland LULCs obtained nutrients 
in different ways. Thus, the authors assumed that the grasses probably 
were obtained mainly from the surface upper soil layers, whereas the 
shrubs may have acquired nitrogen through symbiotic fixation to 
obtain phosprous from deeper soil layers. The storage of soil carbon 
increased significantly under D. cinerea in the ArcGIS model and was 
apparently not limited by shortages of either nitrogen or phosphorous. 
The authors concluded that the shrub D. cinerea did not create a 
negative feedback loop by inducing phosphorous-limiting conditions, 
probably because they obtained phosphrous from deeper soil layers. 
Further, carbon sequestration was found not to be limited by a shortage 
of nitrogen, so that mesic savanna encroached by the species could 
represent a carbon sink for several decades. As such, a geospectrally 
decomposed, derivative, spectroscopic, biosignature, endmember, 
woody encroachment, reflectance, covariate, time series dependent, 
geosampled, parameter estimator may be regressively, qualitatively 
quantitated in ArcGIS for representing nitrogen stocks and foliage in a 
geospatiotemporally, moderate to high resolution, imaged, seasonally 
productive, geosampled, S. damnosum s.l., riverine habitat.

Canopy nitrogen provides a measure of nitrogen concentration of 
remotely sensed foliage [2]. Reflectance measurements in the shortwave 
infrared range measures relative amounts of nitrogen contained in 
vegetation canopies [4]. Reflectance at 1510 nm is largely determined by 
nitrogen concentration of leaves, as well as the overall foliage biomass 
of the canopy (www.esri.com). Together, leaf nitrogen concentration 
and canopy foliar biomass may be combined in the 1510 nm range 
to predict total canopy nitrogen content in a geo-spatiotemporally, 
geosampled, seasonally productive, S. damnosum s.l., riverine, larval 
habitat. The tabulated riverine habitat canopy nitrogen content may be 
compared to a reference reflectance at 1680 nm, which should optimally 
contain a similar signal due to foliar biomass, but without the influence 
of nitrogen absorption. Regressively quantitated eco-geographically, 
geo-spatiotemporally, cartographic relationships between delineated, 
geospatial canopy decomposed, endmember, nitrogen and other 
ecohydrological, time series dependent, photosynthetic and NPV 
explanatorial, time series dependent, empirically geosampled, eco-
physiological, predictor variables (e.g., nuclearized distance between 
canopy twigs) may help forecast seasonally high immature Similium 
seasonal productivity. 

The presence of NPV, and nonlinear geopectral unmixed regressors 
with NIR transmission and multiple canopy isotropic scattering 
by green vegetation LULC reflectance can complicate the seasonal 
interpretation of remotely sensed, geo-spatiotemporally, geosampled, S. 
damnosum s.l., riverine, larval habitat, empirical predictor variables as 
spectral mixtures. Spectral mixtures that include green, canopy, LULC 
vegetation has the potential of being non-linear due to transmissance 
and scattering of NIR light by canopy green leaves and the high spectral 
contrast between red and NIR of the leaves [4]. Transmission by canopy 
leaves of a geospatiotemporally, geosampled shaded, S. damnosum s.l., 
georeferncable, riverine, larval habitat can lead to multiple scattering 
and nonlinear mixing. As such, a linear ArcGIS model applied to 
spectral mixtures of canopy,vegetation-oriented, geoclassified LULC 
and soils of a prolific, flooded, riverine habitat and shaded empirical 
geosampled datasets of seasonally parameter estimator, reflectance, 
emissivity, transmittance wavelengtht covariates may overestimate 
the fraction of green vegetation in an endmember biosignature while 
underestimating the shade-related, LULC, explanatorial predictors. 
Further, the residualized error probabilities in the regression estimates 
of predictors ecogeographically georepresenting high reflection 
vegetated, LULC canopied surface, log-transformed, explanatorial, 

predictor variables (e.g., soil fraction radiance) may be mispecified 
(deflated pseudo R2 values) depending on the spectral shape of the soil. 
While the horizontal extent of covers can be adequately quantized from 
a linear mixing perspective, the interaction of photons with vegetation 
LULC explanatorial components in vertical space is known to be highly 
nonlinear [4].

Among various linear approaches, only ray tracing techniques has 
to as be shown to account for the complexity of internal leaf structure 
as it appears in a photomicrograph. They require however a detailed 
description of individual cells and their unique arrangement inside 
tissues. The optical constants of canopied leaf materials (cell walls, 
cytoplasm, pigments, air cavities, etc.) may be then be defined in an 
unmixed, endmember, canopied, unmixed, interpolated biosignature 
of moderate to high resolution imaged, highly productive riverine, 
S. damnosum s.l habitat. Using the laws of reflection, refraction, and 
absorption, the model may be able to simulate the propagation of 
individual photons incident on the canopy leaf surface. Unfortunately 
if a non-sufficient number of rays are simulated, statistically valid 
linearizable, endmember estimates of the radiation transfer in a 
seasonally geosampled, S. damnosum s.l. canopy leaf may not be 
deduced. 

The degree of nonlinearity in  empirically geosampled, seasonally 
productive, georeferncable, canopy shaded, S. damnosum s.l., 
riverine, larval habitat varies depending on soil reflectance and leaf 
transmittance reflectance [1]. Nonlinearity in volumetric (e.g ArcGIS, 
sub-resolution, delineated canopies with increasing leaf area) makes it 
extremely difficult to study the role of tissue and structural attributes 
that determine canopy and landscape radiative characteristics using 
field measurements based on illumination conditions, and viewing 
geometry alone. Nonlinear imaging-spectrometeric data increases 
with an increase in leaf transmittance or an increase in background 
[4]. Thus, a geospectral, geospatial, time series dependent, forecast, 
eco-epidemiological, risk model, forecast analyses based solely on 
non-linear, explanatorial, estimation model outputs without direct 
connection to field-measurable, regressable seasonal, canopied 
quantities (i.e immature productivity) can lead to erroneous conclusions 
since the realistic wavelength range of the model time series dependent, 
covariate parameter estimator values would not be known.

Unmixed, fractionalized, canopy radiance wavelength spectra in 
ArcGIS can be parsimoniously geo-spatiotemporally, regressively, 
quantitated in geographic space (e.g autocorrelation) to determine 
clustering tendencies in non-linearly dependent, seasonal, transmission-
oriented, hyperendemic, explanatorial, biophysical canopy-related, 
endmember, covariate, parameter estimator interactions (e.g trailing 
vegetation and immature Similium production) during specific sample 
frames (e.g flooding) in an African riverine ecosystem [1]. Spatial 
autocorrelation may arise from common geosampled variables (e.g., 
operationizable, datasets of georeferencable, empirically regressable, 
productive shaded and non-shaded, S. damnosum s.l. larval habitat 
populations) and their seasonal, measures of geospectrally extracted 
canopied endmember attributable variability associated with 
geolocations or from direct quantitated Eucleandized interaction 
between geolocations (Griffith 2003). Orthogonal eigenvectors can 
have an impact on significance levels on creating detectable differences 
in non-probabilistic, attribute measures [2]. These impacts motivated 
Clifford, Richardson, and Hémon (1989) to apply the phrase “effective 
degrees of freedom”—the equivalent number of degrees of freedom 
for geospatially unautocorrelated (i.e., independent) observations, for 
exploiting redundant or pseudo-duplicated information contained 
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in georeferenced empirical covariate, parameter estimator datasets 
due to the relative aggregated geolocations of clustered observations 
[e.g., negative autocorrelation (i.e., dissimiliar attributes amassed 
in ecogeographic space)] representing mapped georefernced, S. 
damnosum s.l. riverine, larval habitat photosynthetic and NPV 
geospecified regressors]. The duplicate information in question 
in an empirical geosampled dataset of vector entomological, time 
series dependent, covariate, parameter estimators may arise from 
probabilistically regressively quantitated LULC trends induced by 
common variables or from information sharing resulting from spatial 
interaction (e.g., canopied, ecogeographic diffusion) [4].

As spatial autocorrelation latent in georeferenced data increases, 
the amount of duplicate information contained in geo-spatiotemporally 
regressively delineated, canopied, S. damnosum s.l habitat data also 
increases [2]. This property suggests invoking the research question 
asking what the optimal, number of independent, S. damnosum 
s.l. riverine, larval habitat, photosynthetic and NPV geo-specified, 
seasonal, georeferencable, explanatorial, field and remote-specified 
observations, (i.e. n) is, that is equivalent to the sample size, n. This 
is the notion of effective sample size. Intuitively speaking, when zero 
spatial autocorrelation prevails, n*=n; when perfect positive spatial 
autocorrelation prevails in a univariate regional mean problem, n*=1. 
Equations may be then ecogeographically cartographically presented 
in ArcGIS for estimating n* based on the sampling distribution of a 
sample mean or sample correlation coefficient with the goal of obtaining 
some predetermined level of precision, employing the following spatial 
statistical model specifications: (1) simultaneous autoregressive, (2) 
geostatistical semivariogram, and (3) spatial filter [4]. These equations 
may be then evaluated with endmember simulation experiments which 
may be illustrated with selected empirical examples found in GIS 
literature for remotely analyzing decomposable, seasonal, S. damnosum 
s.l. riverine, canopied, sub-mixel reflectance, emissivity, transmittance 
data, feature attributes. In contrast to multispectral sensors, imaging 
spectroscopy can render probabilistically uncertainty-oriented, 
regressively quantitated, estimates of canopy absorption [4] which 
may be employed to precisely, elucidate, non-linear, autocorrelations 
in regressively quantized, seasonal relationships of, immature, S. 
damnosum s.l., larval habitat, ArcGIS delineated, covariate, parameter 
estimators based on specific, geosampled, riverine, canopied vegetated, 
geoclassified, explanatorial, LULC surfaces [3].

The terrestrial component of unmixed, probabilistically regressed, 
geosampled, georeferncable, seasonally, cartographically delineated, 
S. damnosum s.l. riverine, larval habitat canopy response variables 
can addresses the physics of energy and riverine water exchanges at 
the land surface. In Jacob et al. [1] for example, initially, an unmixing 
successive progressive algorithm (SPA) in ArcGIS parsimoniously 
extracted a dataset of geospectrally, geo-spatiotemporal, sub-mixel, 
canopy shaded, non-shaded endmembers from a QuickBird imaged, 
rendered, georeferenced, S. damnosum s.l., riverine, larval habitat 
scene, based on field-geosampled, eco-epidemiological count data. 
SPA builds on the convex geometry endmember search algorithms 
by including a constraint on the spatial adjacency of endmember 
candidate mixels, whereby reduction of the susceptibility to outlier 
mixels occurs when generating realistic canopied endmembers [2]. 
The task of geolocating decomposable, canopied, larval habitat, 
geospectral, canopy endmembers was actually associated with the 
identification of the simplex vertices, in eco-geographic regression 
space was the foundation for the time series geometric interpretation 
of the sub-meter resolution, imaged, riverine, larval habitat, sub-mixel, 
geosampled, eco-epidemiological data in the extraction algebraic 

algorithm. These georeferencable, unmixed explanatorial, sub-mixel, 
data attributes was analyzed based on convex rectilinear or curvilinear 
covariate, parameter estimators optimally devised in an ENVI module.

Many geoprocessing workflows were then employed to run specific 
operations employing the decomposed, shade, canopied, S. damnosum 
s.l., riverine, larval habitat empirical biosignature coordinates and 
geometrical information in ArcGIS API Javascript. The process 
created new, temporary, canopy LULC, explanatorial, data feature 
classes (trailing vegetation, sedge etc.). Geometrical objects can be 
used in ArcGIS for both input and output residual forecasting to make 
geoprocessing simpler (www.esri.com). The geometerical, endmember, 
geospatial objects from the geosampled, georeferncable, riverine, larval 
habitat canopy was then created employing Geometry, Multipoint, 
PointGeometry, Polygon, andPolyline classes. 

Thereafter, a spatial constraint was introduced employing the 
spatial-spectral endmember extraction algorithm (SSEE) in the 
SPA that subsequently made use of the riverine, larval habitat, 
image mixes during searchs for optimal, homogenous, canopied 
endmembers to regress. The SSEE operates differently from SPA 
using a roving endmember search window that covers the entire input 
image as it is designed to find similar but distinct endmembers [4]. 
A non-linear framework was constructed employing the unmixed, 
LULC, explanatorial, geospectrally geosampled, absorption-related, 
decomposed, photosynthetic and NPV, canopy-oriented, covariate, 
parameter estimator, coefficient values in ArcGIS. By so doing, 
immersed canopy hanging vegetation LULC was found to be an 
important operationizable predictor in a reflection response model.

Importantly, in Jacob et al. [1], the SPA employed the spectral angle 
and the spatial adjacency of the georefernced, sub-mixel, S. damnosum 
s.l., riverine larval habitat, sub-meter resolution, explanatorily 
decomposed, empirical, endmember, biosignature-oriented, unmixed, 
predictor variables which did not constrain the selection of candidate, 
geospectral absorption, canopied LULC endmembers for representing 
any extracted, photosynthetic or NPV explanatorial regressor. The 
authors designed the SPA employing empirically geosampled, time 
series dependent, larval habitat, unmixed, incident, shade, canopied, 
radiation observations based on the assumption that many canopy 
targets had spatial continuity (e.g. floating grass LULC). The authors 
assumed a spatial constraint would be beneficial in the canopy 
endmember search. The authors also assumed that the regressable, 
sub-mixel, explanatorial, time series dependent, georefernced, 
riverine, larval habitat, unmixed, photosynthetic and NPV, canopied, 
LULC reflectance –oriented, transmittance, wavelenght, parameter 
estimators, covariate coefficient values depicted in ENVI were 
spatially adjacent and thus were more likely to have similar absorption 
properties thereby, representing one optimal georeferncable, S. 
damnosum s.l., larval habitat, eco-geographical representative canopy 
endmember, optical, parameter estimator, covariate coefficient value. 
The fractionialized, explanatorial, canopy endmember, residualized, 
radiance forecasts rendered from the unmixed, sub-mixel, eco-
epidemiological, risk model revealed the probability that two adjacent 
decomposed, larval habitat 0.61m spatial resolution, mixels both being 
spurious was low. Experiments on the geospectrally decomposed, 
entomological-related, georeferenced, larval habitat canopy, 
biophysical, absorption rates demonstrated that SPA can have high 
efficiency in pure canopy endmember extractability due to minimal 
user interaction. In particular, this component calculated the balance 
between net radiative, turbulent, riverine fluxes for probabilistically 
regressively, quantitating, non-homogeneously canopy distributed 
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centers of isotropic multiple scattering. By so doing, realistic 3D 
effects of photosynthetically and NPV emitted transmittance canopy 
radiation wavelenghts was efficiently calculated which was useful for 
constructing a robust, larval habitat, forecasting, stochastic interpolator 
employing the unmixed radiatiative, remotely sensed, sub-meter, mixel 
resolution, directional information.

In ArcGIS, geometric operations, geospectral interpolation is 
conducted by dividing the image into blocks, for detecting traces 
of rescaling and rotation in each block. In the mathematical field of 
numerical analysis, interpolation is a method of constructing new 
data points within the range of a discrete set of known data points [1]. 
Interpolation algorithms in ArcGIS have been employed in multiple 
disciplines. For example, Gallagher [5], developed a unified way to 
determine realistic, probabilisitc, geo-spatiotemporally regressable 
explanators of rescaling and rotation by exploring geospectrally-
induced, reference signatures, and applied it to image forensics. 
Motivated by the image rescaling estimation method proposed, he 
developed an image, rotation angle, residual, probabilistic, target 
estimator based on quantized relations between the rotation angle 
and the frequencies at which peaks occurred due to interpolation in 
the spectrum of theimage’s edge map. He then employed rescaling/
rotation detection to detect maliciously adjusted objects inserted into 
images.

Interestingly, Popescu and Farid [6] presented their early method 
to find rescaling traces hidden in any portion of an image without 
resorting to a reference image by employing expectation maximization 
(EM) iterations. An EMalgorithm is an method for finding maximum 
likelihood or maximum a posteriori (MAP) estimates from an 
operational, empirical, covariate, parameter estimator, unmixed dataset 
of time series dependent, georeferencable, ArcGIS-friendly explanators 
(e.g., empirically decomposable, seasonal, canopied, S. damnosum 
s.l., riverine, larval habitat, endmember, ecosystem functioning 
regressors), especially when the model depends on unobserved 
empirical datasets dataset of latent, eco-geographically, endmember, 
geosampled, predictor variables [2]. A MAP estimate is a mode of the 
posterior distribution which may be utilized to obtain a georeferncable, 
explanatorial, point estimate of an unobserved quantity on the basis 
of a empirically regressable, time series dependent, explanatorial, 
georeferencable, data feature attribute [4]. Mahdian and Saic [7] used 
periodicity due to interpolation to perform blind image authentication. 
They introduced Radon transform on the basis of second derivative 
to detect rotation without estimation of the rotation angle. In 
mathematics, the Radon transform is the integral transform consisting 
of the integral of a function over straight lines. The Radon transform is 
also an integral transform whose inverse is used to reconstruct images 
from medical computed topography (CT) scans [2].

 In another work, Mahdian et al. [8] employed noise inconsistency 
to aid in the detection of image rescaling for image splicing detection in 
ArcGIS. Kirchner [9] constructed a rescaling detector based on periodic 
artifacts in the residue of a local, extrapolated, non-linearizable, geo-
spatiotemporal, geo-spectral, explanatorial, covariate, time series, 
dependent, probabilistic, parameter estimator. He analytically derived 
the expected position of characteristic rescaling peaks and formed an 
optimizable, explanatorial, endmember, absorption detector. Prasad et 
al. [10] localized tampered areas employing OBIA by labeling a mixel 
as 1 where the second derivative changed sign, otherwise labeling it as 
0. If multiple, geometrically dependent, binary operations are involved 
in an OBIA, different, geospectral, unmixing processing, absorption, 
algorithmic sequences may be useful for regressively quantitating 

different peaks in an ArcGIS interpolatable, qualitatively, empirically, 
geosampled, dataset of georeferencable, riverine, S. damnosum s.l., 
larval habitat, photosynthetic and NPV, time series dependent, 
emissivity reflectance, wavelenght, covariate, parameter estimator, 
estimator coefficient values.

A simulation study above sparse, partial and dense vegetation 
canopies of a geo-spatiotemporally, geosampled, S. damnosum s.l., 
riverine larval habitat may improve the knowledge of the behaviour of 
the composite radiative temperature and emissivity. Canopy structural 
parameters have been introduced in the analytical parameterization 
of the directional canopy emissivity and directional canopy radiance: 
namely directional gap fraction and angular cavity effect coefficient. 
The parameterization has been physically defined allowing its extension 
to a wide range of Leaf Inclination Distribution Functions (LIDF) in 
ArcGIS. When single values are used as leaves and soil temperatures, 
they prove to be retrieved with insignificant errors from two directional 
measurements of the canopy radiance (namely at 0 and 55 from nadir), 
provided that the canopy structure parameters are known (www.esri.
com). A sensitivity study to the different parameters may reveal the 
great importance of the accuracy on leaf area estimation. It may be 
determined that an accuracy of 10 per cent is required to retrieve the 
canopy leaf temperature with an accuracy better than 0.5 degK, the 
same requirement being 5 per cent for the retrieval of soil temperature 
during African riverine flooding sampled time frames. The radiometric 
noise may be vital for accurate regressable temperature sensitive 
covariate, wavelenght, parameter, estimators. The linearized effects 
may be catalyzed in an autoregressive algorithm by encompassing v 
different angles for the measurements. The effect of a Gaussian noise 
may be quantized as lower than 0.5 degK on the retrieved soil and 
foliage temperatures for example. Uncertainties on the leaf and soil 
emissivities (e.g., Delta epsilon 0.01) can create minute errors in the 
retrieval of (lower than 0.5 degK). For example, if the inclination 
dependence of the leaves temperature is considered in the regression 
equation, a 1 degK error may be observed in the retrieved soil and 
foliage temperatures. This error may be due to the fact that the effective 
foliage temperature varies with the view angle (a few 10-1 deg K at 
55) in a geo-spatiotemporally geosampled, S. damnosum s.l. riverine 
larval habitat which would imply errors in the inversion scheme. This 
effect may be corrected in ArcGIS by using an angular corrective term 
delta depending only on the off-nadir angle employed in the eco-
epidemiological, forecasting, probabilsitic, risk model.

Regardless, extensively heterogeneous, geospatially horizontal, 
geospectrally extractable, explanatorily  interpolatable, shaded and 
non-shaded, canopied, probabilistic, regression–oriented, terrestrial 
biome-related, explanatorial, predictor variables can  obscure 
accurately regressively quantizing stochastic and/or deterministic or 
deterministic relationships between canopy endmember, response-
related, photosynthetic and NPV covariate parameter estimator 
coefficient values due to multiple scattering. As such, explanatorial, 
geospectrally decomposable, unmixed, canopied, biosignature-related, 
biomass regression-oriented, probabilistic, uncertainties in incident 
mean solar radiation calculations at the leaf and canopy scale may 
be vigorously propagated in non-linearly, qualitatively, quantitative 
platforms. Thus, empirically probabilistic, estimates of regressed soil 
biochemistry, structural unmixed, canopy variable radiance values  
cartographically delineating of seasonally, geosampled, S. damnosum 
s.l., riverine, larval habitat, photosynthetic and NPV canopied LULCs 
may be misspecified, for example. Time series maps of explanatorily, 
geospectrally decomposable, canopy vegetation, LULC, reflectance 
models contain significant classification errors (e.g., heteroskedasticty 
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multicollinearity), since current understanding of how to scale mixed, 
photosynthetic and NPV, canopied, LULC-oriented, empirically 
extracted explanatorily interpolatable, predictor variables such as stand 
age, and density classes from local regressed estimates [2].

A sensor with a cosine response [i.e., follows Lambert's cosinelaw] 
allows measurement of explanatorial, flux densities through a given 
plane, (i.e. flux densities per unit area) [2]. In optics, Lambert's cosine 
law states that the radiant intensity or luminous intensity observed from 
an ideal diffusely reflecting surface (e.g., an individual, georefernced, 
S. damnosum s.l., riverine, larval habitat, canopy plant leaf), or ideal 
diffuse radiator, may be directly proportional to the cosine of the angle 
(i.e., θ) remotely geo-spatiotemporally quantitated Euclideanized 
distances between the direction of the incident light and the surface 
normal. Surface incidence is governed by the Lambert cosine law 
which states that the relative intensity of radiation or light on a surface 
is equal to the cosine of the angle of incidence, and that the relative 
area over which it is distributed is the inverse of this value [4]. Thus, 
when a parallel beam of georeferncable, S. damnosum s.l., riverine, 
larval habitat, canopy radiation of given cross-sectional, geolocation 
spreads over a relatively flat surface, the area that it covers is inversely 
proportional to the cosine of the angle between the beam and a plane 
normal to the surface.

 Thus, time series, explanatorily regressed, probabilistic uncertainties 
in canopy LULC irradiance emitted from a geo-spatiotemporally-
imaged, prolific, georefernced, seasonally shaded, S. damnosum s.l., 
geosampled, riverine, larval habitat, may be qualitatively regressively 
quantitated using a dataset of time series dependent, photosynthetic 
and NPV unmixed, endmember, biosignature-oriented, covariate 
coefficients values associated to beam disproportionality based on 
the tabulated cosine of the endmember sub-mixel, angles. These 
time series, explanatorial, regressive, quantizable, non-linear, integer 
values may remotely describe fluctuating elevations of African flooded 
riverine landscapes in which clustered,(i.e., positively autocorrelated) 
geospatial aggregations of prolific, georefernced, canopied, immature 
habitats, (i.e., possible high density hyperendemic transmission foci). 
In radiometry, irradiance is the radiant fluxreceived by a surface per 
unit area, and spectral irradiance is the irradiance of a surface per unit 
frequency or wavelength, depending on whether the spectrum is taken 
as a function of frequency or of wavelength [2]. 

The SI unit of irradiance is the watt per square meter (W/m2), 
while that of spectral irradiance is the watt per square metre per 
hertz (W·m−2·Hz−1) or the watt per square meter per meter (W·m−3)—
commonly the watt per square meter per nanometer (W·m−2·nm−1) 
[4]. Differences of modeled surface upward and downward longwave 
and shortwave irradiances may be optimally calculated in ArcGIS for 
canopied, geo-spatiotemporally, geosampled, prolific, georefernced, 
shaded, S. damnosum s.l., riverine, larval habitat, images employing 
modeled irradiance computed with active sensor-derived and passive 
sensor-derived cloud and aerosol properties. The irradiance differences 
may be then optimally calculated for various temporal and spatial 
scales, monthly gridded, monthly zonal, monthly global, and annual, 
global, meterological, covariate, parameter estimators. 

Parameterizations in a global canopy model (GCM) are designed to 
describe the 'collective effects' of processes that occur at scales smaller 
than GCM grid sizes [4]. Radiation exchange within the canopy plays a 
crucial role in the canopy microclimate [2]. Parameterizations of many 
processes such as radiation transfer and autoconversion employ the 
assumption of independent column approximation (ICA), [i.e., there is 
no interaction between sub-columns and the grid-averaged regression 

probability uncertainty effects] which subsequently depend only 
on the probability distribution function (PDF) of relevant canopied, 
endmember predictive, variables] [2]. Radiative transfer is the physical 
phenomenon of energy transfer in the form of electromagnetic 
radiation [4]. The propagation of radiation through a medium (i.e, 
riverine, larval habitat, S. damnosum s.l., vegetation canopy) in a GCM 
is affected by absorption, emission, and scattering processes [3], thus 
acurate simulation of canopy microclimate in ArcGIS is contingent on 
successful mixel decomposition and precise time series simulation of 
the surface radiation balance.

Independent column approximation approaches employ one-
point statistical information (e.g., PDF), called sub-grid variability and 
structural information (e.g., spatial organization and arrangement) that 
can be remotely characterized by multi-point explanatorial, statistics in 
ArcGIS. However, coherent structures have been found at scales ranging 
from droplet clusters to organized cloud, and have complex interactions 
with canopied radiation, dynamical processes (e.g., bi-directional, 
reflectance of floating vegetation LULC around a georeferncable, 
geospectrally decomposable, prolific, flooded, S. damnosum s.l., larval 
habitat) in mesoscale riverine ecosystems. Failure to include sub-grid 
cloud and convection structures in a radiative transfer equation may 
thus lead to inadequate simulations of large-scale, georefernced, S. 
damnosum s.l., riverine, canopied, larval habitats, and their remotely 
sensed, shaded and non-shaded, photosynthetic and NPV –oriented, 
LULC-related probabilistically regressable, biophysical, seasonal 
constituents, for example. It has been found that ignoring cloud spatial 
organization tends to non-regressively underestimate or overestimate 
the domain-average radiation fluxes which may be dependent on many 
co-factors, (e.g., solar angle and cloud geometry) [4].

The terrestrial component of GCMs requires computationally 
efficient algorithms for qualitatively quantizing the multi-scattered 
canopy radiation contributions from heating and solar radiation [2]. 
Much of the seasonally geosampled, canopy vegetated, LULC geo-
classifed, geosampled, productive, S. damnosum s.l., riverine, larval 
habitats have strong 3-D controls on its radiation [1]. The scattering 
from a 3-D object of isotropic scatters may be formulated abstractly 
and an approach to solution may be optimally described for robustly, 
parsimoniously, geospectrally, explanatorily interpolating, canopied, 
seasonally, prolific, S. damnosum s.l., riverine, larval habitats, 
biogeochemical, photosynthetic and NPV–oriented, regressed, 
decomposed, data products. A Laplace integral representation of the 
3-D integral equation for radiative transfer may then be discretized.

The Laplace transform is related to the Fourier transform but 
whereas the Fourier transform expresses a function or signal as a 
superposition of sinusoids, the Laplace transform expresses a function, 
more generally, as a superposition of moments [2]. Fourier transform 
of a function of time itself is a complex-valued function of frequency, 
whose absolute value represents the amount of that frequency residually 
present in the original function, and whose complex argument is 
the phase offset of the basic sinusoid in that frequency [4]. Given a 
simple mathematical or functional description of an input or output 
to an explanatorial, geo-spatiotemporally, geosampled, canopied, 
S. damnosums.l., georeferencable, prolific, riverine, larval habitat, 
decomposable system in ArcGIS, the Laplace transform can provide 
an alternative functional description that may algebraically simplify 
the process of geospectrally analyzing the behavior of the system 
by synthesizing seasonal, unmixed, canopy, biosignature-oriented, 
explanatorial, architectural specifications. Laplace transformation 
from the time domain to the frequency domain transforms differential 
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equations into algebraic equations and convolution into multiplication 
[2]. Such discretization can provide the solution in terms of solutions 
to 3-D Helmholtz equations. In mathematics, the Helmholtz equation 
is the partial differential equation 2 2 0A K A∆ + = where ∇2 is the 
Laplacian, k is the wavenumber and A is the amplitude [4].

A Green’s function approximate solution along the paths of 
entering and exiting, seasonally geosampled, prolific, S. damnosum 
s.l. riverine larval habitats canopy radiation may also be integrated 
over an empirically operationizable, geosampled dataset of geo-
spatiotemporally decomposable, canopy, radiation absorption covariate, 
parameter estimator coefficient values for robustly, regressively, 
qualitatively quantizing the paths which may be assumed to coincide 
except for direction in a GCM. In mathematics, a Green's function 
is the impulse response of an inhomogenous difefrential equation 
defined on a domain, with specified initial conditions or boundary 
conditions [4]. Via the superposition principle, the convolution of a 
Green's function with an arbitrary function f(x) on that domain is the 
solution to an inhomogeneous differential equation for f(x) [2]. The 
resulting approximate description of an heuristically optimizable, 
empirical, explanatorial dataset of multi-scattered, riverine, larval, 
habitat, canopy radiation regressors may correspond to replacing the 
3-D scattering paths with a 1-D path with attenuation in an empirical, 
geo-spatiotemporal, S. damnosum s.l., eco-epidemiological, risk, 
forecasting, GCM amplified by a diffusivity factor. This description can 
be combined with previously derived analytic solutions for remotely, 
qualitatively regressively, robustly, quantitating, single scattered, 
canopy radiation for parsimoniously providing an efficient seasonal 
eco-geographic representation of the bidirectional scattering from a 
geospectrally extracted,3-D –explanatorily interpolated, S. damnosum 
s.l., riverine, larval habitat, geo-spatial, georeferenceable, canopy 
object, intended for use in the GCM.

Given the detailed riverine, eco-graphically georeferncable, S. 
damnosum s.l., larval habitat cloud field, the canopy radiation field 
can be found by numerically solving the 3-D transport equation in 
ArcGIS. However, in many applications, the knowledge of 3-D cloud 
field is unavailable. Satellite observations provide the only practical 
means to obtain a synoptic view of Earth's ecosystems, including 
their geospatial distribution, extent, and temporal dynamics [4]. 
Thus, it is often difficult to draw any theoretical conclusion based on 
numerous configurations of a 3-D cloud field [2]. Further, numerically 
solving the 3-D problem may be too expensive for practical 
applications for precisely, seasonally, forecasting, hyperendemically-
related, productive, geo-spectrally explanatorily, interpolatable, 
decomposable, shaded or non-shaded, S. damnosum s.l. riverine, 
larval habitat, canopied endmembers. Traditional field-based, geo-
sampling, eco-epidemiological methods are prohibitively expensive 
and time-consuming at large geospatial scales, and as such these 
methods are inadequate for today's remote sensing needs [4]. In geo-
spatiotemporal, geosampled, S. damnosum s.l.–related, canopy-related, 
forecasting larval habitat, eco-epidemiological, regression-related, risk 
models constructed in ArcGIS it is a standard practice to employ the 
ICA assumption, [i.e., divide the domain into two (clear and cloudy) 
or more subcolumns] and independently calculate the radiation flux 
within each sub-column [1,3].

Previous efforts on parameterization of 3-D, cloud-radiation, 
canopied interaction terms in large-scale canopy-related, S. 
damsnosum s.l. riverine, larval habitat GCMs generated in ArcGIS have 
focused on binary medium or oversimplified closure assumptions. 
Interestingly, a statistical physics-like simulation approach that makes 

a direct connection between the statistical eco-characterization of 
cloud structure and the geostatistical moments of the radiation field 
by properly averaging the 3-D regressive equation in ArcGIS may 
reduce probability uncertainties in a radiative transfer equation 
for precisely geospatially, remotely targeting, prolific, unknown, 
unsampled, georeferencable, riverine, immature habitats employing 
decomposed, geospectrally, explanatorily interpolated, bio-
signature canopy endmember, photosynthetic and NPV, empirically 
geosampled, geopredictive variables. The unknowns of the resultant 
statistical radiative transport (SRT) equations may also be calculated 
in ArcGIS and, by so doing, the statistical moments of the radiation 
field, and the riverine larval habitat model inputs could be optimally 
rendered as some statistical moments of the 3-D, canopied, medium 
structure. It may be shown that a spatial correlation function can serve 
as the key to statistically eco-geographically describing time series, 
cloud–radiation, seasonal interactions in an empirically geo-spatio 
temporally, explanatorily interpolated dataset of clustered, unknown, 
unsampled, geosampled, productive, S. damnosum s.l., georefernced, 
riverine, shade, canopied, larval habitats.

Further, employing the 3-D, medium irradiance differences, 
the regression, probabilistic uncertainties of the radiative surface of 
prolific, shaded, geo-spatiotemporally, geosampled, S. damnosum 
s.l., riverine, larval habitat, decomposed canopy, irradiances may be 
optimally estimated in ArcGIS. The uncertainty (e.g., 1 r) of the annual 
global surface downward longwave and shortwave may be seasonally 
respectively, 5 W m-2 (out of 345 W m-2) and 4 W m-2(out of 200 W 
m-2), for example, after known bias errors are removed. Similarly, 
the uncertainty of the annual global surface upward longwave and 
shortwave for regressed georeferenced, canopied, riverine, larval habitat 
photosynthetic and NPV, explanatorial, time series, predictor variables 
may be tabulated respectively as 3 W m-2(out of 400 W m-2) and 3 W 
m-2(out of 25 W m-2). Accurately quantitating, regression, probabilistic, 
geospectral uncertainties may model canopy irradiances employing 
cloud properties derived from imagers on a sun-synchronous orbit 
that covers the globe every day (e.g., moderate-resolution imaging 
spectrometer) or, modeled irradiances computed for nadir view on 
active sensors or, on a sun-synchronous orbit such as Cloud-Aerosol 
Lidar, Infrared Pathfinder Satellite Observation and CloudSat. If the 
assumption is that longwave and shortwave georeferenced, canopied, 
reflectance wavelength transmittance probabilities quantized S. 
damnosum s.l., habitat, eco-epidemiological, regression-related 
forecasting, risk model estimators are independent of each other, but 
up- and downward components are correlated with each other, the 
remotely tabulated erroneous variables in global annual mean net 
surface irradiance may be low for the georefernced habitat (e.g., 15 W 
m-2). One-sigma uncertainty bounds of the satellite-based, net surface 
irradiance may also be approximated with low W m-2 measures for the 
georeferenced, riverine, larval habitat, canopied, leaf optical properties.

Leaf optical properties have been successfully included for 
homogeneous canopies (i.e., no higher level of organization) at the 
computational level in GCMs [4]. For this purpose, multi-scattered, 
isotropic, seasonal, S. damnosum s.l., larval habitat, canopy radiation 
maybe conceptualized as consisting of discrete streams of non-opaque 
exiting radiation. Canopy radiation interacting at multiple scales of 
the riverine habitat can then be addressed with an adding principle in 
ArcGIS. Each riverine, larval habitat, canopy level may be thereafter 
robustly summarized by its ‘‘input–output”. That is, since the incident 
radiation is of external origin, it arrives at the outside of a georeferenced, 
geosampled, canopied, seasonally productive, riverine habitat, and 
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then enters in and some fraction again exits in various directions. The 
description of this exiting radiation may be then remotely qualitatively 
defined as an unmixed, canopied, endmember biosignature, log-
transformed, non-linear regressor in an autoregressive GCM. The 
optical properties of a plant cell (i.e., photosynthetic capability) can 
then be employed to construct the optical properties of a riverine, 
larval habitat, canopy leaf and the latter can be used to construct optical 
properties at higher levels of organization up to that of the canopy.

Alternatively, the geosampled, georeferncable, S. damnosum s.l., 
larval habitat, canopy radiation may be eco-geographically and/or 
non-ecoeographically represented by precisely tabulating polynomials 
in the cosine of their angle made by the direction of the radiative flux 
relative to the same reference direction, (e.g. the vertical) in ArcGIS. 
These approaches may qualitatively regressively quantitate low order 
numerical discretizations of the continuous directionality of the 
riverine, larval habitat, multi-scattered, isotropic canopy radiation. 
The photosynthetic and NPV geospectrally, explanatorily interpolated, 
decomposed, covariate, parameter estimator, emissivity transmittance 
coefficients may describe the canopy scattering from other terrestrial 
LULC, riverine, vegetation LULC surrounding the habitat. Further, 
employing robust, seasonal, and photosynthetic and NPV, remotely 
sensed, decomposable, probabilistic, geo-spatiotemporal,geosampled, 
explanators as independent variables in the regression equation may 
create computational simplicity when constructing an autoregressive 
GCM in ArcGIS with acceptable discretization error. Unfortunately, 
currently ecologists and other experimenters are not able to explicitly 
remotely address the additional autoregressive, uncertainty-oriented, 
probabilistic, complexities in any geometric analytical module in an 
ArcGIS cyberenvironment for parsimoniously regressively capturing 
ellipsoidal, within-canopy, georeferencable geospatial, objects (e.g., 
trailing vegetation) in a geo-spatiotemporally, geosampled, seasonally 
productive, ecogeographically or non-ecogeographically associated 
with, shade canopied, riverine, S. damnosum s.l. larval habitat.

Sensor data without an accurate cosine correction can also render 
a severe autoregressive propagational error in an ArcGIS validation 
algorithm under diffuse radiation conditions within a riverine, S. 
damnosum s.l., larval habitat, canopied geolocation at low solar 
elevation angles. The cosine error at angle 0 is the percent difference 
of the ratio of the measured output at angle 0 and normal incidence 
as compared to the cosine of angle0 [2], which may be repeatable 
for various azimuth angles in ArcGIS when accurately remotely, 
qualitatively, regressively quantizing seasonal, shaded, S. damnosum 
s.l., larval habitat, canopy-oriented, photosynthetic and NPV radiance 
transmittance emittance values. Totally diffuse radiation can introduce 
a cosine error of approximately 2.5%in a, geo-spatiotemporally-
dependent, geosampled, S. damnosum s.l., canopied, riverine, larval 
habitat, sub-mixel, endmember, geospectral, stochastic interpolator 
[1].

Jacob et al. [1]employed a regression matrix, for qualitatively 
quantitating an operational dataset of seasonally geosampled, 
productive, S. damnosum s.l., vegetation canopied LULC, riverine, 
larval habitat, sub-meter resolution unmixed biosignature, 
forecasting, eco-epidemiological, explanatorily, risk model variables 
with autocorrelated disturbances as follows: i

t t tY X Vβ= +
( )2

1 1 ... 0,t t t m t m tV v V Nε ϕ ϕ ε σ− −= − − − . In these equations, 

Ytwere log-transformed, dependent, decomposed, sub-meter (0.61 
m) wave length values, Xtwas a column vector of the decomposed, 
probabilistic, regressor variables, β was a column vector of structural 

parameters, whereϵt was normally and independently distributed with 
a mean of 0 and a variance of σ2. Note that in the parameterization, 
the signs of the autoregressive parameters were reversed from the 
parameterization documented in literature. ArcGIS probabilistic, 
uncertainty-oriented, photosynthetic, end member estimation methods 
for the optimizable, geo-spatiotemporal geosampled, canopied, S. 
damnosum s.l., georeferenced, riverine, larval habitat, time series, eco-
geographical, explanatorial, error model initially employed a default 
method. Yule-Walker (YW) estimation was performed in ArcGIS. 
The Yule-Walker method (i.e., the two-step full transform method) 
computationally was designed in ArcGIS by letting ϕ represent 
the vector of the geo-spatiotemporally, geosampled, autoregressive 

S. damnosum s.l. parameters, ( )1 2, ,....., mϕ ϕ ϕ ϕ= 1 and by 

letting the variance matrix of the error vector be ( ),..... 't NV V V=
be ( ) 2, 'E VV Vσ∑ = ∑ = . According to Jacob et al.  (2013) ,in an 
empirical probabilistic, regressed datset of   geosampled, immature, 
S. damnosum s.l., riverine, larval habitat-related, explanatorial, eco-
epidemiological, time series dependent,  uncertainty-oriented,    non-
linear, risk model forecasts, the vector of autoregressive parameters ϕ is 
known the matrix V can be computed from decomposed, probabilistic, 
non-optimizable  spatially pseudo-replicated uncertainty probabilities. 

∑ which may be then delineated by 2Vσ [2]. Given∑ , the efficient 
emissivity transmisstance estimates of the autoregressive, explantorial, 
endmember, canopied, S. damnosum s.l.,, riverine, larval habitat, time 
series dependent, regression parameters β may be computed using 
generalized least squares (GLS). In Jacob et al. [1] the GLS estimates 
yielded the unbiased explanatorial time series estimate of the variance

2σ  in the riverine larval habitat model spatially structured random 
intercept which subsequently accounted for the effect of the missing 
predictors in the model derivatives. 

Thereafter, the YW alternated estimation of β employing the GLS 
with iterative equations which rendered the sample autocorrelation 
function. The YW method formed the OLS estimate of β. Next, φ was 
estimated from the sample autocorrelation function of the empirically 
autoregressed. explanatorial, field and remote, unmixed, immature 
S. damnosum s.l. riverine, larval habitat, photosynthetic and NPV, 
time series dependent, geospatial probabilistic, uncertainty –oriented, 
optical properties and OLS residuals. Then V was tabulated from the 
estimate of φ and ∑ was estimated from Vand the OLS estimate of 2σ . 
The autocorrelation eigenfunction decomposition algorithm corrected 
estimates of the canopied, S. damnosum s.l., shaded, larval habitat, time 
series dependent, regression parameters β which were then computed 
by GLS, employing the estimated ∑  weighted matrix. These were 
the Yule-Walker estimates. Other methods were the niterated YW, 
unconditional least squares (ULS), and maximum likelihood (ML). The 
ULS method is also referred to as nonlinear least squares (NLS) or exact 
least squares (ELS [2]). 

The authors then defined the transformed error, e, as 1e L n−=  

where n y X β= − .in ArcGIS The unconditional sum of squares for the 

model, S, was 1 ''S n V n e e−= =  The ULS estimates were computed by 
minimizing S with respect to the geosampled, decomposed, canopied, 
S. damnosum s.l., shaded, larval habitat regression parameters β and 

'ϕ . The full log likelihood function for the autoregressive error model 

was ( ) ( ) ( )2
2

1ln 2 ln ln / /
2 2 2 2
N N Sl Vσ

σ
= − ∏ − − − where V denoted the determinant 

of V for the ML method, the likelihood function was maximized by 



Citation: Jacob BG, Novak RJ, Toe LD, Sanfo MS, Lassane K, et al. (2016) Ecogeographically and Non-Ecogeographically Forecasting Discontinuous 
Canopied Simulium damnosum s.l. Habitats by Interpolating Metrizable Sub-Mixel Mean Solar Exoatmospheric Quantum Scalar Irradiance 
where θi is a Zenith Angle and Diatomically Etiolated Xanthophylls with Azimutually Isotropic Sources of Chloroplastic Carotenoid Zeaxanthins 
Spectrally Extracted from a Decomposed RapidEye™ Red Edge Normalized Difference Vegetation Index Reference Biosignature: A Case 
Study in Burkina Faso and Uganda. J Remote Sensing & GIS 5: 152. doi:10.4172/2469-4134.1000152

Page 13 of 103

Volume 5 • Issue 1 • 1000152
J Remote Sensing & GIS
ISSN: 2469-4134 JRSG, an open access journal 

minimizing an equivalent sum-of-squares function. Maximizing l 

with respect to 2σ  (and concentrating 2σ out of the likelihood) and 

dropping the constant term ( ) ( )ln 2 1 ln
2
N N− + − then rendered the 

concentrated log likelihood function ( )1/ln / /
2

N
C

Nl S v= − . Rewriting 

the S. damnosum s.l.-related decomposed, endmember, regression 

variable term within the logarithm then rendered 
1/ 1/'N N

mlS L e e L=

Thereafter, ArcGIS computed the ML estimates by minimizing 

the objective function which in Jacob et al. (2012) was expressed 

as 1/ 1/'N N
mlS L e e L= . The sample autocorrelation function was 

computed from the structural excessive, decomposed, canopied, S. 
damnosum s.l., shaded, larval habitat noise which was then subsequently 

qualitatively regressively quantitated employing '
t t tn y X b= − , where 

b was an estimate of β . The sample autocorrelation function was the 
sum of all available lagged products of ntof order j divided by l+j, where 
l was the number of such products. The calculation of V from ϕ for 
the generalized, canopy decomposition, endmember, AR(m) risk model 
was complicated, and the size of V was dependent on the number of 
photosynthetic and NPV canopied observations. Instead of actually 
calculating Vand performing GLS in the usual way, a Kalman filter 
algorithm was instead used to transform the geosampled empirical 
data which was then employed to compute the GLS results through a 
recursive process. 

The Kalman filters was based on linear dynamic systems discretized 
in the time domain. The filters were modeled on a Markov chain built 
on linear operators perturbed by the unmimxed, biosignature-related, 
geosampled, decomposed, canopied, S. damnosum s.l., shaded, larval 
habitat, regression errors including the Gaussian noise. Gaussian 
noise is statistical noise having a probability density function (PDF) 
equal to that of the normal distribution, which is also known as the 
Gaussian distribution [2]. In other words, the values that the noise 
can take on are Gaussian-distributed. The state of the system was then 
eco-geographically represented as a vector of the endmember, time 
series, photosynthetic and NPV, covariate parameter estimator, time 
series, reflectance emissivity coefficinet values. At each discrete time 
increment, a linear operator was applied to the state to generate the 
new state, with some noise mixed in, and optionally some information 
from the controls on the system. Then, another linear operator 
mixed with more noise rendered the observed outputs from the true 
("hidden") state. The Kalman filter may be regarded as analogous to 
the hidden Markov model, with the key difference that the hidden state 

variables take values in a continuous space (as opposed to a discrete 
state space as in the hidden Markov model) [2]. There was a strong 
duality between the equations of the Kalman Filter and those of the 
hidden canopied, S. damnosum s.l., shaded, larval habitat, Markov 
model (Figure 1).

The algorithm estimated the internal state of the decomposed 
endmember riverine, canopy, larval habitat explanatorial regressors 
employing a sequence of noisy, decomposed, canopy endmember, 
autocorrelation observations in accordance with the framework of 
the Kalman filter in ArcGIS. This meant specifying the following 
matrices: Fk, the state-transition model; Hk, the observation model; 
Qk, the covariance of the process noise; Rk, the covariance of the 
observation noise; and Bk, the control-input model, for each time-
step, k, 

Ellipses representing the seasonally eco productive, canopied, 
S. damnosum s.l., shaded, larval habitat, multivariate, normal 
distributions with the mean and covariance matrix were enclosed 
in ArcGIS. Unenclosed values were then qualitatively regressively 
quantitated as vectors. In the simple case, the various matrices were 
constant with time, and thus the subscripts were dropped, but the 
Kalman filter allowed any of the decomposed, riverine, larval habitat, 
sub-meter resolution, canopied, endmember biosignature, optical 
properties to change at each time step. The Kalman filter model 
assumed the true state at time k which was evolved from the state at 
(k − 1) according to 1K K K K k KX F X B u W−= + + whereFk was the state 
transition model which was subsequently applied to the previous 
state xk−1, where Bk was the control-input model which was applied 
to the control vector uk. In the geo-spatiotemporally, geosampled, 
S. damnosum s.l., shaded, larval habitat, , spatially,probabilistically, 
regressed model wk was the process noise which the authors 
assumed to be drawn from a zero mean, multivariate, normal 
distribution with covariance Qk. ( )~ 0,K KW N Q . At time k then 

a decomposed, georefernced canopied, S. damnosum s.l., riverine 
larval habitat canopied endmember observation zk of the true state 
xkwas parameterized according to K K K KZ H X V= + where Hk was 
the decomposed observation model which mapped the true state 
space into the observed space when vk was the observation noise 
which Jacob et al. [1] assumed to be zero mean Gaussian white 

noise with covariance Rk. ( )~ 0,K KV N R . The initial state, and 

the noise vectors at each step {x0, w1, …, wk, v1 … vk} were all then 
deemed to be mutually independent.

In all of the algorithmic estimation methods, the original 
decomposed, georefernced, canopied, S. damnosum s.l., shaded, 
larval habitat endmember data were transformed by the inverse 
of the Cholesky root of V in ArcGIS. Let L denote the Cholesky 
root of V then, 'V LL= with L lower triangular [2]. For the AR(m) 
eco-epidemiological, decomposed, forecasting, operationizable, 
emissivity transmisstance, reflectance, wavelenght, risk model, 
L-1 was a band diagonal matrix with m anomalous rows at the 
beginning and the autoregressive unmixed parameters along the 
remaining rows. Therefore, if there were no missing values, after the 
first m-1  canopy endmember observations the regressed data were 
transformed as 1 1 ...t t t m t mZ x x xϕ ϕ− −= + + + . The transformation was 
carried out employing the Kalman filter, and the lower triangular 
matrix L which was never directly computed in ArcGIS. Although 
L was not computed explicitly, for ease of residual presentation the 
uncertainty probabilisticforecasts were spatially defined in termsof L. 

 

Figure 1: A Markov end member, probabilistic, canopied, prolific, S. 
damnosum s.l., larval habitat forecasting risk model underlying the Kalman 
filter representing the uncertainty auto regressive matrices.
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If there are missing values, then the submatrix of L consisting of the 
rows and columns with nonmissing values are used to generate the 
transformations (www.esri.com). 

The ULS and ML estimates employed a Gauss-Newton algorithm 
to minimize the sum of squares and maximize the log-likelihood, 
respectively. The relevant optimization wasperformed in ArcGIS 
simultaneously for both the regression and AR parameters. The OLS 
estimates of β  and the Yule-Walker estimates of ϕ  were employed 
as starting values for the uncertainty, first-order auto-evaluation. The 

Gauss-Newton algorithm requires the derivatives of e or ( )1/ NL e  with 
respect to the decomposed, explanatorial, canopied parameters [2]. 
The derivatives with respect to the parameter vector β  were then 

1/
1/1 1

' '

Ne
NLe L X L L X

β β
− −∂∂

= − =
∂ ∂

 The derivatives with respect to ϕ

were then computed by differentiating the Kalman filter recurrences 

and the equations for the initial conditions. For the Yule-Walker 
method, the estimate of the error variance, S2, was the error sum of 
squares from the application of GLS, divided by the error degrees of 
freedom (i.e, number of decomposed, canopied, S. damnosum s.l., 
shaded, larval habitat endmember observations N minus the number of 

free parameters). The variance-covariance matrix for the components 
of b was taken as ( ) 12 1's X V X

−− for the Yule-Walker method. For the 
ULS and ML methods, the variance-covariance matrix of the canopied, 

decomposed, larval habitat, parameter estimates was then computed as
( ) 12 's J J − . For the ULS method, J was the matrix of the geospectral 

derivatives of e with respect to the unmixed, riverine, canopied, larval 

habitatdecomposable parameters. For the ML method, Jwasthe matrix 
of derivatives of 1/ NL e divided by 1/ NL . The estimate of the variance-

covariance matrix of b assuming that ϕ was then ( ) 12 1'S X V X
−−= .

Spatially autocorrelated discontionus canopy species abundance or 
distribution datasets may generate spatially autocorrelated residuals in 
generalized linear models (GLMs) thus, a broader modelling framework 
may be required to remotely, qualitatively, regressively, quantitate 
geospectrally decomposed, S. damnosum.s.l., larval habitat, canopy 
bisignatures. Auto-logistic and related auto-models, implemented 
approximately as autocovariate regression, provide simple and direct 
modeling of endmember, spatialized, probabilistic S. damnosum s.l.-
related population processes. However, Dormann questioned the 
validity of auto-logistic regression for fully observed decomposed 
endmember data, giving examples of apparent underestimation of 
covariate parameter estimators in residual analysis of simulated data. 
Dormann et al. extended this critique to auto-Poisson and certain auto-
normal models, finding again that autocovariate-regressed endmember 
estimates for time series covariate parameter estimators bore little 
resemblance to values employed to generate ‘snouter’ data. Jacob et 
al. [1] acclaimed that compound probabilistic regression uncertainties 
associated may be associated  other factors (e.g.,sampling error) such 
as algorithm selection, presence data, and variable collinearity. We 
note that all the above studies employed neighborhood weighting 
schemes inconsistent with auto-model definitions; in the auto-Poisson 
case, a further inconsistency was the failure to exclude cooperative 
interactions. Investigating the impact of implementation errors on 
auto-model probabilistic estimation employing both empirical, and 
simulated datasets of geospectrally decomposed, resampled, productive, 
shade canopied, S. damnosumsol s.l., riverine, larval habitats may 

show that when spatially "re-adjusted" endmember canopy data are 
re-analyzed employing valid weightings, very different residually 
forecasted, emissivity, transmisstance, reflectance wavelengtht, 
estimates are obtained for photosynthetic and NPV predictors. For 
auto-logistic and auto-normal S. damnosum s.l. riverine larval habitate 
co-epidemiological, forecasting canopy, risk models, the new estimates 
may agree closely with values used to generate the ‘snouter’ simulations. 
A substantial fraction of papers employing auto-logistic regression use 
these invalid neighborhood weightings, which have been embedded as 
default options in ArcGIS.

Commonly explanatorial, time series dependent, geospatial, 
probabilistic erroneous photosynthetic and NPV radiance covariate 
coefficients in autoregressed, canopy vegetation, LULC calculations 
in ArcGIS consists of the cosine error (or the angular error) and 
azimuth error. Angular error in a georeferencable, seasonally imaged, 
productive, riverine, S. damnosum s.l., shade, canopied, larval habitat 
may be measured by directing a collimated source at normal incidence 
androtating the sensor 360° about an axis directly through the center 
of the sphere at 90° from normal incidence. This may be repeatable 
for calculating various azimuth angles as necessary to characterize the 
sensor. The solar azimuth angle is the azimuth angle of the sun which 
may be determined by defining sun direction, whereas the solar zenith 
angle or its complementary angle solar elevationcan define how high 
the sun is [4]. There are conventions for the solar azimuth, however 
it is traditionally defined as the angle between a line due south and 
the shadow cast by a vertical rod on Earth. Angular error is due to 
variations in density in the diffusion sphere and the sphere area lost 
because ofthe sensor base [2]. Angular error is commonly less than 
10% for an remotely sensible, georeferncable, seasonally productive, 
canopied, S. damnosum s.l., larval habitat based on geo-spatiotemporal, 
field geosampled, regressively aggregated, count data as the upwelling 
radiation is much smaller than the downwelling radiation in most 
African riverine environments [1].

The mathematical theories of regression for quantitating, 
canopy radiative, multi-scattering have already been extensively 
developed especially in literature in the context of astrophysics and 
neutron diffusion where the system-properties differ significantly 
from seasonally, geosampled, canopied, S. damnosum s.l., riverine, 
larval habitat, photosynthetic and NPV, explanatorial, time series, 
empirical emissivity transmisstance, reflectance wavelenght regressors. 
In particular, the astrophysical scattering systems in ArcGIS are 
commonly very deep and appropriately approximated as semi-infinite, 
whereas the study of neutron scattering has been focused on the 
issue of “criticality” where energy is scattered as is incident [4]. Geo-
spatiotemporally-dependent, geosampled, S. damnosum s.l., canopied, 
riverine, larval habitat canopies, on the other hand, are often optically 
relatively thin and at most wavelengths their leaves absorb a substantial 
fraction of the radiation they attenuate [1]. Thus, a different analytic 
approach for spectral determination of explanatorily regressed, 
interpolatable, seasonally geosampled, riverine, larval habitats, canopy 
scattered radiation in an ArcGIS geo database may be required.

Interaction of solar radiation emitted from a prolific, geo-
spatiotemporally, geosampled, shade, canopied, S. damnosum s.l., 
georeferencable, riverine, larval habitat can be described by the 3-D, 
radiative, transfer equation in ArcGIS [1]. Solar radiation scattered 
from a vegetation –related, sheded or non-shaded, canopy LULC 
and measured by satellite sensors results from interaction of photons 
traversing through the foliage medium, bounded at the bottom by 
a radiatively participating surface [4]. Solar radiation after passing 
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through the atmosphere arrives either in the form of direct beam or 
diffuse, that is after molecular (Rayleigh) or particulate scattering 
from cloud or aerosol droplets. Rayleigh scatteringis the dominantly 
elastic scattering of light or other electromagnetic radiation by particles 
much smaller than the wavelength of the radiation [2]. The Rayleigh 
scattering does not change the state of material hence it is a parametric 
process. The particles may be individual atoms or molecules. It can 
occur when light travels through transparent solids and liquids, but is 
most prominently seen in gases. Rayleigh scattering results from the 
electric polarizability of the particles [2]. The oscillating electric field of 
a light wave acts on the charges within a particle, causing them to move 
at the same frequency. The particle therefore becomes a small radiating 
dipole whose radiation we see as scattered light. Rayleigh scattering of 
sunlight in the atmosphere causes diffuse sky radiation, which is the 
reason for the blue color of the sky and the yellow tone of the sun itself 
[4].

 Rayleigh radiation can pass through geo-spatiotemporal, 
geosampled, S. damnosum s.l., riverine, larval habitat, vegetation 
-related, LULC-oriented, canopies in ArcGIS to reach the surface 
and is either absorbed by the canopy or surface or is reflected back to 
the atmosphere [3]. The treatment of the radiation passing through 
vegetation canopies is complicated by the presence of multiple levels of 
organization, from that of the chloroplast cells to that of the arrangement 
of individual plants within the landscape [2]. Thus, a comprehensive 
treatment of all the radiative details within a gridded, ArcGIS, -derived,  
eco-epidemiological, seasonal,  weighted matrix matrix delineating 1 
km2 plot of riverine LULC where the centroid is the geosampled, 
riverine habitat, for example, could easily reduce the computation of 
terrestrial radiation while adequately generating realistic, regressively 
quantifiable, canopy-oriented, particulate, scattering measurements. 

Radiation interacting at multiple scales of organization can be 
addressed with an adding principle in ArcGIS. The scattering objects 
that are then considered in treating radiation within the riverine larval 
habitat canopy would not generally be opaque. Radiation both reflects 
from a leaf surface and is transmitted diffusely through it [2]. However, 
this scattering at leaf level in a canopied S. damnosum s.l., riverine, 
larval habitat would be asymmetric, (i.e., the fraction of incident light 
reflected from the habitat canopy surface of a thick leaf differs from 
that transmitted). Scattering from leaves is further complicated by the 
geometry of leaf orientation which is commonly characterized by a 
statistical distribution.

The equation of radiative transfer in ArcGIS describes scattering 
interactions mathematically. Equations of radiative transfer 
have application in a wide variety of subjects including optics, 
astrophysics, atmospheric science, and remote sensing [2]. Analytic 
solutions to the radiative transfer equation (RTE) exist for simple 
cases but for more realistic media, with complex, multiple, canopy, 
emissivity transmittance, wavelenght, reflectance, scattering effects, 
such as those for determining radiance, fractional, geospectrally 
explanatorily, regressively interpolatable, estimates emitted from a 
geo-spatiotemporally, geosampled, S. damnosum s.l., riverine habitat, 
numerical methods in ArcGIS would be required. The interaction 
cross-section that appears in this equation may be treated as wavelength 
for independently considering the size of the scattering elements (e.g., 
canopy leaves, branches, twigs, etc.) relative to the wavelength of solar 
radiation of leaf structures in the geo refernced larval habitat canopy. 
Radiation incident on the top of the atmosphere is a monodirectional 
solar beam while the vegetation canopies are illuminated both by a 
monodirectional beam attenuated by atmospheric radiation [4]. 

Although spherical coordinates might appear to be the most 
obvious choice the path of entry of canopy radiation into a geo-
spatiotemporally, geosampled S. damnosum s.l., georefernced, 
riverine, larval habitat, the photosynthetic and NPV explanatorial, 
regressive, covariate parameter estimator coefficients may be shown to 
be analytically integratable as a local system with a Cartesian metric. 
The dependence of these solutions may be addressed in ArcGIS by 
introducing a numerical integration. The integration can be written in 
terms of another transform variable,[e.g., q=1/(sp)] which may be log-
transformed into a more familiar form for qualitatively quantizing a 
plane parallel system, with q interpreted as the cosine of the angle of the 
direction of the canopy radiation and the larval habitat canopy radiation 
as p. It has been established over the history of canopy radiative transfer 
research with such systems that a few integration points, even one (e.g. 
the classical 2-stream and Eddington approximations) provides useful 
accuracy for integration of remote expressions [2].

In the study of stellar atmospheres, it has been found that the 
plane - parallel approximation has led to many useful and simplifying 
expressions such as the Eddington approximation, in which the 
radiation field has two components: a component outward along 
the z axis that Iout and a component inward that being Iin. These 
approximations may be coupled with definitions of intensity flux and 
canopy radiation pressure in ArcGIS for robustly expressing the Iout 
and Iin for a prolific, geo-spatiotemporal, geosampled, productive, 
georeferenced, seasonally productive, S. damnosum s.l, shade canopied, 
riverine, larval habitat. An analytical approximation method may be 
presented to calculate the radiation flux in the riverine larval habitat 
employing the Eddington approximation when the upwelling quantized 
radiation from the habitat is negligibly small. Numerical experiments 
in ArcGIS may be carried out to investigate the feasibility of the method 
in an African riverine flooded or drought induced seasonal scenario. 
The results may reveal good consistency for remotely, regressively, 
targeting, canopy reflectivity of unsampled, unknown, riverine habitats 
at the top of atmosphere and transmissivity just above the canopy 
surface, in comparison with the exact values calculated by radiative 
transfer models in each case. Moreover, an obvious error might be 
introduced for the calculation of radiation flux at larger solar zenith 
angles when the roughness of the canopy LULC surface is neglected.

However, the governing radiative transfer equation for leaf 
canopies, in both 3-D and 1-D geometries in ArcGIS has certain 
unique features (e.g., the extinction coefficient is a function of the 
direction of photon travel). Also, the differential scattering cross-
section in ArcGIS is not, as a rule, rotationally invariant in a canopied, 
productive, geosampled, georeferenced, S. damnosum s.l riverine larval 
habitat,(i.e., it generally depends on the absolute directions of photon 
travel and 0, andnot just the scattering angle arccos² 0.) as Jacob et al. 
[1] reports. Further, the single scattering albedo is also a function of 
spatial and directional variables. These properties may make solving 
the radiative transfer equation for a productive, shade canopied, geo-
spatiotemporally, geosampled, prolific, S. damnosum s.l., georferenced, 
riverine, larval habitat, non-binomalized explanatorial model more 
complicated; for example, the expansion of the differential scattering 
cross-section in spherical harmonics cannot be used for generating a 
viable pseudo R2. 

In mathematics, spherical harmonics are a series of special 
functions defined on the surface of a sphere employed to solve 
some kinds of differential equations [4]. As Fourier series are a 
series of functions employed to regressively represent functions 
on a circle; spherical harmonics are a series of functions that are 
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used to represent functions defined on the surface of a sphere [2]. 
Spherical harmonics are important in many theoretical and practical 
applications particularly in the computation of atomic orbital electron 
configurations, representation of gravitational fields, geoids, and the 
magnetic fields of planetary bodies and stars, and characterization of 
the cosmic microwave background radiation [4]. Spherical harmonics 
are functions definable in terms of spherical explanatorial coordinates 
which may be organized by angular frequencies, as seen in the rows of 
regression functions which may be employed for geo-spatiotemporally 
quantizing, canopy, multi-scattered radiance from 3-D computer 
graphics of a seasonally geosampled, productive, S. damnosum s.l., 
riverine, larval habitat. Spherical harmonics play a role in a wide 
variety of topics including indirect lighting (ambient occlusion, global 
illumination, pre-computed radiance transfer, etc.) and modelling 
of 3-D shapes [2]. Further, spherical harmonics of a differentially 
modelled georeferencable, explanatorial, interpolatable, riverine, larval 
habitat decomposed data may be geospectrally defined as the angular 
portion of a set of solutions to Laplace's equation in ArcGIS in three 
dimensions. Represented in a system of spherical coordinates, Laplace's 

spherical harmonics ( )Y Y are a specific set of spherical harmonics 
that forms an orthogonal system.

In contrast to radiative transfer in clouds, the extinction coefficient in 
vegetation, LULC canopy models is wavelength independent especially 
when considering the size of scattering elements (leaves, branches, 
twigs, etc.) relative to the wavelength of solar radiation in ArcGIS. 
For radiative transfer-related algorithms, time series dependent, 
probabilistically regressable explanatorial, geospectral coefficients may 
correspond respectively to canopy micro-(e.g., distribution of canopy 
-type geometry) structures, leaf optical properties and boundary 
illumination conditions. Although the scattering and absorption 
processes are different, the optical distance between two arbitrary, 
canopied, eco-epidemiological capture, points within a georeferncable, 
riverine, S. damnosum s.l.,  larval habitat may depend on the wavelength. 
Spectral invariance results in the necessity to regressively quantitate 
various unique relationships when geo-spectrally explanatorily 
interpolating, decomposed, S. damnosum s.l., riverine, larval habitat, 
sub-mixel, biosignature related, canopy endmember, time series 
dependent, emissivity transmittance, wavelenght reflectance, predictor 
variables [3]. By so doing, compensation mechanisms may be revealed 
in ArcGIS for resolving difficulties in a radiative transfer equation due 
to the features of the extinction and the differential canopy multi-
scattering cross-sections of these habitats.

Knyazikhin et al. [11] generated a synergistic algorithm in ArcGIS 
for remotely, qualitatively, regressively quantitating the fraction of 
absorbed photosynthetically radiation fields from canopy reflectance 
measured by moderate resolution imaging spectroradiometer (MODIS) 
and multi-angle imaging spectroradiometer (MISR) instruments 
aboard the EOS-AM 1 platform. The proposed algorithm was based 
on a 3-D formulation of the radiative transfer process in vegetation 
canopies. The model allowed usage of information provided by MODIS 
(single angle and up to 7 shortwave spectral bands) and MISR (nine 
angles and four short wave spectral bands) instruments within one 
algorithm. The algorithm optimally designed a retrieval mechanism 
for synergistically regressively, qualitatively, quantitating multiple 
biophysical, canopied, explanatorial variables from MODIS and MISR 
data. A 3-D formulation of the radiative transfer process was employed 
to derive simple but correct relationships between geospectral and 
angular biosignatures of vegetation, LULC, geo-classified, canopy 
geolocations based on structural and optical characteristics of the 

canopies. However, these relationships were not directly employed to 
obtain the best regression fit with measured geospectral and angular 
canopy reflectance. For accounting for explanatorial, emissivity 
transmittance, data, feature attributes, specific to the problem of 
radiative transfer in plant canopies, the authors adopted powerful 
techniques developed in nuclear reactor theory and atmospheric 
physics in the retrieval algorithm. This technique allowed the authors 
to explicitly separate the contribution of soil/understory reflectance 
from the exitant radiation field and to relate hemispherically integrated 
reflectance to optical remotely regressively quantifiable properties of 
canopied phytoelements. By so doing, the authors were able to split 
the complicated radiative transfer problem into several independent 
simpler sub-problems in ArcGIS. The solutions to these sub-problems 
were pre-computed and stored and then employed to retrieve various 
photosynthetic and NPV explanatorial, time series-related, canopy 
endmember covariate parameter estimator coefficient values. The 
authors noted that solutions of the sub-problems were components 
of various forms of energy conservation principle (e.g., canopy 
transmittance and absorbance of a vegetation canopy bounded by 
vacuum on all sides) which were optimally determined from general 
properties of the rendered radiative transfer, eco-epidemiological, risk, 
model, explanatorial, time series forecasts.

As such, by accounting for wavelenght emittance an empirical, 
explanatorial dataset of geo-spatiotemporal, geosampled, riverine-
related, prolific, S. damnosum s.l., riverine, larval habitat explanatorily 
interpolatable, operationizable, decomposable, geo referenceable, 
datafeature attributes specific to the problem of radiative transfer, 
powerful techniques may be developed. Further, employing reactor 
theory and atmospheric physics may split a complicated,3-D, radiative 
transfer, integration problem in ArcGIS by dividing multiple scattering 
canopied refluxs into two independent sub-problems and solutions. By 
so doing, the radiative transfer equations may be discretized separately 
for clear and cloudy regions within each georeferenced, S. damnosum 
s.l., riverine, larval habitat sub-location, for example which may help 
remotely represent the exchange of canopy radiation laterally between 
seasonally sub-modeled regions.

To qualitatively, regressively, remotely estimate canopy radiation 
regimes, in ArcGIS three important featuresmust be carefully 
formulatedand resolved which are

(1) the architecture of individual plant and the entire canopy

(2) optical properties of vegetation elements (e.g., leaves, stems) 
and soil; the former depends on ecophysiological conditions (water 
status, pigment concentration)

(3) atmospheric conditions which determine the incident radiation 
field [4]. 

By idealizing geosampled, georeferencable, S. damnosum s.l., 
riverine, larval habitat, vegetation canopy geo locationsin ArcGIS as 
a medium filled with small planar elements of negligible thickness and 
ignoring all other geospatial objects other than green leaves, the habitat, 
canopy, seasonal stress levels may be parsimoniously regressively 
quantized and remotely decomposed [1]. In addition, the finite size of 
vegetation-related, within-LULC canopy elements may be neglected in 
the 3-D radiative transfer equation. Instead the geosampled, riverine, 
larval habitat, explanatorial, vegetation LULC, geo-classified, canopy, 
covariate coefficients would be treated with non-dimensional planar 
scattering centers. Three variables, the leaf area density distribution 
function, the leaf normal distribution and the leaf scattering phase 
are used in the theory of radiative transfer in vegetation canopies to 
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convey “information” about the total leaf area, leaf orientations andleaf 
optical properties [4]. Therefore, various geolocations of the riverine, 
larval habitat, vegetation canopy may be treated in ArcGIS as a non-
dimensional planar scattering centers, (i.e., a turbid medium).

It should be emphasized that the turbid medium assumption is a 
mathematical idealization of canopied, explanatorial, LULC structure 
which ignores finite size of leaves. In reality, finite size scatters can cast 
shadows. This would cause a very sharp peak in reflected radiation about 
the retro-solar direction when qualitatively regressively quantitating 
important geolocations of a geo-spatiotemporally geosampled, shade 
canopied, S. damnosum s.l., productive, georeferenced, riverine, larval 
habitat (e.g., the “hot spot” effect) in ArcGIS. If the georeferenced, 
geosampled, riverine, larval, habitat canopy scatters cannot cast 
shadows, the turbid medium concept in its original formulation [Ross, 
1981] would fail to predict or duplicate experimental observations of 
exiting canopy radiation about the retro-illumination direction of a 
cloud-covered, eco-epidemiological, capture point. 

The 3-D variability of clouds has an important impact on the transfer 
of radiation in the Earth's atmosphere. The current practice in climate 
modeling in ArcGIS assumes clouds are horizontally homogeneous 
which entails significant errors (ww.esri.com). A new method, based 
on the backward Monte Carlo technique, has been developed in 
ArcGIS for computing the mean outgoing canopy radiation field 
from any type of stochastic ensemble of cloud structure. The most 
flexible and realistic treatment of canopy radiation for a particular 
empirical dataset of geo-spatiotemporally, geosampled, explanatorily 
decomposable, S. damnosum s.l.-related, photosynthetic and NPV, eco-
graphical and non-ecogeographical, covariate, time series, empirically, 
probabilistically regressed, covariate, parameter estimators is that of 
‘‘Monte-Carlo” since any and all geometrical configurations can be 
included in the context of statistical choices [4]. The accuracy of the 
technique has been verified by comparison with many realizations of 
deterministic radiative transfer in ArcGIS. The explanatorily method 
may illustrate how seasonal geospatial variability in an empirically 
regressed datasets of productive, S. damnosum s.l. georeferenced, 
canopied, riverine, larval habitat, remotely sensed, photosynthetic and 
NPV, geo-spatiotemporal, geosampled, explanatorial regressors can 
lead to improved representations of the radiative effects of clouds in a 
GCM. The rate of lateral exchange may be optimally determined by the 
area of cloud “edge.” The validity of the method may be demonstrated 
by comparing the model residually forecasted, georefernced, canopied, 
productive, riverine habitats with rigorous 3-D radiative transfer 
calculations for varying cloud types in which the 3-D effect is strong, 
(e.g., cumulus). For example, the 3-D effect on shortwave cloud radiative 
forcing in ArcGIS may vary between around −25% and around +100%, 
depending on solar zenith angle for a flooded, seasonally prolific, shade, 
canopied, riverine, S. damnosum s.l., georefernced, habitat. Even with 
an otherwise very simplistic representation of a cloud over a African 
riverine environment, the new scheme may exhibit good agreement 
with the rigorous calculations in the shortwave, opening the way for 
efficient yet accurate eco-geographic representations of geospectrally, 
explanatorily interpolatable, unknown, unsampled, seasonally 
prolific, S. damnosum s.l. riverine larval, habitats in climate-oriented, 
canopy, endmember –related, forecasting, time series dependent, eco-
epidemiological, risk models.

Although the multi-scattering and absorption processes are 
different at different wavelengths, the interaction probabilities for 
photons and vegetation-related, canopied LULC media may be 
probabilistically qualitatively, regressively quantized in ArcGIS by the 

structure of the canopy rather than photon frequency or the optics ofthe 
canopy. Photon transport theory aims at deriving the solar radiation 
regime [4]. Employing photon-related, explanatorial, uncertainty-
related, regression -based method of statistical downscaling from 
global multimodel ensemble (MME) forecasts may result in capturing 
unique geospectrally invariant behavior for quantitating, seasonally, 
geosampled, georeferencable, riverine, S. damnosum s.l., larval 
habitat, vegetation LULCs, canopy bounded ecogeographic and non-
ecogeographic geolocations from below by a non-reflecting surface. 
Indirect methods enable estimation of riverine, LULC, decomposed, 
canopied, time series, explanatorial properties by measurements of the 
radiation transmission through the canopy, making use of the radiative 
transfer theory [1]. By so doing, simple algebraic combinations in an 
ArcGIS-derived radiative transfer equation of the single-scattering 
albedo and canopy geospectral transmittances and reflectance of 
the regressed prolific, canopied, seasonal, riverine habitat covariate, 
parameter estimators habitat may eliminate dependencies on 
wavelength uncertainties through the specification of two canopy 
structure spectrally invariant variables– the recollision and escape 
probabilities. 

The recollision probability is the probability that a photon scattered 
from a phytoelement will interact within the canopy and is related to the 
maximum eigenvalue of the radiative transfer equation [4]. The escape 
probability is the probability that a scattered photon will escape the 
vegetation in a given direction. These variables can specify an accurate 
relationship between the geospectral reflectance intensity response 
of an ArcGIS-related, eco-epidemiological, endemic, transmission-
oriented, risk model platform delineating geo-spatiotemporally, 
geosampled, explanatorial, vegetated, prolific, georeferencable, 
shade, canopied, S. damnosum s.l. riverine, larval habitat to these 
model derivatives may be canopy scale, while allowing for accurate 
parameterization forprecise partitioning of the incoming radiation. 
This result may be essential toempirically regressing a geosampled, 
georeferencable, dataset of explanatorial, time series dependent, S. 
damnosums.l. riverine, larvalhabitat, canopy, endmember, risk-related, 
decomposable, biosignature oriented, forecasting, ecogeographic or 
non-ecogeographic, predictor variables as it would allow for parathions 
of the structural and radiometric components of the measured and/or 
modeled, canopy signals to be adequately qualitatively analyzed. The 
former would be a function of the larval habitat’s canopy, age,density and 
arrangement whilethelatterwould be afunctionof the habitat’scanopy 
biochemical behavior. Consequently, thecanopyspectralinvariants as 
geo-spatiotemporally, remotely quantitated in a 3-D radiativetransfer 
equation in ArcGIS can offer a simple and accurate parameterization 
of the radiation block in a global, time series dependent, explanatorial, 
S. damnosums.l., georeferenced, prolific, riverine, larval habitat, 
canopied, endmember, geospectrally interpolatable, explanatorily 
forecasting, shaded or non-shaded, geospatial, eco-epidemiological, 
risk model based on climate, hydrology, biogeochemistry and/or 
ecology. Due to the highly non-linear response of photosynthesis to 
light, temperature and humidity, whole canopy photosynthesis cannot 
be derived from computed mean values of light and temperature.
Complex models simulating both temporal and spatial geo-variability 
in environmental drivers and potentials is needed to accurately 
estimate variable geospatially associated with canopy photosynthesis 
and NPV covariate coefficients [4]. Overestimation of radiation 
coupling due to non-quantitation of seasonal geospatial clumping of 
species can generate mispecifications [2]. Recent advances in radiative 
transfer models in ArcGIS have led to complex 3-D models that are 
capable of simulating radiation interception in discontinuous canopies 
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by considering complex phenomena such as penumbra and light 
scattering. The stochastic mixture radiative transfer (SMRT) model 
in ArcGIS has resolved some deficiencies in major existing mixture 
models (e.g., ignorance of species radiation coupling, unquantitated, 
scattering of photons). 

A radiation treatment for an empirical, geo-spatiotemporally, 
geosampled dataset of S. damnosum s.l., georeferenced, empirically 
decomposed, prolific riverine, larval habitat, canopy endmember, 
geospectrally, explanatorily interpolatable, shaded and non-shaded, 
canopied, risk model, parameter estimators may be optimally regressed 
based upon various forecasting, ArcGIS, stochastic/deterministic, 
algorithms. In the radiative transfer equation the clouds and clear sky 
may be treated as a two-component mixture. These models, recently 
introduced in the kinetic theory literature, allow for non-Markovian 
statistics as well as both vertical and lateral variations in cloudiness 
states. Numerical results may be rendered given that different models 
of stochastic radiative transport point out varying levels of importance 
for treating the broken-cloud problem in an African riverine 
environment as a stochastic process, for example. It may be also 
shown that an integral Markovian model proposed within atmospheric 
radiation, explanatorial, S. damnosum s.l. riverine larval habitat eco-
epidemiological, canopied, geospectral, explanatorily interpolatable, 
forecasting risk model is entirely equivalent to a special case of a simple 
low-order different model. The differential form may be easier than the 
integral form to implement in any general circulation model.

Soil Vegetation Atmosphere Transfer (SVAT) model, and Land 
Surface Process(LSP) models in ArcGIS may be coupled with a 
widely used crop-growth model, [e.g., Decision Support System for 
Agrotechnology Transfer (DSSAT)], to estimate energy and moisture 
fluxes canopied LULCs in African, riverine, canopied ecosystems 
for remotely estimating growing hanging vegetation endmembers 
geospatially associated to prolific, georeferenced, shaded and non-
shaded, S. damnosum s.l. larval habitats. By so doing, detailed 
observations of soil and canopy emissivity transmittance, reflectance 
wavelenght characteristics, and various components of energy and 
water balance during a season-long field experiment of riverine, 
immature habitat, geosampled, canopied, covariate, parameter 
estimators may be parsimoniously analyzed. A georeferenced, 
geosampled,S. damnosum s.l., riverine, larval habitat, empirical, eco-
epidemiological dataset of explanatorial, decomposed, photosynthetic 
or NPV covariate coefficients may be thereafter employed to calibrate 
the LSP with Latin HypercubeSampling and Pareto ranking. Latin 
hypercube sampling (LHS) is a statistical method for generating a 
sample of plausible collections of geospectrally dependent parameter 
estimator values from a multidimensional distribution [4].

For a given riverine ecosystem, the Pareto frontier or Pareto set is 
the set of parameterizations (allocations) that are all Pareto efficient [2]. 
Finding Pareto frontiers may be particularly useful when constructing 
optimally, geospectrally dependent, eco-epidemiological, risk-related, 
decomposable, geopredictive, time series models for identifying 
prolific, unknown, unsampled, georeferncable, shade, canopy 
vegetated, S. damnosum s.l.,riverine, larval habitats. By yielding all of 
the potential solutions, an ecologist or experimenter can make focused 
tradeoffs within a constrained set of explanatorily regressed,empirical 
geosampled dataset of time series dependent, field or remote, geo-
specified,photosynthetic or NPV, geo-spatiotemporal, geosampled, 
larval habitat, emissivity transmittance, wavelenght, reflectance, 
covariate, parameter estimators, rather than needing to consider the 
absolute full regressive ranges of their co-variate coefficient values.

Further, comparisons may be conducted on the geosampled, 
riverine, larval habitat, canopied, vegetated, LULC shaded or non-
shaded observations with regression-related,photosynthetic or 
NPV geo-spatiotemporal, forecasting, eco-epidemiological, risk 
model, emissivity transmittance, reflectance, wavelenght estimates 
of quantitated surface fluxes, soil moisture and temperature profiles 
in ArcGIS from both the stand-alone LSP and coupled LSP-DSSAT 
models. It may be found that the model derivativs of regressed radiation 
fluxes, soil moisture, and soil temperature, by both the LSP and LSP-
DSSAT are very similar, indicating that a LSP-DSSAT georeferencable, 
eco-epidemiologcal,, time series dependent,S. damnosum s.l., larval 
habitat, geospectral explanatorial, probabilistic, risk model can 
be employed to simulate fluxes for dynamic canopied, shaded or 
non-shaded, vegetation-related LULCs without the need of in situ 
observations during riverine flooding. Moreover, because coupling 
may be achieved without structurally changing either of the riverine, 
larval habitat, emissivity transmittance, wavelenght, reflectance 
models, the methodology can be optimally extended to coupling other 
SVAT and vegetation, riverine-related, S. damnosum s.l., larval habitat, 
ArcGIS-derived, GCMs.

Alternatively, optimization emissivity,  transmittance, wavelenght, 
reflectance models in ArcGIS may precisely regressively  forecast 
total canopy leaf area and foliage photosynthetic and NPV potentials 
of a georeferncable, canopied, geospectrally dependent, prolific, S. 
damnosum s.l., riverine, larval habitat, eco-epidemiological, risk-
related, model by incorporating available nitrogen or foliage biomass 
as regressors. Significantly smaller number of, time series dependent, 
endemic, quantitative regressive, eco-geographically and non-
ecogeographically forecastable, parameter estimators may be required 
for these models as the spatial distributions of foliage and photosynthetic 
and NPV characteristics may be determined by assumptions about 
optimality. However, the simple optimization models considering only 
light as the key environmental co-factor may result in a significant bias 
between simulated and measured photosynthesis and NPV profiles 
within the canopy, limiting the use of such models in practical scaling 
applications. 

Further, assuming that the georefernced, geosampled, prolific, 
riverine, larval, habitat canopy consists of identical, individual, non-
competing plants can also lead to excess unquantited uncertainty 
in the probabilisitic, residual, model, explanatorial, time series 
dependent, wavelenght, transmittance, reflect anceforecasts. Leaf 
optical models models have been employed for remotely regressively 
quantizing competition between different individuals which may yield 
better correspondence between  geosampled, riverine, larval habitat, 
probabiliistically, geo-spatiotemporally regressed, canopied data and 
predictions, suggesting that these optimization models have a large 
potential for forecasting prolific, georefernced, unknown, unsampled, 
seasonally, shaded or non-shaded S. damnosums.l. habitats. More 
information of the functioning, S. damnosum s.l., riverine, larval 
habitat, plant canopies, in particular the response of the plant canopies 
to multiple, seasonal, environmental stresses as well as competitive 
interactions is still needed however to define alternative optimization 
functions in ArcGIS for correctly simulating and remotely qualitatively 
regressively quantitating photosynthetic and NPV productivity in 
these highly heterogeneous, canopied, geospatial objects.

In Jacob et al. [1] the canopy structure from  a sub-meter resolution, 
imaged, georeferenced, shade canopied, S. damnosum s.l.,  riverine, 
larval habitat was parameterized in a geospectral, explanatorial, 
forecasting, eco-epidemiological, emissivity  transmittance, reflectance, 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Multidimensional_distribution
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optical, risk model in terms of stochastic moments(i.e., the probability 
of finding a geosampled prolific, georeferenced, riverine, larval habitat 
imagedin a  riverine basin in Togo) based on an empirical dataset of geo-
spatiotemporally, kriged, field, decomposed, endmember, biosignature-
related, photosynthetic and NPV, empirical, covariate, parameter 
estimator, coefficient regression values. The eco-geographical locations 
for multiple, riverine-based, S. damnosum s.l., larval ecosystem 
habitats geosampled from 2 pre-established eco-epidemiological study 
sites in Togo were identified and recorded from July 2009 to June 
2010. Initially, the data was aggregated into PROC GEN MOD. An 
agglomerative, explanatorial, operationizable, time series, hierarchical, 
residual, cluster-based, eco-epidemiological, risk analysis was then 
performed. The geosampled clustered eco-epidemiological, study site 
data was then analyzed for statistical correlations using Monthly Biting 
Rates (MBR). Euclidean distance measurements and terrain-related, 
geomorphological statistics generated in ArcGIS. A digital time series 
overlay was then performed in ArcGIS employing the georeferenced 
ground coordinates of high and low density clusters stratified by 
Annual Biting Rates (ABR). This data was overlain onto multitemporal, 
sub-meter, sub-mixel resolution, satellite data (i.e., QuickBird 0.61m 
visible and NIR wavbands). Orthogonal spatial filter eigenvectors were 
then generated in SAS/GIS. 

Univariate and non-lineardiagnostic, regression-based models (i.e., 
Logistic, Poisson Negative Binomial, Moran’s i) were also employed 
to determine probability distributions and to identify statistically 
significant emissivity transmisstance, wavelenght, reflect anceparameter 
estimators from the sampled data. The Moran coefficient is a product 
moment correlated -related statistic which may be used to determine 
if like attributes aggregate in eco-geographical space [12]. Thereafter, 
Durbin-Watson test statistics were used to test the null hypothesis that 
the regression residuals were not autocorrelated against the alternative 
that the residuals followed an autoregressive process in AUTOREG. 
Durbin-Watson test statistics tests for first-order autocorrelation 
[www.sas.edu].

Bayesian uncertainty matrices were also constructed employing 
normal priors for each of the geosampled parameter estimators in 
PROC MCMC. The residuals revealed both geospatially structured and 
unstructured error effects in the high and low ABR-stratified clusters. 
The analyses also revealed that the estimators, Levels of turbidity 
and Presence of rocks were statistically significant for the high-ABR-
stratified clusters, while the estimators Distance beween habitats and 
floating vegetation were important for the low-ABR-stratified cluster. 
Varying and constant coefficient regression models, ABR-stratified, 
ArcGIS-generated geospatial, sub-meter resolution, satellite imagery, 
a robust residual, intra-cluster, non-normality, diagnostic,validation 
test, MBR-based, eigendecomposition, spatial filter algorithms and 
Bayesian paradigm scan enable accurate autoregressive estimation 
of latent affects (i.e., heteroskedastic parameters) and other residual 
emissivity  transmittance, wavelength, reflect anceerror probabilities 
for testing correlations between georeferencable, S. damnosum s.l., 
riverine, larval habitat, covariate, paramter estimators estimators. 
The asymptotic distribution of the resulting empirically residually 
adjusted, intra-cluster, probabilistic, predictor error, autocovariate 
coefficients can thereafter be established while explanatorial estimates 
of the asymptotic variance can lead to the construction of approximate 
confidence intervals for accurately, regressively targeting, productive S. 
damnosum s.l., habitats based on geo-spatiotemporal, field-geosampled, 
count data Further, a second moment was found to be responsible 
for robustly remotely describing the 3-D radiation effects, namely, 
radiation streaming through the canopy gaps without interaction 

with vegetation-related, explanatorial, geoclassified, LULC variables 
and geo-classified,emissivity  transmittance, wavelenght reflectance 
variation. By so doing, the, radiation fluxes between differing seasonally 
productive, georeferenced, shaded, within-canopied, larval habitat, 
spectral components (e.g., turbid water, pre-Cambrian rock ) were geo-
spatiotemporally, probabilistically, regressively quantized.

In contrast to the empirical methods, geophysically-based 
approaches may operationally describe the processes of interaction 
of radiation within a geo-spatiotemporally-geosampled, prolific, S. 
damnosum s.l.georefernced, riverine, larval habitat, and discontinuous 
canopy employing an elementary volume of shaded, vegetation-related, 
LULC classes. Optical properties of a mixture in such volume may be 
represented in ArcGIS as weighted average of optical properties of pure 
species. The Radiative Transfer Equation (RTE) is used to model the 
radiation field with effective optical properties of mixed canopy [2]. 
The modeling principles  of an RTE in ArcGIS may be implemented, 
for example, in a scaling scheme of the radiation block of a Common 
Land Model (CLM) for invasively remotely qualitatively examining 
explanatorial, LULC, time series, Thessian dependent, polygons 
associated to a georefernced,  empirical datset of  prolific, geosampled, 
S. damsnoums.l., riverine, larval habitats. 

The major limitation of the RTEs and CLM schemes in ArcGIS may 
be however that the linear, uncertainty-related, geo-spatiotemporally 
observational, explanatorial, S. damnosum s.l., riverine, larval habitat, 
predictor, error probabilities may be based on the turbid medium, 
mixture approximation, where canopy is ecogeographically and 
non-ecogeographically targeted as a mixture of vegetation species 
and gaps. Mixtures may exhibit various spatial heterogenic profiles 
of foliar distribution, leaf inclination and component species height 
[4]. Biased regressed estimations may however, be observed when 
qualitatively quantizing, explanatorily, interpolatable, decomposable, 
photosynthetic and NPV, covariate, parameter estimator, reflectance 
emissitivty, transmittance coefficients, representing immersed 
trailing vegetation in shaded and non-shaded, S. damnosum s.l., 
riverine, larval habitat, canopy endmember grassland LULC species, 
for example. Most of the discrepancies may be due to unquantitated 
vertical heterogeneities which may be corrected by increasing the 
vertical description of the habitat canopies although, in practice, this 
would require procuring, time-consuming ArcGIS measurements. 
Regardless, the turbid medium analogy could be successfully employed 
in a wide range of riverine, S. damnosum s.l., georeferenced, canopied, 
remotely sensed, explanatorial measurements. However, a more 
detailed description of the canopy may be required for mixtures 
exhibiting vertical stratifications and inter/intra-species habitat canopy 
foliage overlapping. 

Architectural models in ArcGIS remain a relevant tool for studying 
light partitioning in intercropping systems that exhibit strong vertical 
heterogeneities. Moreover, these models offer the possibility to 
integrate the effects of microclimate variations on canopy plant growth 
within a geo-spatiotemporally, prolific, georeferenced, S. dasmnosum 
s.l., larval habitat, eco-epidemiological, riverine, regression-related, 
forecast, risk models employing the turbid medium approach. With 
landscape scales, topography is a major factor that determines the 
geospatial variability of insolation. Variation in elevation, orientation 
(slope and aspect), and shadows cast by topographic features all affect 
the amount of insolation received at different locations. This variability 
also changes with time of day and time of year and in turn contributes 
to variability of microclimate including factors such as air and soil 
temperature regimes, evapotranspiration, snow melt patterns, soil 
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moisture, and light available for canopy photosynthesis [4]. The solar 
radiation analysis tools in the ArcGIS Spatial Analyst extension enable 
mapping and analyze the effects of the sun over a geographic area for 
specific time periods (www.esri.com). These tools can account for 
atmospheric effects, site latitude and elevation, steepness (slope) and 
compass direction (aspect), daily and seasonal shifts of the sun angle, 
and effects of canopy shadows cast by surrounding riverine LULC 
topography of a geosampled, georeferenced, seasonally productive, 
S. damnsoum s.l., larval habitat. The resultant outputs can be easily 
integrated with other GIS data and can help model geophysical and 
ecobiological processes as they are affected by the sun. One major 
feature of the natural vegetation is missing geospatial structure of a 
mixture, which may substantially affect canopy radiation regime [4].

Three contrasted mixtures of wheat-pea, tall fescue-alfalfa and tall 
fescue-clover were sown according to various patterns and densities 
which were seasonallytime series regressively quantized in ArcGIS using 
the medium homogenous turbid assumption [6]. Three-dimensional 
plant mock-ups were derived from magnetic digitizations carried out at 
different stages of development. The benchmarks for light interception 
efficiency (LIE) estimates were provided by the combination of a 
light projective model and plant mock-ups, which also provided the 
inputs of a turbid medium model (SIRASCA) based on leaf geometries 
and inclination. SIRASCA was set to gradually account for vertical 
heterogeneity of the foliage, (i.e. the canopy was described as one, two 
or of leaves). Mixtures exhibited various and heterogeneous profiles 
of foliar distribution, leaf inclination and component species height. 
Nevertheless, most of the LIE was satisfactorily predicted by SIRASCA. 
Biased estimations were, however, observed for (1) grass species and 
(2) tall fescue-alfalfa mixtures grown at high density. 

One of the major assumptions underlying the turbid medium 
approach is that the canopy can be considered as a homogeneous and 
continuous medium where leaves are small and randomly distributed. 
Such a hypothesis would be questionable in a geo-spatiotemporal, 
geosampled, ArcGIS-derived, S. damnosum s.l., productive, riverine, 
larval habitat, spectrally dependent, eco-epidemiological, forecasting, 
risk model which generally build up non-homogeneous canopies [1]. 
Indeed, these canopied habitats present several seasonal, vegetation–
related, geoclassified, LULC patterns (e.g., hanging immersed, dead 
floating,) thus, leading to various geospatial heterogeneities. These 
canopies heterogeneities may be attributed to foliage overlapping or 
empty unstructured spaces between plant species. Canopy systems 
generally include various species with their own morphogenesis, 
phenology and radiation interception ability which subsequently 
are dependent on leaf geometrical features [4]. Remotely capturing 
these time series dependent, habitat–related, canopy contrasts in 
ArcGIS might lead to various inter and intra –species patterns of leaf 
dispersion, either random, regular or clumped. Although the turbid 
approach has been widely employed in the case of sole crop mapping 
and tree species identification, a major difficulty would arise for the 
validation of such an approach when regressively quantiating seasonal, 
S. damnosum s.l., larval habitat, canopy stands. Indeed, due to the 
impossibility of carrying out direct measurements of light partitioning 
in mixed canopies such as those of turbid medium based estimations, 
the field verifiable metrics would be miss pecified since the canopy 
end member stochastic/deterministic inter polatormay only be able to 
partially determine the total amount of transmitted radiation reaching 
the soil.

Surface-based approaches in ArcGIS may model the canopy 
structure of a geosampled, shade canopied, prolific, S. damnosum 

s.l. larval habitat employing realistic 3-D representations in which 
individual canopy plant architecture may be regressively explicitly 
described as a collection of interconnected phytoelements, including 
their geometry and optical properties. By so doing, canopy 
heterogeneities of the georeferenced riverine habitat may be explicitly 
taken into account when simulating radiative exchanges in these 
architectural models. Magnetic 3-D digitizing may be the most 
suitable technique for collecting information on plant architecture 
prior to in silico reconstruction [4]. Herbaceous canopy mixtures in 
the georefernced, S. damnosum s.l., riverine, larval habitat may also 
appear to be a relevant as they are easily accessible to these kinds of 
measurements; this is particularly so for grass –related, geocalssified, 
explanatorial, seasonal, LULC covariates which are widely employed in 
eco-epidemiological, entomological-related, forecast, risk paradigmss 
as categorical reflectance wavelenght, emissivity, transmittance 
variables.

In Jacob et al. [1], an extent of the canopied, radiance, fractional 
area within a geospectrally extracted, 0.61m, spatial resolution, mixel 
was solved in ArcGIS employing a georeferenced, geo-spatiotemporally 
dependent, explanatorily, geosampled, S. damnosum s.l., riverine, 
larval habitat-related, radiance, fractionalized, eco-epidemiological, 
canopy, endmember biosignature–related, risk model with a pre-
determined class vector employing a geometric-optical model output. 
Most vegetation-based, time series-related, riverine LULC cover 
consisted of discrete plant crowns, of which the sub-mixel, biophysical, 
explanatorial observation departs from the underlying assumption of 
a homogenous and uniform medium [2]. The geometric-optical forest 
canopy reflectance, emissitivty, transmittance, risk model treated casted 
shadows on a contrasting background which explained the major 
portion of the variance in the sub-resolution, remotely sensed, image of 
a georeferenced, S. damnosum s.l., riverine, larval habitat-related, eco-
epidemiological, sub-mixel, sub-meter resolution, decomposed canopy 
interpolatable, biosignature. The model was driven by inter-mixel 
variance generated from three sources: 1) the number of crowns in the 
larval habitat geospectrally extracted mixel; 2) the size of individual 
crowns; and 3) overlapping shadows [2]. The model employed parallel-
ray geometry to describe the illumination of the 3-D geospatial 
object (i.e., georeferenced, geosampled, S. damnosum s.l., riverine, 
larval habitat-related, radiance, fractionalized, canopy endmember 
biosignature) and the shadow it casted. In geometry, parallel lines are 
lines in a plane which do not meet; that is, two lines in a plane that 
do not intersect or touch at any point are said to be parallel [2]. By 
extension, a line and a plane, or two planes, in 3-D Euclidean space 
in ArcGIS that do not share a sub-mixel, explanatorily interpolatable, 
decomposed point are said to be parallel(www.esri.com).	

Remote images of canopy leaves of a georeferenced, geo-
spatiotemporal, S. damnosum s.l., larval habitat-related, eco-
epidemiological, decomposed, sub-mixel, biosignature would be 
assumed to be random and may seasonally overlap freely. Canopy 
leaf size (e.g., height) is distributed log-normally, and cone form 
described by the apex angle of the leaf [2], whichmay be affixed into 
a model regression as an independent variable. The model can also 
be inverted to render estimates of the size and shape and geo-spacing 
of the larval habitat canopy using satellite imagery and a minimum 
number of field-verifiable measurements. Field tests employing both 
0.61m multispectral imagery of two canopy stands in Burkina Faso 
produced reasonable regression results for optimally forecasting an 
empirical dataset of prolific, georeferencable, pre-Cambrian–related, S. 
damnosum s.l., canopy-vegetated, riverine larval habitat, explanatorial, 
time series dependent, shaded or non-shaded, dependent variables 

http://en.wikipedia.org/wiki/Geometry
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(e.g., floating dead vegetation) [1].The model generated apperaed to 
be sufficiently robust for remotely delineating geometric shapes (e.g., 
oval pre-Cambrian rocks) and mixtures of simple LULC shapes ( e.g., 
canopy leaves). The overhead, reflectance emissivity, transmittance, 
time series explanators rendered from these models were then exported 
into an ArcGIS geodatabase for mapping, georefernced, prolific 
habitats at the eco-epidemiological study site.

An eco-epidemiological, geometric-optical, explanatorial, 
endemic, transmission-oriented, forecasting, denoising, diagnostic, 
ArcGIS eco-epidemiological, probabilistic, risk model would have wide 
potential use not only in regressing canopied, geo-spatiotemporal, 
probabilistic, prolific, georeferenced, shaded, S. damnosum s.l., 
riverine, larval habitat-related, geo-spectrally, decomposable 
canopied, vegetation-oriented, LULC, covariate, parameter estimator 
reflectance emissivity, wavelenght, transmittance coefficients, but also 
in other remote situations in which the unmixed, imaged endmember 
biosignature-related, canopy discrete objects resolution cannot be 
resolved individually. For example, the geometric-optical model in 
Jacob et. al. [1] separated the canopy radiation absorption into two 
components that were absorbed by sunlit and shaded leaves, and then 
the authors derived analytical solutions by integrating the residuals 
over the canopy layer at 0.61m, geospatial, geospectral, sub-mixel 
level. To model leaf-level and canopy-level empirical covariate time 
series, parameter estimators representing unmixed, photosynthetic 
and NPV rates in geo-spatiotemporally dependent, S. damnosum s.l., 
riverine, explanatorial, larval habitat, geometric-optical, ,risk model, 
leaf light absorption had to be linked to the biochemical process of 
gas diffusion through the leaf stomata. The canopy gap probability 
derived the operationalizable, eco-epidemiological, geometric-optical 
model, residual, non-normal, explanatorial, misspecified, residualized, 
regressed outputs. 

Estimation of directional gap probability (Pgap) in ArcGIS from 
waveform, medium resolution, sensed, data may be both direct 
(i.e. physically-based) and minimize or remove requirements for 
field calibration which would be significant advance for seasonally 
mapping georefernced, canopied, S. damnosum s.l., larval habitat, 
risk geographic sample frames precisely. A new model for estimating 
Pgap from small footprint data may account for time series, regressed, 
residual differences in canopy volume (ρv) and ground reflectivity (ρg). 
These surveys may be acquired at multiple altitudes employing 5m 
waveform systems, for example, over an African riverine ecosystem. 
A derived waveform model for Pgap may be found to fit observed 
waveform data especially in cases where the assumption of constant ρv 
and ρg are satisfied. Pgap estimates rendered from the waveform model 
may be shown to be relatively insensitive to variation in sensor altitude. 
Comparison of Pgap with ground measurements may reveal a new 
waveform model which may render robust, geospectrally decomposable, 
explanatorily interpolatable, shaded and non-shaded, canopied, S. 
damnosum s.l., riverine, larval habitat, endmember, photosynthetic 
and NPV, probabilistically regressed, estimates corresponding to 
within 5% Pgap. The time series dependent, explanatorial forecasts may 
suggest that the waveform model can retrieve ρv/ρg and Pgap which may 
be a significant advance in remote retrieval of riverine, larval habitat-
related, canopy structures, from a small footprint scene. By so doing, 
the need for local calibration, for providing direct estimates of Pgapin 
ArcGIS may be significantly reduced. If the assumptions of relatively 
stable ρv/ρg are shown to hold across a greater range of sensor surveys, 
and canopy structure configurations, this method may have wide 
practical application for retrieval of Pgap for identifying unknown, 
unsampled, productive,georeferenced, shaded or non-shaded, 

canopied, S. damnosum s.l., larval habitats geosampled inan African 
riverine environment.

However, explanatorial, georeferencable, canopied, endmember, 
decomposable, unmixed, biosignature-related, probabilistic, 
explanatorial, regressor properties and the equations obeyed by the 
ray density function in a S. damnosum s.l larval habitat sub-mixel, 
forecasting eco-epidemiological, canopy endmember, risk model 
in ArcGIS may have to be deduced prior to exporting the forecasts 
into an time series dependent, residualizable, geometric–optically, 
specified, forecastable, algorithmic, weighted framework. An ecologist 
or experimenter may need to generalize the radiative transfer theory 
for this purpose appropriately. For homogeneous statistical wave 
fields radiative transfer theory obtains polarization properties of 
light rays [4]. These concepts may have some relation with the phase-
space picture of quantum mechanics when remotely, aggregating, an 
empirical dataset of decomposed sub-mixel, prolific, S. damnosum 
s.l., georefernced, geospectrally interpolatable, endmember-related, 
biosignature oriented riverine, larval habitat, explanatorial reflectance 
emissivity, wavelenght, transmittance regressors. Leaf clumping 
canopy characteristics such as density, crown shape, and length that 
commonly regulate radiation interception in a geosampled, shade, 
canopied, georeferenced, seasonally, prolific,S. damnosum s.l., riverine, 
larval habitat may be then undetectable from a remote perspective. 
These explanatorial, photosynthetic-related and NPV time series 
dependent, covariate, parameter estimator coefficients may remain 
remotely unquantitated in the radiative transfer model, thus generating 
mispecification in the forecasts.

Conversely, by employing, time series dependent, geometric-
optical, radiance fractionalized, remotely sensed, proxy, biophysical, 
explanatorial, decomposable, endmember biosignature-oriented 
variables in ArcGIS robust, residualized, regressable, geospectrally, 
explanatorily, interpolatable, forecast estimates may be parsimoniously 
defined. Modeled gross primary production (GPP) for two deciduous 
forest stands explained more than 80% of the variance of flux tower 
measurements at both near hourly and daily time scales as measured 
in a geometric-optical model [10]. Ambient CO2 concentration that 
influences daytime,canopy vegetation, optimum photosynthesis for a 
geosampled, georeferenced, prolific, riverine, S. damnosum s.l., larval 
habitat may be also considered in state-of-the-art, biogeochemical, 
time series dependent, geometric-optical, risk model constructed 
in ArcGIS. The proposed model may show promise in modeling 
radiative transfer processes for quantitating photosynthetic activities 
in vegetated LULC canopies, over discontinuous, productive, shade-
oriented, riverine,S. damnosum s.l., larval habitat, however it may 
render regression-related, explanatorial, forecast-oriented, reflectance, 
wavelenght, emissivity, transmittance, probabilistic uncertainties due 
to shifting of erroneously log transformed meteorological variables.

	 One of the major uncertainties in predicting climate change 
comes from a full accounting of carbon-cycle feedbacks, which 
roughly double physical feedbacks [1, 2]. The geological component 
of the carbon cycle is where it interacts with the rock cycle in the 
processes of weathering and dissolution, precipitation of minerals, 
burial and subduction [4]. In the atmosphere, carbonic acid forms by 
a reaction with atmospheric carbon dioxide (CO2) and water. As this 
weakly acidic water reaches the surface as rain, it reacts with minerals 
at Earth's surface, slowly dissolving them into their component ions 
through the process of chemical weathering. These component ions are 
carried in surface waters like streams and rivers eventually to the ocean, 
where they precipitate out as minerals like calcite (CaCO3). Through 
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continued deposition and burial, this calcite sediment forms, may be 
a part of a geospatiotemporally, geosampled, prolific, georeferenced, S. 
damnosum s.l. riverine, larval habitat, forecasting, eco-epidemiological, 
probabilistic, explanatorial, risk model. 

Most probabistically quantized, regression, reflectance emissivity, 
transmittance, wavelenght, uncertainties are a result of multiple 
pathways and time scales at within riverine ecosystems interact in 
space with a climate system. Most remote regressive uncertainties are 
a result of the many pathways and time scales at which ecosystems 
interact in linear space  with the climate system and how these 
variables respond to change. Given understanding of explanatorial, 
time series dependent, ecophysiological, control-oriented regressors in 
photosynthesis and NPV response model outputs that can demonstrate 
the significance of carbon on controlling productivity, it is not 
surprising that a primary goal for  employing imaging explanatorial, 
spectroscopic-oriented, independent variables  for robustly remotely 
capturing prolific, georeferncable, S. damnosum s.l., larval habitats 
geosampled in an African riverine environment may be by quantifying  
canopy photosynthetic and NPV variable capacity in ArcGIS prior 
to performing the regression exercise for accurately forecasting, 
unknown, unsampled, productive, seasonal habitats. Because leaf 
reflectance could be affected by species structure, the indices to measure 
chlorophyll content may vary with plant species, space, and time series 
predictors [4].

Canopy reflectance is affected not only by leaf chlorophyll, but also 
by canopy scattering and soil reflectance [7]. Foliar chlorophyll content 
in riverine forested ecosystems plays a fundamental role in plant 
photosynthesis and can indicate vegetation stress and disturbance [8]. 
However, leaf chlorophyll retrieval is complicated as canopy reflectance 
in the visible and  NIR wavelengths is affected by confounding effects 
not only from leaf pigment concentration but also leaf area index 
(LAI), canopy architecture, illumination and viewing geometry and 
understory vegetation. Leaf area indexis a dimensionless quantity 
that characterizes plant canopies [2] which may be  defined in a geo-
spatiotemporally, geosampled, S. damnosum s.l., riverine, larval habitat  
as the one-sided green leaf area per unit ground surface area (LAI = leaf 
area / ground area, m2 / m2) in broadleafcanopy [1]. Unlike empirical 
indices, which are often developed at leaf-level and can be species, site 
and time specific, a process LAI approach can account for the variation 
of other variables affecting canopy reflectance; therefore providing a 
more accurate estimate of chlorophyll content over multiple vegetation 
species, time-frames and across broader spatial extents. 

Croft et al. [9]employed a linked canopy (4-Scale) and leaf 
(PROSPECT) to investigate the ability of radiative transfer models to 
estimate foliar chemistry for different canopy vegetation LULC types 
(e.g., broadleaf and needle leaf) from optical remote sensing data. 
Coniferous and deciduous sites were selected in Ontario, Canada, 
representing different dominant vegetation species, including black 
spruce (Picea mariana), sugar maple (Acer saccharum) and trembling 
aspen (Populus tremuloides), and a variety of canopy closures and 
structures. These sites were sampled over multiple time-frames to 
collect ground data including LAI, leaf reflectance spectra (400–
2500 nm) and laboratory leaf chlorophyll content. Canopy reflectance 
data were acquired from the Compact Airborne Spectrographic 
Imager (CASI), Landsat 5 TM and Medium Resolution Imaging 
Spectrometer (MERIS). The model revealed that leaf chlorophyll 
content derived from satellite images had a good relationship with 
measured leaf chlorophyll content, {i.e., validation results of R2 = 0.62; 
p < 0.001 (MERIS) and R2 = 0.65; p < 0.001 (Landsat 5 TM)], and had 

a strong linearity with negligible systematic bias. CASI data gave a 
regression coefficient of R2 = 0.41 (p < 0.05) on a reduced dataset. This 
research provided theoretical and operational bases for the retrieval 
of leaf chlorophyll content across different vegetation species, canopy 
structures and over broad spatial extents; crucial characteristics for 
inclusion in photosynthesis and carbon cycle  geo-spatiotemporal, 
geosampled, explanatorily interpolatable, S. damnosum s.l., riverine, 
larval habitat, canopy forecasting, eco-epidemiological, risk  model. The 
transformation from leaf to canopy geospectral response is complex, 
and cannot be done by simple extrapolation from leaf to canopy scale 
[2]. This change is especially true for complex heterogeneous canopies 
such as those associated with geo-spatiotemporally, geosampled, 
riverine, shaded, productive, S. damnosum s.l., larval habitat, canopy 
reflectance properties (e.g., leaf spatial distribution, and solar angle).

Interestingly, since canopy photosynthesis always begins when 
energy from light which is absorbed by proteins that contain 
chlorophyll, logic dictates this plant pigment may be vital for 
accurately,  geospectrally, explanatorily, interpolating an NDVI, 
canopied, endmember, reference biosignature as  extracted from 
a  satellite imaged ,seasonally geosampled, shaded or non-shaded, 
georeferenced, prolific, S. damnosum s.l. riverine, canopy vegetated, 
larval habitat scene. Chlorophyll is a term used for several closely 
related green pigments found in cyanobacteria, algae and plants 
[2]. It may be found that foliar pigments such as chlorophyll play a 
crucial role in  the riverine, larval habitat, canopy plant which may 
provide important information on gross primary productivity  for a 
shaded and non-shaded, canopied, georeferenced, prolific, seasonally 
geosampled,riverine, S. damnosum s.l., larval habitat.Since the amount 
of solar radiation absorbed by a leaf may largely be a function of foliar 
concentrations of photosynthetic pigments,  low concentrations of 
chlorophyll may  directly limit photosynthetic potential and hence 
primary production  of the geosampled riverine habitat canopy cover.

The relationship between leaf nitrogen and the carbon cycle 
in ArcGIS may be  key to many climatically-oriented,riverine 
LULC,ecosystem processes as photosynthesis provides the energy 
and carbon-cycle molecules for growth and reproduction [4–7] 
and decomposition for nutrient cycling [7,8]. Ecologists and other 
experimenters have long recognized that nitrogen is the most limited 
nutrient for plant growth [9,10]. One effective and timely approach 
to precisely estimating canopy nitrogen content in ArcGIS is using 
calibrated relationships between crop, canopy, reflectance emissivity, 
wavelenght, transmittance parameters and lab-based wet chemical 
analysis data. As plant nitrogen concentration is linked to the amount 
of chlorophyll, many studies have focused on estimating crop leaf 
chlorophyll concentration, which can give an indirect assessment of 
canopy- or leaf-based nitrogen status of crops [13]. The most common 
method of deriving canopy nitrogen  content using remote sensing  
data is to regressively quantitate emissivity related, geospectral indices 
by incorporating two or more characteristic wavebands into a simple 
ratio, or into a more complicated formula based on linear algorithms 
and nitrogen-related plant physiological significance[4]. 

The first National Aeronautics and Space Administration (NASA) 
Airborne Imaging Spectrometer (AIS-1), flown from 1983 to 1986, 
included only the 0.9- to 2.1-μm reflected infrared (IR) spectrum and 
the AIS-2 measured from 0.8 to 2.4 μm during which time frame the 
emphasis for detecting chemistry shifted from pigments to canopy 
water and nitrogen.Their absorption features occured in the reflected 
IR. The chlorophyll content is indirectly related to the nitrogen 
content [2]. The high correlation between (log 1/R)' and nitrogen and 
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chlorophyll results from only subtle changes in the curvature of the 
reflectance spectrum[4,9].For example, lignin content was mapped 
from AIS-1 data over Blackhawk Island, WI, USA, in ArcGIS which 
allowed estimates of soil nitrogen availability by correlating nitrogen 
mineralization with foliage lignin content(www.nasa.gov). Lignin fills 
the spaces in the cell wall between cellulose, hemicellulose, and pectin 
components, especially in xylem tracheids, vessel elements and sclereid 
cells and is covalently linked to hemicellulose and, therefore, crosslinks 
different plant polysaccharides, conferring mechanical strength to 
the cell wall [4]. These features were corroborated although different 
studies identified different spectral bands as significant in multiple 
linear regression predictions. 

Thereafter, NASA began to address the full costs of the Earth 
Observing System satellite program and the High Spectral Resolution 
Imaging Spectrometer (HIRIS), one of the original NASA facility 
instruments for the Terra platform, which was being considered 
for deselection because of its cost and uncertainty to the climate 
mission. Among the concerns were that high atmospheric CO2 
concentrations could lead to increased Carbon: Nitrogen (C: N) ratios 
and associated declining productivity because of higher lignin content 
in plant residues. This concern about future soil nitrogen availability 
provided a unique climate role that only HIRIS, with its contiguous 
narrow spectral bands across the visible and shortwave IR region, was 
capable of detecting. NASA then established the Accelerated Canopy 
Chemistry Program (ACCP) in 1991–1992 to determine whether 
there was a sound theoretical and empirical basis for estimating 
nitrogen and lignin concentrations in ecosystem canopies from 
remote sensing data (www.nasa.gov). NASA ultimately deselected 
HIRIS although this program led to numerous empirical studies to 
identify nitrogen and lignin from airborne Advanced Visible Infrared 
Imaging Spectrometer (AVIRIS) data. Despite the remote evidence, 
the significance of structural contributions to measurements of lignin 
and nitrogen, predictions have never explicitly been tested in ArcGIS 
before for identifying unknown, unsampled prolific, shade, canopied, 
geosampled, georefernced, riverine, S. damnosum s.l., larval habitats in 
African riverine environments.

However, unlike above-ground biomass production and canopy 
nitrogen  uptake, canopy nitrogen content decreases with the 
progression of growth stages and may produce “dilution effects” in a 
prolific, georeferenced, shade canopied, S. damnosum s.l., riverine, larval 
habitat, eco-epidemiological, forecasting, geospectral, endmember, 
decomposed, biosignature-oriented, reflectance emissivity, wavelenght, 
transmittance-related, risk model.For example, the nitrogen content 
of a geospatial aggregation of seasonal, geosampled, S. damnosum 
s.l., riverine, larval habitat canopy plants may be probably highest at 
early growth stages and may thereafter decrease continually up to the 
stage of senescence as the nitrogen uptake per unit of above-ground 
biomass accumulation decreases and as the leaf area per unit crop mass 
decreases. In the vegetative growth period in particular, an increase 
in the rate of biomass production compared to that of the riverine, 
larval habitat, canopy nitrogen uptake may result in a rapid decrease 
in canopy nitrogen content. The variation in above-ground biomass 
and canopy structure dominates the canopy spectral reflectance 
[2]. Thus, the “dilution effect” and the variation in canopy structure 
probably will affect the selection of sensitive bands for spectral indices. 
These inconsistencies may result from an indirect estimation of plant 
nitrogen concentraton as nitrogen does not directly absorb radiation 
in the visible-NIR region [4]. Presently there is little knowledge 
available related to the derivation of canopy nitrogen content based 
on decomposed, geo-spectrally, explanatorily interpolatable, seasonal, 

geosampled, S. damnosum s.l., riverine, larval habitat, canopy plant-
oriented, biosignature data.

Shortwave infrared bands in ArcGIS have been known to be 
powerful predictors for nitrogen while visible bands have best employed 
for detecting chlorophyll. In shortwave infrared regions, however, the 
absolute differences in reflectance at critical bands have been classified 
as extremely small while the bands of high correlation have been 
determined to be narrow. Geopectral, radiance-related, uncertainty-
oriented, probability, wavelength-associated, quantification 
forecasting, risk models may be required to resolve these differences 
for accurately explanatorily interpolating an empiricial dataset of 
geosampled, S. damnosum s.l., riverine, larval habitat, sub-mixel,  eco-
epidemiological, dataset of shade canopied,decomposed,biosignature-
related endmembers. However, the best  IR bands from the leaf scale 
may not be good predictors of chemical content or concentration at 
that canopy scale; variability in canopy reflectance in the shortwave IR 
region which may have to be  at least an order of magnitude beyond 
that necessary to detect signals from chemicals. The variability in 
first-difference log 1/Rin ArcGIS may determine if canopy scale 
in a seasonally prolific, georeferenced, geosampled, S. damnosum 
s.l., riverine, larval habitat may be related to the arrangement of the 
moderate resolution imaged canopy leaves with respect to direct 
solar radiation, instrument noise, leaf fluttering, and small changes in 
atmospheric moisture.

Structural traits affecting light scattering over scales ranging 
from leaf cells to canopies in a geosampled,S. damnosum s.l., prolific, 
georefernced,riverine, larval habitat,explanatorily, shaded, canopy 
cover may be convergent with their biogeochemical traits.  In some 
circumstances, assumptions of canopy structure may be ignored 
when qualitatively quantifying, biogeochemical, decompositions 
of a georeferenced dataset of empirically geosampled, riverine, 
larval habitat, unmixed, canopy cover, absorption-related covariate 
reflectance emissivity, wavlenght, transmittance, parameter estimator 
coefficients especially when dealing with the physical processes of 
photon scattering from leaves and plant canopies. Although there is 
recognition of the importance of multiple scattering particularly in the 
NIR, where plant compounds do not display strong absorption features 
[4], it has not been possible to quantify this phenomenon at the canopy 
scale in ArcGIS or any other cartographic geodatabase for robustly, 
geo-spectrally interpolating, ,immature, S. damnosum s.l. -related, 
immature habitat decomposed, habitat, endmember, biosignature 
spectra.

By means of geometrical optics in ArcGIS a canopy vegetated, 
prolific, riverine, shaded, S. damnosum s.l., georeferenced, geosampled, 
larval habitat, photosynthetic and NPV, decomposed, endmember, 
biosignature-oriented, geospectral,forecasting, eco-epidemiological, 
risk model may approximate  the scattering intensity distribution 
employing a forward angular range (0–60°) for qualitatively, 
quantitating, gradient-index spheres which may be explanatorily  
illuminated by a plane wave.By so doing, the incident angle of reflected 
light in a prolific, riverine, larval habitat may be optimally quantized 
in ArcGIS by the scattering angle, thus improving the approximation 
accuracy. The scattering angle and the optical path length may also be 
numerically integratable by a general-purpose integrator in a canopy 
biosignature endmember, sub-mixel, forecasting, eco-epidemiological, 
risk model. With some special geometric-optical models, the scattering 
angle and the optical path length can be expressed by a unique function. 
The model however may fail to give good approximation results at 
scattering angles whose refractive rays are in the backward direction 
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[2]. For different index models, the geometrical-optics approximation 
is effective only for forward angles( typically those less than 60° or 
when the refractive-index difference of a particle is less than a certain 
expected value) [4].

Satellites observe radiation reflected in their direction whereas 
climate models need total solar energy reflected upward in all directions 
[2]. This distinction has led to the optical properties of vegetation 
canopies being represented somewhat differently in current climate 
models than they are in remote sensing. However, the current trend 
in  forecast, risk-related, entomological, real-time, meteorological 
modeling is to generate the remotely sensed signal in the model and use 
the difference from that observed data to correct the model through data 
assimilation procedures.Because of the likely continuation of global 
terrestrial climate records through instruments onmeteorological 
satellites, data assimilation ofriverine terrestrial information should 
be further developed beyond its current framework in ArcGIS for 
remotely, geospectrally interpolating, shade, canopied, endmembers 
decomposed from a georeferenced productive,S. damnosum s.l., 
riverine, larval habitat for targeting unknown unsampled habitats. For 
this purpose, the computation of radiation in these models needs to be 
formulated to reproduce the directional information seen by a satellite 
of an African riverine environment. 

In Jacob et al. [1] the final, sub meter resolution-derived (i.e., 
0.61m)satellite forecasting, time series-dependent, S. damnosum s.l. 
predictive, ArcGIS, eco-epidemiological risk model included the 
unmixed, residualized explanatorial, canopy, endmember, forecasts as 
rendered from  a geometric-optical analyses, a 3-D radiative transfer 
equation and  an SPA. These geo-spatiotemporal, operationizable, eco-
epidemiological, forecasts identified areas endemic for onchocerciasis 
in two African riverine communities employing a stochastically 
interpolated, endmember,reference,  target signature devised from 
the unmixing, algorithmic outputs. The model ecogeographically and 
ecohydrologically predicted multiple sites where the black fly vector 
parasite breeds. Of 30 sites along the Sarakawa River in Northern Togo 
predicted to be prolific, shade canopied, riverine, larval habitats by the 
QuickBird model, all (100%) were found to contain S. damnosum s.l. 
larvae. In contrast, 52 sites not predicted by the model, but deemed 
to be potential habitats contained S. damnosum s.l. larvae. Together, 
these data suggest that the model exhibited a sensitivity and specificity 
approaching 100% for the prediction of S. damnosum s.l. riverine larval 
sites in Togo.

To test the generality of the QuickBird model it was applied to 
predict, georeferencable, prolific, shade canopied,S. damnosum s.l., 
riverine sites in northern Uganda. A total of 25 potential, S. damnosum 
s.l.,larval, habitat sites were predicted. Of the 25 sites forecasted to 
be suitable habitats by the model, 23 (92%; 95% CI 81–100%) were 
found to contain larvae. In contrast, just 2/10 (20%; 95% CI 0–45%) 
sites examined which were not predicted to represent larval habitats 
by the model were found to contain larvae. The model thus exhibited a 
sensitivity of 80% and a specificity of 92% when applied in the Ugandan 
riverine, eco-epidemiological,study site, a performance that was 
statistically significant (p<0.0001; Fisher's Exact test). The two sites that 
were not predicted by the model were nonetheless found to contain 
larvae consisting of low hanging streamside vegetation immersed 
in fast flowing water. Crosskey [11] revealed that shade canopied, 
S. damnosum s.l., larval habitats can be affected by ecogeographical, 
ecohydrological, non-temporally and temporally, explanatorily, 
dependent attributes (e.g., Precambrian rocks, floating vegetation, 
turbid waters).  The mean number of larvae found at the sites predicted 

by the model (21.91) was significantly greater than the mean number of 
larvae at the sites consisting of immersed overhanging vegetation (4.0; 
p<0.001, Mann Whitney U test).

Unfortunately, the cost of QuickBird visible and NIR data 
may be too expensive [$17.00 U.S. dollars/ kilometre (km)] for 
African-based vector control programs to afford for implementing 
onchocerciasis control by habitat elimination in georeferenced 
riverine communities. Commonly for accurate, time series dependent, 
eco-epidemiological, forecast, ecogeographic, ecohydrological, risk 
mapping, of georeferenced, canopy, shade, vegetated, geosampled, 
prolific, S. damnosum s.l. riverine larval habitats , a minimum of 64 
km2 twice a year (e.g., rainy and dry riverine seasons) is required [1,3]. 
It may be more realistic to target immature, prolific, Similium habitats, 
in African riverine communities employing less expensive, medium 
resolution data.

Medium, resolution-derived, eco-epidemiological, datasets are 
characterized by a spatial resolution between 5m to 30m (www.
esri.com). In African riverine environments, geo-spatiotemporally, 
geosampled, shade, canopy, vegetated, S. damnosum s.l. georeferenced, 
larval habitats differ in their capacity of immature production [1, 3] 
and, as a result, intervention efforts remotely, targeting, productive 
habitats may be more relevant. To date, entomological research has not 
focused on remote detection of seasonally prolific, shade, canopied,S. 
damnosum s.l.,geosampled,vegetated, unsampled, unknown, riverine, 
larval habitats in ArcGIS employing cost effective, medium resolution, 
data. Thus, optimal cost-effective geospatial/geospectral resolution has 
not been described either using varying proxy graphical indicators such 
as Normalized Difference Vegetation Indices (NDVI) for remotely 
targeting, seasonally productive, georeferenced, S. damnosum s.l. larval 
habitats in African riverine environments.

Normalized Difference Vegetation indices monitor terrestrial 
landscapes by satellite sensors [2] and have been highly successful 
in assessing vegetation condition, foliage, cover, phenology, and 
processes such as evapotranspiration (ET) and primary productivity 
related to the fraction of photosynthetically active radiation (fPAR) 
absorbed by a canopy [10,14]. Evaporation accounts for the movement 
of water to the air from sources such as the soil, canopy interception 
and waterbodies[13].fPAR generates ecobiophysical, explanatorial, 
illumination  variables that can describe canopy structure irradiance 
and are related to functional process rates of energy and mass 
exchange[4]. In radiometry, irradiance is the radiant flux received by 
a surface per unit area, and spectral irradiance is the irradiance of 
asurface per unit frequency or wavelength, depending on whether 
the spectrum is taken as a function of frequency or of wavelength 
[13]. A new generation of NDVI data from the Moderate Resolution 
Imaging Spectrometer (MODIS) on the Terra satellite has been inter-
calibrated with AVHRR NDVI, and provides near daily coverage of 
the earth. As ratios, NDVIs can be easily cross-calibrated across sensor 
systems, ensuring continuity of data sets for long-term monitoring 
of the land surface and climate-related processes [2]. A canopy 
radiative transfer model may show that an explanatorily interpolated, 
moderate resolution, geospectrally  decomposed,  NDVI  biosignature 
is near-linearly related to area-averaged, net, carbon assimilation 
and plant transpiration, even at different values of fc and LAI over a 
seasonal geosampled, shaded or non-shaded, canopied, productive, S. 
damnosum s.l., riverine, larval habitat.

There is a strong relationship between NDVI and agricultural yield 
and canopy vegetation LULC properties, such as length of growing 
season, onset date of greenness, and date of maximum photosynthetic 
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activity. These reflectance emissivity, transmittance, phenological 
indicators emphasize different characteristics of terrestrial ecosystems 
to gain a better understanding of structure and function of canopy 
vegetated LULCs [2]. Phenology, (i.e., the timing of recurring life cycle 
events), may for example shift in response to natural or anthropogenic 
disturbances in agricultural ecosystems [4]. Environmental scientists 
have an increasing interest in spatially explicit phenological data 
to better understand agricultural change processes associated with 
LULC and climate change. In this context, remote sensing-based, 
time series explanatorial, NDVI may be used to obtain phenological 
data associated to productive, geosampled, geo-spatiotemporal, S. 
damnosum s.l., riverine, larval habitat at regional scales which may 
then be subsequently decomposed in  an OBIA and then a endmember 
biosignature, of the unmixed canopy predictor variables may be 
explanatorily interpolated to identify unknown, unsampled, habitats in 
a riverine environment.

Alternative algorithms have been devised based on tree allometry 
and litterfall in order to measure forest canopy properties. Litter fall is 
the most important source of nutrient flux to the forest floor which has 
long been seen as a useful index of ecosystem productivity [4].  Litter 
production is an important component of the CO2 cycle in seasonal 
tropical forests, strongly influencing C, nutrient, and energy fluxes 
[4,7], and is a reliable predictor of canopy processes [9]. However, 
quantifying litter production over long time scales and large spatial 
scales may be operationally challenging, using proxy, moderate 
resolution, graphical indicators, thus limiting the ability to develop 
links between litter production and canopy processes such as leaf area 
development and phenology in an imaged, georeferenced, geosampled, 
shaded and non-shaded, canopied, S. damnosum s.l. riverine larval 
habitats.  Both the NDVI and Enhanced Vegetation Index (EVI) 
have been successfully applied to estimate forest tree productivity 
in tropical savannah and forests ecosystems [9] however, riverine 
ecosystem reflectance data obtained by a medium resolution   imager 
may include various noise components such as varying sun-sensor-
surface viewing geometries, cloud presence, aerosols and bidirectional 
reflectance distribution factors, thus limiting their efficacy for assessing 
geo-spatiotemporal dynamics in biophysical explanatorial, time 
series, processes in ArcGIS, for ecogeographically, ecohydrologically 
geospatially  delineating, seasonal seasonally prolific, canopied, 
riverine habitats. As a result, signal extraction techniques in OBIA 
may be needed to improve the signal-noise ratio (SNR) in an eco-
epidemiological, dataset of geospectrally decomposed, S. damnosum 
s.l., larval habitat, canopy endmembers may enhance the spectral 
response of biophysical vegetation-related LULC covariate reflectance 
emissivity, transmittance, wavelenght, parameter estimators eco-
geographically, echohydrologically associated to the canopied , prolific, 
habitats prior to conducting interpolation exercises in ArcGIS.

Signal-to-noise ratio is a measure used in science and engineering 
that compares the level of a desired signal to the level of background 
noise [2]. It is defined as the ratio of signal power to the noise 
power, often expressed in decibels. Jacob et al. [1] found that the 
ratio higher than 1:1 (greater than 0 dB) indicated more SNR in an 
empirical regressed dataset of geo-spatiotemporally, sub-resolutionary, 
imaged, productive, shaded riverine S. damsnoum s.l., geo-spectrally, 
explanatorily  decomposed, larval habitat, canopy, endmember 
predictors.  While SNR is commonly quoted for electrical signals, it can 
be applied to any form of signal (such as isotope levels or biochemical 
signaling between cells) [4]. The SNR, the band width, and the channel 
capacity of a communication channel are connected by the Shannon–
Hartley theorem.

In information theory, the Shannon–Hartley theorem tells the 
maximum rate at which information can be transmitted over a 
communications channel of a specified bandwidth in the presence of 
noise. It is an application of the noisy-channel coding theorem to the 
archetypal case of a continuous -time analog communications channel 
subject to Gaussian noise [2]. The theorem establishes Shannon's 
channel capacity for such a communication link, a bound on the 
maximum amount of error-free digital data (that is, information) that 
can be transmitted with a specified bandwidth in the presence of the 
noise interference, assuming that the signal power is bounded, and that 
the Gaussian noise (e.g., post-regressed,  georeferenced, S. damnosum 
s.l., larval habitat, ArcGIS dataset of empirically decomposed medium 
resolution, NDVI biosignature –related data)  is characterized 
by a  moderate resolution spectral density, reflectance emissivity, 
transmittance, wavelenght, data feature attributes.

Needle/foliage biomass constitutes one of the most important 
pools of essential nutrients, which is vital for forest nutrient cycling 
including carbon cycling [2].  Litter fall can be seen as an indirect 
expression of forest canopy status, a consequence of the genetic 
make-up of the trees and the influence of environmental fluctuations, 
and thus, these litter fall –related, seasonal, remotely explanatorily, 
interpretable, geospatial objects can be employed as an indicator of a 
canopy health of a georeferenced, medium resolution –derived, NDVI, 
ecogeographically representing a canopy, shaded prolific, geosampled, 
S. damnosum s.l., riverine, larval habitat.  Estimates of litter fallor leaf 
area, based on allometric functions remotely geosampled with medium 
resolution, time series images may   accommodate a lot of seasonal,S. 
damnosum s.l., larval habitat changes due to inherent dynamics and 
interannual variability.

Further, an additional senescence factor that is a function, for 
example, of photosynthetic decomposed explanatorial, reflectance 
emissivity, wavelenght, transmittance variables that influence canopy 
such as self-shading and thinning activity may need to be incorporated 
into an efficient unmixing algorithm for remotely robustly, quantitating 
regressors representing field eco-geosampled, canopy pigments and 
stresses. Senescent leaves follow a typical trajectory, with decreases in 
chlorophyll followed by losses of other pigments and water [4]. Aging 
and stress increase reflectance over the visible and shortwave-infrared 
spectrum and decrease it in the NIR [4]. The difference in reflectance 
between the visible and NIR regions is the basis of vegetation indices 
(e.g., NDVI) [2]. Nevertheless, these methods are labor intensive, time-
consuming and not error-free in ArcGIS or any other cartographic or 
object-based software because of their site and species-dependency. By 
contrast, remotely-sensed, decomposed medium resolution-derived, 
vegetation indices have novel potential but still need cross calibration 
by means of ground-based observations. 

Indirect proxy measures of canopy properties employing ground-
based instruments have been implemented, as documented by the rich 
literature. For example, Aman et al. [14] analyzed the correspondence 
between NDVI calculated from average reflectances and NDVI 
integrated from individual NDVIs by simulating Advanced Visible 
Infrared Imaging Spectrometer (AVHRR) data from high spatial 
resolution SPOT 1 HRV radiometer and medium resolution Landsat 
Thematic Mapper (TM) data. For the study sites located in tropical West 
Africa and temperate France, a strong correlation was found between 
the two types of NDVI computed. The authors concluded that NDVI 
derived from the medium, spatial resolution, sensor data can be used 
in lieu of NDVI integrated from fine spatial resolution data without 
introducing significant errors. On the other hand, a region consisting 
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of a mixture of canopied, vegetated- and non-vegetated-related, LULC 
areas, revealed prominent discrepancies between NDVI derived from 
from low resolution measurements. The relative difference between the 
coarse sensor data was approaching 30%, for example when compared 
to medium resolution imagery. Successfully parameterizing scaled, 
heterogeneity effects on NDVI endmembers, employing simulated 
land and vegetation interpolation scenarios can aid in modeling the 
variances and covariance terms with medium resolution canopied 
sub-mixel scale values. These scales may qualitatively remotely and 
regressively quantitate indirect measures of canopied properties of a 
geosampled, S. damnosum s.l., prolific, canopy, shaded or non-shaded, 
georeferncable, riverine, larval habitatemploying ground-based 
instruments.

As literature indicates, there exist many perspectives and 
discrepancies on the relationship between NDVI and endmember, 
fractional vegetation, LULC cover and the scale effect of medium 
resolution NDVI, graphical [2,4,15]. The principle behind derivation of 
fractional vegetation –related, time series dependent LULC cover from 
NDVI for optimally, remotely, explanatorily geospectrally targeting, 
prolific, canopied, georeferencable, S. damnosum s.l., riverine, larval 
habitats is to relate NDVI of mixels to reference NDVI values, such 
as the NDVIs of dense vegetation and bare soil LULC assuming the 
individual component NDVIs in the extracted habitat mixels can be 
represented by these reference NDVIs. However, even if component 
medium resolution-derived NDVIs can be estimated as the reference 
without error, there may be still sources of probabilistic, uncertainty 
caused by the scale effect of NDVI when retrieving vegetation-related, 
LULC endmember canopy fractions from the NDVI biosignature 
for accurately geo-spatiotemporally, regressively, targeting and 
interpolating productive, unknown, unsampled, S. damnosum s.l., 
riverine, larval habitats. 

NDVI mixels may not be at the same spatial scale since it is a mixel 
scale [4]. It remains unclear the extent to which the mixel scale medium 
resolution NDVI corresponds to the sub-mixel scale, NDVI for 
optimally remotely and/or regressively targeting a prolific geosampled, 
georefernced, productive, S. damnosum s.l. shade, canopied, riverine, 
larval habitat for qualitatively quantitating what possible endmember 
relationships exist between them. The relationship between NDVI for 
targeting these habitats and fractional vegetation cover may be directly 
influenced by the scale effect of the medium resolution NDVI; thus, 
an understanding of this effect may be essential to understanding 
the relationship between NDVI and endmember fractional canopy 
vegetation-related, LULC cover, for example for accurate retrievals of 
radiance, fractions geospatially associated with productive, seasonal, 
S. damnosum s.l., riverine, larval habitat endmembers. There are only 
few studies that have examined the relationship between NDVI and 
fractional, vegetation-related, LULC, canopy cover taking into account 
of the scale effect of NDVI [2].

An ecologist or experimenter may present a method to correct 
the spatial scaling effect of regressed productive, georeferenced, 
seasonally-geosampled, S. damnosum s.l., riverine, larval habitat, 
endmember NDVIs by mathematic analysis in ArcGIS for determining 
the VI’sscale sensitivity with decomposed endmember, biosignature, 
reflectance emissitivty, transmittance, wavelenght data from a medium 
resolution, geospectral geodatabase. The result may show that the 
endmember NDVI dataset obtained by decomposing reflectance up‐
scaling covariate parameter estimators is larger than the up‐scaled 
NDVI estimators. The NDVI sub-mixel scaling effect maybe more 
significant in a moderate resolution field when water (e.g., turbid, 

riverine, S. damnosum s.l. larval habitat endmembers,)exists in a scene, 
and may increase with the increase in the difference of the sum of 
visible reflectance and NIR reflectance between the canopy vegetation 
and soil-related LULCs, for example. A method may be proposed to 
estimate the FVC on the basis of a decomposed, medium resolution, 
NDVI-related, explanatorial, endmember biosignature-oriented, 
geospatial scaling, correctional, eco-epidemiological, predictive, risk 
model. The method may be accurate enough to assess the FVC taking 
into account the scaling effect in a medium resolution, NDVI, eco-
geographically, ecohydrologically representing a geo-spatiotemporal, 
geospectrally, explanatorily interpolated, riverine-related, prolific, S. 
damnosum s.l., georferenced, shade, canopied, larval habitat. 

When landscape components form large geospatially coherent 
NDVI patches and the vertical dimension of the vegetation is small in 
ArcGIS, geospectral interactions between decomposed canopy soil and 
vegetation LULC components in a geo-spatiotemporally, geosampled, 
imaged,S. damnosum s.l.,riverine, larval habitat may be negligible at 
moderate resolution. As such, the influence of the individual components 
on the observed riverine habitat, canopy, habitat, LULC reflectance 
may be described by their geospectral, ecohydrological, biophysical, 
time series, NDVI, ecogeographical, fractionalized properties using 
a linear,explanatorial, mixing model. Nonlinear algorithms may be 
then introduced when multiple scattering of radiation occurs amongst 
the different georefernced, larval habitat, endmember biosignature-
related, target materials. Shadow components should not be assumed 
to be insignificant and negligible [4]. The medium resolution red and 
NIR reflectance of a extracted, unmixed, S. damnosum s.l., riverine, 
larval, habitat mixel may then allow averaging reflectance emissitivty, 
wavelenght, transmittance values of an empirical decomposed dataset 
of vegetation and soil-related empirically geosampled, geo-spectrally 
interpolatable, geo-spatiotemporal, eco-epidemiological, LULC-
related, explanatorial, predictor variables employing vegetation 
endmember fractions, and vegetation reflectance in the red and NIR 
bands, respectively.

Bare soil LULC reflectance may also be robustly regressively 
quantitated using moderate resolution red and NIR bands in ArcGIS. 
The NDVI is a nonlinear function which varies between -1 and +1 but 
is undefined when red and NIR are zero[2].Caution must be taken 
however, in placing immediate confidence in negative values, generated 
by a higher reflectance in the visible region than in the IR region of a 
medium resolution-derived, NDVI biosignature, eco-geographically, 
ecohydrologically representing a geo-spatiotemporally geosampled, 
S. damnosum s.l., riverine, larval habitat, in ArcGIS as this effect may 
be due to the combination of clouds, bare soil and rock-related LULC 
in the scene. NDVI values vary with absorption of red light by plant 
chlorophyll and the reflection of IR radiation by water-filled leaf cells 
[4]. These geospectrally explanatorily interpolatable NDVI values in 
ArcGIS may be correlated with Intercepted Photosynthetically Active 
Radiation(IPAR) since in most geospatiotemporal, entomological-
related, canopy endmember, eco-epidemiological, forecast, risk 
modelling cases (but not all), IPAR and hence NDVI is correlated with 
photosynthesis[1,3].

Intercepted photosynthetically active radiation (IPAR) is 
an important variable in vegetation processes such as water and 
energy exchange [4,13]. The instantaneous fraction of direct beam 
radiation intercepted by IPAR by a shaded or non-shaded, canopied, 
georeferncable object can be described mathematically in ArcGIS as 
IPAR = 1 - exp (-kLAI/cos 0s).Measurement of this reflective quantity 
and ecobiologically-related, explanatorial, endmember, fractional, 
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interception efficiency (fPAR)),however, can be time consuming because 
of the need to constantly sample for geo-spatiotemporal variability 
especially when forecasting unknown, unsampled,productive, shaded, 
georefernced, geospectrally interpolated, canopied, S. damnosum 
s.l., riverine, larval habitat unmixed, bio-signature-related , spatial 
components. A method may be presented for estimation of IPAR and 
fPAR using a commercially available hemispherical radiation sensor (e.g., 
Li-Coy LAI-2000) employing medium resolution, geo-spatiotemporally 
dependent, satellite data. These instruments can provide information 
on the structure of the canopy and the angular dependence of light 
interception for single measurements to be interpreted for qualitatively 
regressively quantitating all solar zenith angles of the georeferenced 
riverine, shade canopied, larval habitat. 

Complex 3-D canopy surface covers such as geosampled, 
georeferenced, shaded riverine, S. damnosum s.l., larval habitats are 
known to exhibit highly anisotropic reflectance, due, in part, to effects 
such as self-shadowing and specular reflectance [1,3]. This implies that 
a explanatorily, geospectrally interpolatable canopied, geospectral, 
moderate resolution, endmember decomposed, NDVI, biosignature-
related, hemispherical reflectance value, taken as the integral of the 
spectral bidirectional reflectance distribution function( BRDF) over 
the hemisphere value tabulated for the georeferenced riverine habitat 
in ArcGIS for a given sunposition, might be quite dependent on that 
sun position. The Li-Strahler forest canopy model [4] accounts for the 
anisotropic behavior of the BRDF by using geometric optics and simple 
principles of Boolean set theory, and provides the opportunity to 
explore the diurnal variation of spectral hemispherical reflectance. The 
model views a sparsely covered scene as an assemblage of illuminated 
tree crowns of ellipsoidal shape. 

Thus, under a given solar illumination angle tabulated for 
a seasonally productive, canopied, S. damnosum s.l., vegetated, 
georeferencable, riverine, larval habitat, the areal proportions of 
the shadowed and sunlit moderate resolution, imaged, geosampled, 
riverine, S. damnosum s.l., larval habitat, canopy LULC and of 
shadowed and sunlit background may be determined for any viewing 
angle in ArcGIS. The NDVI decomposed, explanatorial, endmember 
biosignature of these areal, canopied, habitat components, as weighted 
by their proportions may determine the directional reflectance 
factor of the canopy at that viewing angle. The effects of the mutual 
shadowing and obscuring of canopy crowns in ArcGIS by one another 
may be included. This reflectance model may be extended to provide 
instantaneous hemispherical surface reflectance computations of 
discontinuous, productive habitat, shaded, vegetated, LULC canopies. 
Since the model would render a directional reflectance factor for each 
small change in viewing angle, hemispherical reflectance for a particular 
solar illumination angle of the georeferenced, riverine, larval habitat, 
canopied, seasonal, LULC cover can be calculated in ArcGIS by the 
numerical integration of the directional reflectance over the viewing 
hemisphere. At present, hemispherical reflectance for a canopied, 
geosampled, georeferenced, shaded, seasonally productive, riverine, S. 
damnosum s.l., larval habitat is represented as geospectrally dependent, 
explanatorily interpolatable, interger value which include diffuse 
irradiance, canopy multiple scattering, at leaf specularity effects at a 
0.61m mixel resolution [3]. These may be radiometrically calibrated to 
moderate resolution with the introduction of sophisticated calculations 
of geospectrally decomposable, NDVI, endmember biosignatures.

Hemispherical radiation sensor method has been remotely tested 
in a millet crop and a shrub fallow area in semi-arid West Africa. 
For example, Hanan et al. [16] generated canopy scale vegetation net 

production in ArcGIS, of four canopies employing two contrasting 
models of photosynthesis. The vegetation canopies included the Guiera 
senegalensis shrubs of the shrub fallow site, the herb layers of the shrub 
fallow, grass fallow sites and the millet crop. The two LULC models 
were based on two factors, namely the production efficiency approach, 
which assumed that light was the primary limiting factor and, the CO2 
supply function approach, which assumed that the rate of CO2 influx 
to the leaves was the main limiting factor. The models were generalized 
to apply across multiple, explanatorial, canopy, vegetation–related, 
LULC types through time by allowing important categorical, covariate, 
parameter estimators to vary according to the proportion of C3 plants 
in the canopy, by addition of maintenance and growth respiration 
terms and, by addition of an empirical objective term related to leaf age. 

The models were driven in ArcGIS employing ground verified 
measurements of the biophysical explanatorial variables (i.e., light 
interception, stomatal and canopy conductances) which summed to a 
ten-day temporal scale. This forecast was then fitted to harvest estimates 
of ten-day net production. Each term of the overall models were tested 
for statistical significance during the model fitting procedure at a 95 
confidence interval. Despite their opposing assumptions, both models 
were able to explain a large proportion (>80%) of the total variance in 
ten-day net production period for the four canopies during the growing 
season. This was attributable in part to the fact that both ArcGIS models 
were classified based on the assessment of canopy amount (represented 
by light interception) which were probabilistically correlated, and 
because the photosynthesis functions describing the effect of the eco-
environmental geosampled predictor variables (e.g., vapour pressure 
deficit) were also correlated. Inclusion of the maintenance respiration 
term was statistically significant for both modelling approaches. Leaf 
age was significant but this may have been related to the covariance 
of the day of the year with the geosampled, explanatorial, time series, 
geosampled, covariate, parameter estimator, coefficient values. In most 
cases significant differences in the average values of maximum PAR 
conversion efficiency (ϵ*) and CO2 concentration gradient (Δ) were 
found between C3 and C4 species.

Although remotely aggregated hemispherical radiation sensor 
data aggregated in ArcGIS may be employed to infer instantaneous 
direct and diffuse interception as well as the daily integrated values 
remotely retrived from a prolific, geo-spatiotemporally, geosampled, 
georeferencable, shade canopied, S. damnosum s.l., rivereine, habitat, 
eco-epidemiological, capture point, spectrometers such as LAI-2000 
(http://www.licor.com/) it may estimate PAR sensor arrays with errors 
in instantaneous, IPAR, simulated values. These misspecifications may 
be large at specific times of day. For example, quantitated hemispherical 
radiation values may rise only to 30 W m−2at solar noon in an African 
riverine environment, when incident PAR is more than 400 W m−2. 
Instantaneous fPAR estimates exhibit some bias towards underestimation 
at small solar zenith angles, and overestimation at larger angles, 
particularly on shrub fallow sites [4]. Although these errors may be 
generally small (much less than 0.l unit of fPAR) at some daily time 
periods ,the geosampled, S. damnosum s.l., riverine ,larval habitat daily 
IPAR may be misspecified even with a very low measure (<5% )of the 
direct PAR sensor measurements. Further, indirect methods including 
the LAI-2000 plant canopy analyzer (Li-Cor, Lincoln, Nebraska) and 
AccuPAR Ceptometer (Decagon Devices, Pullman, WA), two of the 
most commonly used devices, may be hindered by the complexity of 
canopy architecture in the riverine habitat and the high-cost of the 
instruments.

Regardless, fPAR, generated in ArcGIS may be employed 
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extensively as an explanatorial, time series dependent, remotely 
sensed, explanatorial, covariate, parameter estimator, reflectance 
emissivity, transmittance wavelength estimators of a georeferenced, 
medium resolution derived, prolific, S. damnosum s.l., shade 
canopied, vegetative, riverine, larval habitat geosampled in an African 
environment by procuring remote proxy calculations of canopy surface 
photosynthesis and Net Primary Production (NPP) (e.g., the annual 
net growth of vegetation harvestable amount) from the satellite data 
indirectly. A medium resolution derived fPAR product may be for 
example, an fPAR value between 0.0 and 1.0 assigned to each 1-km cell 
of a global gridded database in ArcGIS.This geodatabase may contain 
corresponding larval habitat, endmember, biosignature-related, NDVI 
compositing intervals. Biogeochemical, explanatorial, forecasting, 
eco-epidemiological, risk models produce conversion-efficiency, time 
series dependent, covariate, paramter estimator coefficients, combined 
with the fPAR products to produce daily terrestrial photosynthesis and 
annual NPP [13]. These NDVI products may be essential in calculating 
terrestrial energy, carbon, water-cycle processes and biogeochemical 
products of geo-spatiotemporally, shade-related, vegetation-oriented, 
dense and sparse, canopied, LULC reflectance, emissivity, wavelenght, 
transmittance of prolific, S. damnosum s.l.,georeferenced, riverine,larval 
habitats.

To perform further canopy LULC research, the difference between 
direct and diffuse FPAR may be conducted on a geo-spatiotemporal, 
geosampled, productive, riverine S. damnosum s.l., shade vegetated, 
riverine, larval habitat, It may necessary to analyze the variation 
characteristics of direct and diffuse FPAR. Using the scattering by 
arbitrarily-inclined leaves (SAIL) model, the effects of background 
explanatorial, seasonal, geospectral reflectance and canopy habit 
atoptical and geometrical properties on the relationship between FPAR 
and a decomposed moderate resolution NDVI may be determined. A 
prolific S. damnosum s.l., riverine, shade, canopy vegetated, riverine, 
larval habitat SAIL model may be used to simulate radiation transfer 
inside the canopy. Simulating FPAR using a Monte Carlo model 
in ArcGIS and analyzing the influencing factors of FPAR, such as 
solar zenith angle and LAI for a seasonally specific (e.g., flooded) 
riverine, S. damnosum s.l., shade vegetated, riverine, larval habitat 
may reveal optimally explanatorily interpolatable, photosynthetic or 
NPV endmember, covariate, parameterized estimator coefficients. 
Simulating FPAR based on a Monte Carlo model and analyzing the 
effects of soil background and leaf angle on the riverine, larval habitat, 
vegetation-related LULC, canopy FPAR may also help identify 
unsampled, unknown, prolific, S. damnosum s.l., habitats in an African 
riverine environment. The SAIL model may simulate direct and diffuse 
FPAR under various weather and LAI conditions [2]. The SAIL model 
is a radiation transfer model developed from the SUITS model [4]. The 
scattering and extinction coefficients of the SAIL canopy reflectance 
model may be derived in ArcGIS for the case of a fixed arbitrary leaf 
inclination angle and a random leaf azimuth S. damnosum s.l., habitat 
endmember, distribution. The SAIL model includes the uniform 
model of G.H Suits as a special case, and its main characteristics are 
that canopy variables, such as LAI and the leaf inclination distribution 
function which may be used as input parameters in a time series, 
georeferencable, moderately resolutionary, imaged, riverine, S. 
damnosum s.l., model to provide realistic angular profiles of directional 
reflectance as a function of view angle or solar zenith angles. 

A way of estimating nadir reflectance from off-nadir views for 
remotely qualitatively regresssively quantitating various solar zenith 
angles may help interpolate a decomposed, moderate resolution, 
NDVI, biosignature of canopy vegetation, LULC of a productive, geo-

spatiotemporally, geosampled, shade, canopied, S. damnosum s.l., 
riverine, larval habitat. Geospectral measurements were made with 
a Mark II radiometer five times during the day on each of four dates 
from 15° interval zenith and 45° azimuth positions for wheat canopies 
during the development interval stem extension to watery ripeness 
of the grain [6]. The ratio of off-nadir [R (Zv,Av)] to nadir [R(0)] 
radiance in a moderate resolution [ETM+} NIR band (0.76–0.90 μm) 
was described for generating photosynthetic and NPV, variables from 
a time series, regression equation:

( ) ( ),
1 21.0 sin 1/ cos sin(0) 2
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where Av was view azimuth angle relative to the sun position, Zs 
was solar zenith angle, and Zv was view zenith angle. The coefficient 
of determination was 0.70 or higher. The equation described the 
observations that the ratio of off-nadir to nadir radiance increased or 
decreased as view zenith angle increased depending on view azimuth 
angle. Canopy backscattering was stronger than forward scattering and 
the pattern was azimuthally symmetric about the principal plane of the 
sun. The rate of change in the radiance ratio increased with increasing 
solar zenith angle. The coefficients, β0, β1 and β2, changed as the 
canopies grew. 

Thus, in a SAIL geo-spatiotemporal, moderately resolutionary, 
imaged, riverine, S. damnosum s.l., larval habitat, eco-epidemiological, 
forecasting, risk model constructed in ArcGIS, the proportions of 
direct and diffuse radiation may be changed by means of the visibility 
parameter and solar zenith angles. The results may reveal that when 
visibility is set to 5 km, 10 km and 15 km, in a spatially probabilistic, 
geospatiotemporal, risk model, aggregated, endemic, onchocerciasis, 
transmission zones may be calculated based on autoregressed, eco-
epidemiological, capture point immature, Similium productivity count 
data. The contributions of diffuse FPAR to total FPAR may have values 
of more than 50% for each zone. The error between total and direct 
FPAR may be reduced in ArcGIS with increasing visibility and with 
decreasing LAI. The maximum relative error may be then regressively 
remotely quantitated. Canopy simulation analyses may reveal that 
direct and diffuse FPAR varies with seasonal changes in meteorological 
variables. Especially when visibility is low, diffuse FPAR may be an 
important part of total FPAR, for robustly explanatorily, geospectrally 
interpolating a moderate resolutionary, derived, NDVI, endmember, 
umixed, interpolated, biosignature of a productive, geosampled, 
georeferencable, shade, canopied, S. damnosum s.l., riverine, larval 
habitat.

Photosynthetically active radiation may be seasonally defined in 
ArcGIS in terms of photon quantum flux, specifically, the number 
of moles of photons in the radiant energy between 400 and 700 
nanometer (nm) for a geo-spatiotemporal, geosampled, prolific, S. 
damnosum s.l., georeferenced, canopied, riverine, larval habitat. One 
mole of photons is 6.0222 x 1023photons(Avogadro’s Number) [17].
When the responsivity of a medium resolution, sensor-derived, proxy, 
graphical indicator such as a decomposed explanatorial, endmember, 
geo-spatiotemporally dependent, NDVI, reference biosignature is 
plotted in ArcGIS with respect to its sensitivity to the energy content 
of decomposed, canopy-related, photons of a georeferenced, shade, 
vegetated, S. damnosum s.l., prolific, riverine, canopied, larval habitat, 
the function may reveal an increasing trend with a value of 400/700 = 
0.571 at 400 nm, and 1 at 700 nm. 

The reason for the lower responsivity at 400 nm in proxy, 
decomposed, explanatorial, ecogeographical, ecohydrological, 
ecobiophysical, operationizable, sub-mixel, forecasting, time series 
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dependent, eco-epidemiological, canopy risk model regressed variables 
constructed in ArcGIS employing an empirical dataset of medium 
resolution, NDVI-derived, shade, canopy-vegetated, georeferenced, 
S. damnosum s.l., riverine, larval habitat, reference, unmixed, 
endmember, biosignature-related, photosynthetic and NPVcovariate, 
parameter reflectance emissivity, wavelenght, transmittance estimator, 
coefficient values can be explained, since photons at 400 nm are more 
energetic than photons at 700 nm (4). This light reaction would be 
such as the energy of a photon QPwould be inversely proportional to 
its wavelength λ: QP = (hc)/λ, where h is the Planck constant and c is 
the speed of light. To qualitatively, remotely, regressively quantize 
the same number of photons at 400 nm than at 700 nm (i.e., to get 
the desired constant quantum response), the source radiation would 
have to be more energetic at the shorter wavelength. For example, 
the medium resolution, imaged, spectral irradiance emitted by a geo-
spatiotemporally, geosampled, explanatorial, vegetated, georeferenced, 
riverine, S. damnosum s.l., productive, shaded, larval habitat canopy, 
needs to be larger by a factor of 700/400= 1.75 at 400 nm than for 700 
nm. As a consequence, a medium resolution, fPAR sensor derived, 
decomposable, NDVI, endmember, target biosignature may be sensitive 
in terms of energy conversion rates at the shorter wavelengths emitted 
by the geosampled, interpolatable, canopied, larval habitat, vegetated 
LULC, surface regressors such that the product of spectral irradiance 
and sensor responsivity is constant. As such, two relevant bands, 
along the solar radiation spectrum may be remotely, qualitatively, 
regressively quantitated in ArcGIS from the operationizable, shade, 
vegetated, georeferenced, sub-mixel, canopied, riverine, larval habitat 
red and IR decomposed, endmember data. This quantization may be 
expressed either in terms of photosynthetic photon flux density (PPFD) 
measured in m−2 s−1, since photosynthesis is a quantum process, or in 
terms of photosynthetic radiant flux density (PAR irradiance, W m−2).

The PPFD is measured by a cosine (180°) quantum sensor [4,13]. 
This radiation comes from the sun and its intensity is characterized 
as PPFD in units of micromoles of photons per µmol/m2/sin ArcGIS. 
Experiments may be conducted using PPFD to determine exact 
photosynthetic rates (PN) for a georeferencable, S. damnosum s.l., 
larval habitat, eco-epidemiological, geosampled, canopy model. 
Diurnal changes in net PN, evapotranspiration rate (ET) and water 
use efficiency (WUE=PN/ET) for the geosampled, riverine, larval 
habitat may be then optimally determined in ArcGIS. The maximum 
photosynthetic rate (PN max) increases from the initial vegetative 
phase to pod formation and declines at a rapid rate from pod filling 
to maturity [2]. The response of PN to PPFD may occur between 
400-700 nm, for the georefernced, riverine, larval habitat which may 
be temperature-dependent during the day. Thus,on cool days the PN 
rates for a geo-spatiotemporally- geosampled, seasonally productive, S. 
damnosums.l., georeferenced, riverine, larval habitat may be lower than 
for certain quanta of PPFD tabulated during the first half than during 
the second half of the rainy season. Evapotranspiration may be also 
affected by the larval habitat canopy cover and evaporative demand up 
to flowering, but thereafter it may be independent of the canopy and 
may simply follow the course of evaporative demand. ET is related to 
air temperature during the day while PN is related to PPFD [4]. There 
may be a lag of two to three hours between PNmax (around noon) 
and ETmax (around 2 p.m.) during the dry season when remotely, 
quantitatively, regressing productive, georeferenced, S. damnosum s.l., 
larval habitat, covariate, paramter estimators, geosampled in African 
riverine environments since categorical independent variables eco-
geographically representing WUE may increase from the vegetative 
stage through flowering but then decrease thereafter to maturity.

 If the exact spectrum of the light is known in a georeferenced, 
geosampled, explanatorial, operationizable, medium resolution-
derived, NDVI, endmember, shade, canopy, vegetated LULC, prolific, 
S. damnosum s.l., riverine, larval habitat, decomposed, interpolatable, 
biosignature the PPFD values in μmol/s in ArcGIS can be modified by 
applying different weighting factors to different band wavelengths. This 
alteration would result in a quantity called the yield photon flux (YPF) 
being formulated, which weighs photons in the range from 360 to 760 nm 
according to plant photosynthetic response [13]. Medium resolution, 
PAR, sensor-derived, geospectrally decomposed, NDVI, explanatorial, 
endmember, biosignature reflectance emissivity, transmittance values 
in ArcGIS may be employed to measure photon flux density (YPFD or 
YPF), sub-mixel yield as emitted from a georeferenced, geosampled, 
canopy vegetated, S. damnosum s.l., seasonally prolific, riverine, larval 
habitat. This absorption density estimate may be expressed in units of 
m-2 s-1which may be based on the photosynthetic action spectrum of 
the canopy. Photosynthesis produces signatures that can be detected at 
the global scale [13].

Although YPFD derived in ArcGIS from an empirically regressed 
dataset of time series, medium resolution, sub-mixel, geospectrally 
georeferencable, S.damnosum s.l., riverine, larval habitat, NDVI 
endmember, biosignature-oriented, explanatorial, continuous 
independent variables, the photosynthetic and NPV, covariate, 
parameter estimator reflectance emissivity, wavelenght, transmittance, 
coefficient values may be a more accurate measure of the amount of 
light available when robustly, remotely, interpreting, explanatorily 
interpolatable, time series dependent, geosampled, decomposable, 
canopy, habitat values. For predictive modeling purposes, however, the 
PPFD may be more simpler to remotely define employing the shaded 
canopy habitat components. Photosynthetic photon flux density is a 
more widely accepted measurement in the field of plant physiology 
[18]. To measure YPFD in sunlight the slope of the calibration equation 
needs to be decreased by 10% (e.g., from 500 to 450nm) [13].

Photosynthetic photon flux density as remotely qualitatively 
regressively quantified from a, medium resolution-derived, canopied, 
endmember, NDVI sub-mixel, decomposed, explanatorial, shaded, 
biosignature may be illuminated in ArcGIS by reflections from the 
bottom surface and particles suspended in the water surrounding a 
prolific, georeferenced, shade, S. damnosum s.l., vegetated, canopied, 
riverine, larval habitat. By modeling the PPFD in a geosampled, 
georeferenced, riverine, larval habitat,the direct beam and diffuse sky 
radiation components of the global irradiance may reflect decomposed, 
ecohydrologically-related, geospectral, eco-geographic, explanatorial, 
time series dependent, sub-mixel, covariate, parameter estimator, 
reflectance emissivity, transmittance, wavelenght, coefficient values. 

Irradiance data software developed by the NREL Solar Radiation 
Laboratory [Simple Model of Atmospheric Radiative Transfer of 
Sunshine, (SMARTS) has been employed for modeling canopy 
photosynthesis. Spectra and total irradiance can then be expressed 
in terms of quanta [mol m–2 s–1, PPFD (400–700 nm)] [13]. Using 
the SMARTS software it may be possible to: (1) calculate the solar 
spectrum for a prolific, georeferencable, planar, shade canopied, 
S. damnosum s.l., riverine, larval, habitat surface for any given solar 
elevation angle, allowing for the attenuating effects of the atmosphere 
on extraterrestrial irradiance at each wavelength in the 400–700 nm 
range, (2) calculate PPFD vs. solar time for any latitude and date for the 
georeferenced habitat; and, (3) estimate total daily irradiance for any 
latitude and date and hence calculate the total photon irradiance for a 
whole year or for a growing habitat season [4]. Gross photosynthesis 
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(Pg) and PPFD characteristics of single leaves compared to that of a 
canopy of leaves in the habitat may be different. It may be shown in 
ArcGIS that that the optimum irradiance for a leaf (i.e., Iopt) is the 
half-saturation irradiance for a battery of empirically regressable, S. 
damnosum s.l., larval habitat,canopy, leaf-related covariates in series. 
A C3 plant, with leaves having an optimum photosynthetic rate at 700 
μmol m–2 s–1 may be employed to determine overall PPFD in the 
shaded portions of the riverine larval habitat canopy. By so doing, the 
model may render robust estimates of Pg for a given date and latitude for 
remotely qualitatively regressively quantitating geo-spatiotemporally, 
geosampled, canopied, riverine, larval habitat, wavelenght emmisvities. 
Seasonal and annual estimates of Pg can be parsimoniously determined 
for the habitat canopy thereafter. 

Many PPFD models have simulated water-related components 
separately basing the diffuse components on quantified semi-
empirical relationships. However, semi-empirical modeling, could 
introduce additional sources of probabilistic error in a shaded 
geo-spatiotemporally, geosampled, medium resolution-imaged, 
S. damnosum s.l., riverine, larval habitat, canopied, endmember, 
interpolatable, georeferencable, risk forecasting, eco-epidemiological, 
model since the fraction of diffuse radiation and direct beam radiation 
would vary with cloud cover and wavelength band. Spitters et al. [14] 
determined that the diffuse fraction of the PPFD was 1.4 times that 
of the diffuse fraction. However, for a medium resolution- imaged, 
canopy, shaded, geosampled, georefernced, prolific, S. damnosum s.l. 
riverine larval habitat, the direct beam PPFD may vary (e.g.,from 0.2 
to 0.4 m-2 s-1) depending on cloud conditions. Taking cloudiness into 
account, the model may eco-geographically, ecohydrologically, predict 
maximum Pg rates of about 10 g(C) m–2 d–1 for a prolific, S. damnosum 
s.l., larval habitat, riverine, canopy cover remotely geosampled in an 
African riverine environment.

As such,the diffuse fractions remotely tabulated between the 
PAR and UV wavebands, with the partitioning of solar radiation 
largely would have to be determined by the scattering of the cloud 
particles with little wavelength dependency.However, an ecologist or 
experimenter may remotely qualitatively quantitate common radiation 
sources and measure YPF and PPFD emitted from a georeferenced, 
geosampled, shade, vegetated, prolific, clouded, S. damnosum s.l. 
riverine, larval habitat using an ecohydrological-related, ecogeographic, 
decomposable medium resolution-derived, NDVI, spectroradiometer 
index in ArcGIS. The vegetation index can be developed from an 
empirically regressed dataset of unmixed, geo-spectrally explanatorily, 
interpolatable, endmember, biosignature-related, photosynthetic, 
covariate, parameter estimator, reflectance emissivity, transmission-
oriented, probabilistic, coefficient values, for example. Comparisons of 
these measurements may be then made with calculated measurements 
from quantum sensors designed to measure precise YPF and PPFD 
values from the georefernced, geosampled, riverine, larval habitat 
covariates.

Quantum refers to the amount of energy carried by a photon [13]. 
Quantum meters approximate the quantity of photons between 400 and 
700 nms [4]. Photosynthesis is largely driven by the number of photons 
between these wavelengths.Quantum sensors may be employed to 
quantify canopy light available in geosampled, seasonal, prolific, S. 
damnosum s.l., georeferenced, shade canopy, vegetated, larval riverine 
habitats in African riverine settings. The line quantum sensor may be 
especially helpful, as it can provide a spatial average. Quantum Sensors 
and Quantum Meters measure PPFD inμmol m-2 s-1[4].

Quantum sensor data in ArcGIS may exploit correlations, such 

as geospatial quantum entanglement in calculations of geospectrally 
decomposable, geosampled, prolific, S. damnosum s.l., riverine, larval 
habitat, endmember datasets so as to achieve robust forecastable, 
sensitive, sub-mixel, explanatorily interpolatable, empirical, 
absorption-related rates. Quantum entanglement is a physical 
phenomenon that occurs when groups of particles are generated or 
interact in way such that the quantum state of each particle cannot be 
adequately described independently—instead, a quantum state may be 
given for the system as a whole (e.g., amount of radiance canopy flux 
in a medium resolution-imaged,georeferenced, S. damnosum s.l., larval 
habitat geosampled in an African riverine environment). 

A quantum sensor can measure the effect of the quantum state 
of another system on itself [14,17]. The mere act of measurement 
will influence the quantum state in ArcGIS and uncertainties can 
alter the quantitated probability and uncertainty associated with geo-
spatiotemporally remotely quantized states during measurement. There 
may be only a few differences among moderate resolution sensors (e.g., 
<5%). YPF values as remotely tabulated from these image sensors may 
be consistently lower (e.g.,3% to 20%) than YPF values as determined 
from explanatorily interpolated, vegetative, spectroradiometric 
measurements decomposed, from an empirical dataset of probabilistic, 
geo-spatiotemporal, geosampled, biosignature-related, endmember 
NDVI values as rendered in ArcGIS from a georeferenced, decomposed 
shade, canopied, prolific,S. damnosum s.l., riverine larval habitat. 

Additionally, quantum sensor measurements of PPFD may 
be consistently the same as PPFD values calculated from medium 
resolution, vegetation-related, endmember, LULC sub-mixel, 
decomposed, spectroradiometric measurements, but differences may 
exist for qualitatively regressively and remotely quantizing red-light-
emitting (e.g., canopy dense stands) biomass products. For these 
reasons, an accurate measurement of PAR should optimally follow the 
quantification of relative quantum efficiency (RQE) curves as originally 
developed by McCree [18], who weighed the explanatorial, time series 
dependent, photosynthetic, covariate coefficient, reflectance values of 
all photons with wavelengths from 360 to 760 nm. A medium resolution 
sensor that responds according to this curve may measure YPF in μmol 
m-2 s-1 which is the same units as for PPFD in a georeferenced, seasonal, 
S. damnosum s.l., prolific, geosampled riverine larval habitat.

The Stark-Einstein Law states that one absorbed photon excites one 
electron regardless of the photon’s energy between 400 and 700 nm; 
this law is the basis for weighting photons equally. The law stating that 
in a photochemical process (such as a photochemical canopy reaction 
in a georeferenced, seasonal, S. damnosum s.l., prolific, shade canopied, 
riverine, larval habitat) one photon is absorbed by each molecule 
causing the main photochemical process. In some circumstances, 
one molecule, having absorbed a photon, initiates a process involving 
several molecules. However, although >90% of blue photons are 
absorbed, » 20% of these photons are absorbed by inactive pigments; 
thus, their energy is not transferrable to energy-collecting pigments 
(i.e., canopy reaction centers) and is lost as heat and fluorescence. 
This loss means that the quantum yield of absorbed blue photons in 
a geo-spatiotemporal, geosampled, canopy, shaded, georeferencable, 
spectrally, explanatorily interpolatable, productive, S. damnosum s.l., 
shade vegetated, riverine, larval habitat may be typically less (e.g., 
» 20%) than the quantum yield of absorbed red photons. However, 
seasonal canopy changes in these geosampled, geo-spatiotemporal, 
larval habitats may differ in their proportion of inactive pigments. 

Phytochrome is a photoreceptor, a pigment that plants, and some 
bacteria and fungi, use to detect light [4,17]. It is sensitive to light in 
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the red and far-red region of the visible spectrum. Many flowering 
plants use it to regulate the time of flowering based on the length of 
day and night (i.e., photoperiodism) and to set circadian rhythms. It 
also regulates other responses including the germination of seeds (i.e., 
photoblasty), elongation of seedlings, the size, shape and number of 
leaves, the synthesis of chlorophyll, and the straightening of the epicotyl 
or hypocotyl hook of dicot seedlings. 

Phytochromes in ArcGIS can be characterized by a red/far-red 
photochromicity [2]. Photochromic pigments change their "colour" 
(spectral absorbance properties) upon light absorption [13]. In the 
case of phytochrome the ground state would be Prindicating red light 
absorption is particularly strong. The absorbance maximum is a sharp 
peak (e.g., 650–670 nm), so concentrated phytochrome solutions look 
turquoise-blue to the human eye [4]. But once a red photon in an 
explanatorial, geospectrally decomposable, prolific, shade, canopied, 
S. damnosum s.l., vegetated, riverine, larval habitat has been absorbed, 
the pigment will undergo a rapid conformational change in an ArcGIS 
geodatabase to form the Pfr state. By so doing, Pfr would indicate that 
far-red (i.e., "NIR"; 705–740 nm) is more preferentially absorbed 
than red in the habitat canopy. This shift in absorbance would be 
apparent to the human eye as a greenish colour. When Pfr absorbs 
far-red light it is converted back to Pr. [13]. Hence, the absorbed 
red light would makePfrwhile far-red light would render Prduring 
regressive, time series qualitative quantification of the geosampled, 
geo-spatiotemporal, S. damnosusm s.l., georefernced, riverine, larval 
habitat, eco-epidemiological, capture point reflected waveband data. 
In plants at least Pfr is the physiologicallyactive or "signalling"state [4]. 
Biochemically, phytochrome is a protein with a bilin chromophore 
[17].

Inada [19] found that both radiation absorption and quantum yield 
in the middle wavelengths (i.e., 500-600 nm) in ArcGIS were substantially 
lower in purple, field grown leaves than in green ones because of inactive 
absorption by anthocyanin during seasonal summer sampling frames. 
Clark and Lister [20] found that blue and blue-green Colorado spruce 
species had high concentrations of inactive carotenoids, which reduced 
blue light (400-500 nm) absorption and quantum yield during colder 
temperatures. Environment can also influence the concentration of 
inactive pigments in a shade, canopy vegetated, prolific, S. damnosum 
s.l., georeferenced, geosampled, riverine, larval habitat. McCree [21] 
found that growth-chamber-grown plants tended to use ultraviolet 
and blue radiation more efficiently than field-grown plants which may 
have been due to a lower concentration of inactive pigments remotely 
tabulated in ArcGIS of non-stressed growth chamber grown plants. 
In spite of these genetic and environmental influences on quantum 
yield, McCree [18] found that the spectral quantum yield of healthy, 
green leaves of 22 crop plant species differed by less than ±5%, which 
he defined employing an average YPF curve derived from an empirical 
dataset of decomposed, medium resolution-derived, endmember, 
observational explanatorial, predictors. Inada [22] then obtained a 
second set of comprehensive quantum yield data from 33 species and 
confirmed McCree’s [21] measurements.

Phytochromes, cryptochromes, phototropins, and the UV-B 
photoreceptor UVR8 are sensory photoreceptors that are able to perceive 
specific light signals and provide information about the dynamic 
status of canopy architecture [20,22-24]. The simulation of selected 
signals of canopy, shaded light and/or the analysis of photoreceptor 
mutants employing medium resolution-derived,georeferenced, 
geo-spatiotemporally,geosampled, S. damnosum s.l. ,riverine,larval 
habitat, endmember,decomposed data variables in ArcGIS may reveal 

that canopy light signals exert significant influence on immature 
productivity. The main effects of the photoreceptors on the riverine 
habitat could include the control of (a) the number and position of 
the canopy leaves and their consequent capacity to intercept light, 
via changes in stem height, leaf orientation, and branching; (b) the 
photosynthetic capacity of green tissues, via stomatic and nonstomatic 
actions ;and, (c) the plant defenses against herbivores and pathogens 
[25]. Because both YPF and PPF sensors are imperfect integrators, 
and because medium resolution spectroradiometers in ArcGIS can 
measure PAR accurately (www.esri.com), ecologists or experimenters 
may consider developing calibration factors from an empirical 
datasets of unmixed, geosampled, explanatorial, shade, vegetated, 
S. damnosum s.l., riverine, canopied, larval habitat, NDVI-related, 
spectroradiometric, explanatorily interpolatable, endmember,geo-
spectrally decomposable, biosignature-oriented, absorption-related, 
covariate, parameter estimator, coefficient values in ArcGIS. By so 
doing,residual quantitation of endmember specific radiation sources 
may improve the accuracy of integrating geo-spatiotemporally 
dependent, medium resolution-derived, sensor data for identifying 
unknown, unsampled, georeferenced, prolific, canopy, shaded, 
riverine, seasonal larval habitats.

Photosyntetic Photon Flux Fluence rate is defined as the photon 
of the fluence rate of PAR [13].The total number of photons incident 
on a point (e.g., georeferenced, geosampled, shade, vegetated, prolific, 
S. damnosum s.l., canopied, riverine larval habitat ground coordinate 
overlaid onto medium resolution satellite imagery) from all directions 
could be qualitatively quantitated by the Photosynthetic Photon Flux 
Fluence Rate (PPFFR), also measured in units of µmol/m2/s. This 
rate would be based on the integral of photon flux radiance in all the 
direction about the georeferenced, larval habitat, eco-epidemiological, 
capture point. PPFFR is the same as PPFD for normal incident 
collimated radiation and is 4 times that of PPFD in totally diffuse 
radiation [26]. The ideal medium, resolution-derived, PPFFR, time 
series dependent, moderate sensor derived data from the endmember, 
decomposition algorithm in ArcGIS may have a spherical collecting 
surface which may exhibit the property of a cosine receiver at every 
productive, shade, vegetated, S. damnosum s.l., canopied, larval habitat 
geo-spatiotemporally, geosampled in an African riverine environment.

A PAR sensor in ArcGIS with a flat receiver can measure medium 
resolution-derived, PPFD operationzable values, (e.g., the 
photosynthetic photon irradiance and/or “photosynthetic quantum 
irradiance of a georeferenced, vegetated, shade,canopied, S. damnosum 
s.l., interpolatable riverine, larval habitat) as Einstein’s(m−2 s−1) which 
can remotely designate the spectral range (i.e., waveband) of diffuse 
solar radiation that contains specific photosynthetic materials(www.
esri.com).The Einstein has been used in photochemistry, photobiology 
and radiation physics as the quantity of radiant energy in Avogadro's 
number of photons. For example, in Hogewoning et al. [27], the 
mechanisms underlying the wavelength dependence of the quantum 
yield for CO2 fixation (α) and its acclimation to the growth-light 
spectrum were quantitatively remotely addressed in ArcGIS by 
combining vivo physiological and in vitro molecular methods. 
Cucumber (Cucumis sativus) was grown under an artificial sunlight 
spectrum, shade light, and blue light employing the quantum yield 
for photosystem I (PSI) and photosystem II (PSII) electron transport 
and α which were subsequently simultaneously measured in vivo at 20 
different moderate resolution wavelengths. The wavelength dependence 
of photosystem excitation balance was calculated from both vivo and in 
vitro data from the photosystem composition employing spectroscopic 
properties. Measuring wavelengths of overexciting PSI produced a 
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higher α for leaves grown under the shaded light spectrum (i.e., PSI 
light), whereas wavelengths of overexciting PSII produced a higher 
α for the sun and blue leaves. The canopied spectrum produced the 
lowest PSI:PSII ratio. The photosystem excitation balance calculated 
from both in vivo and in vitro data was substantially similar and was 
shown to determine α at those wavelengths where absorption by non-
photosynthetic absorption-related pigments was insignificant (i.e., 
>580 nm). 

Hence, it may be shown remotely and quantitatively in ArcGIS, that 
a georeferenced, geosampled, empirical probabilistic, seasonal dataset 
of medium, resolution-derived, NDV-related, S.damnosum, s.l., larval 
habitat, shade, vegetated, decomposed, canopy biosignature, endmember 
absorption emissitivites acclimate their photosystem composition to 
their growth light spectrum and, by so doing, geospectrally change 
wavelength dependence of the photosystem excitation balance. As 
such, quantum tabulations in ArcGIS yielding optimal photosynthetic 
processes such as CO2 fixation may be optimally regressively 
determined. Combining different proxy, graphical,explanatorial, time 
series dependent, medium resolution wavelengths in ArcGIS may also 
reveal diffuse,fractionalized,solar radiation estimates emitted by the 
unmixed datset of, geospectrally decomposed,geospatially explanatorily 
interpolatable, georeferenced,shade, canopied, geosampled riverine, 
larval, habitat endmembers.

Diffuse solar radiation (i.e., sky radiation) is the downward 
scattered and reflected radiation coming from the whole hemisphere, 
with the exception of the solid angle subtended by the sun's disc [4]. 
Diffuse radiation can be measured by a pyranometer mounted on a 
shadow band, or be calculated employing explanatorily, qualitatively, 
probabilistically, regressively quantitated, globalized solar radiation 
and direct solar radiation-related, predictor variables in ArcGIS 
where the metric units would be W m-2. One Einstein is one mole of 
quanta [17].Conversely, direct solar radiation would be the radiation 
emitted from the solid angle of the sun's disc, received on a surface 
perpendicular to the axis of this cone, comprised mainly of unscattered 
and unreflected solar radiation which is commonly measured by 
a pyrheliometer [4]. The units of measure would be Wm-2.A PAR 
sensor with a spherical receiver is equally sensitive to photons from all 
direction measures [e.g., Quantum Scalar Irradiance (QSI)]. 

Quantum Scalar Irradiance may be defined in ArcGIS as the integral 
photon flux of photons in the 400–700 nm wavelength interval for 
medium resolution derived, geo-spatiotemporal,eco-epidemiological, 
capture point (e.g., a canopy shaded, productive,S. damnosum s.l. 
larval habitat) georeferenced in space from all directions around the 
point. Measurements of PAR sensors can then be remotely expressed 
in a variety of units including quanta m-2.s-1, quanta.cm-2.s-1, µE.m-2.s-1 
and µE.cm-2.s-1 (µE stands for microEinstein). Vertical quantum diffuse 
attenuation coefficients (Kq0) of (PAR) in shade, canopied, African 
riverine environments where prolific, S. damnosum s.l., larval habitats 
proliferate may be geospectrally estimated from vertical profiles of PAR 
collected throughout a sampling frame. Quantitating temporal vertical 
profiles in ArcGIS of density may reveal that riverine waters are divided 
into two periods: a stratified period with an upper layer 10 m thick of 
turbid waters (e.g., 0.05≤Kq0≤1.00 m−1) (e.g., rainy flooded season), 
or a lower layer of more transparent waters (e.g., 0.01≤Kq0≤0.50 m−1)
( dry drought-filled season) with an intervening short period. This 
non-stratified period may consist of a homogenous layer with less 
turbid seasonal waters (e.g., 0.01≤Kq0≤1.00 m−1). Horizontally, the 
distribution of Kq0 may also optimally reveal nearshore riverine water 
conditions around immersed hanging vegetation of a georeferenced, 

shade, canopied, productive, S. damnosum s.l., geo-spatiotemporally, 
geosampled, larval habitat. The Kq0 distribution may reflect the water 
influx from the neighboring tributaries which may cause turbid surface 
trapped river plumes. These meteorological features may geophysically 
contribute to the ensuing mixing of unmixed, biosignature-related, 
moderate resolution, explanatorial, endmembers. 

To investigate Kq0in ArcGIS, an ecologist or experimenter 
must employ regression models involving suspended particulate 
matter and water depth for quantizing and geospatially associating 
seasonal, immature productivity with geospectrally decomposed 
NDVI, explanatorial, canopy biosignature-related canopy-
oriented,shaded,explanatorial, predictor variables during flooded, 
riverine, geosampled, time frames. The best statistical model may 
explain the observed Kq0 variability while remotely qualitatively 
quantitating the reciprocal of water depth for a prolific, geosampled, 
georeferenced, medium-resolution-imaged, shaded, S. damnosum s.l., 
canopy vegetated larval habitat. 

However, a more bio-optically relevant model constructed in 
ArcGIS from an empirical geosampled, dataset of geo-spatiotemporally 
dependent, remotely retrieved, medium resolution-imaged, 
explanatorily operationizable, photosynthetic and NPV canopied, 
covariate, parameter estimator, coefficient values selected from a 
georeferenced, prolific, S. damnosum s.l., canopy, shade vegetated, 
riverine, larval habitat, decomposed endmember, NDVI biosignature 
may explain higher percentage of the observed Kq0 seasonal 
variability. Absorption estimates of Kq0 for the upper layer canopy 
cover may indicate compensation depths in riverine flooded waters 
deeper than 50 m, for example, which also may help account for 
the presence of productive, georeferencable, shaded, riverine, larval 
habitat communities on submerged banks of near the shore edge [1,3].
The observed temporal and spatial distribution of Kq0 may agree 
qualitatively with that of moderate resolution-derived, NDVI, canopy 
endmember decomposed, diffuse, attenuation coefficients which may 
also be calculated in ArcGIS over the geosampled larval habitats. PAR 
may then be calculated by integrating the weighted visible channels 
from the moderate resolution-derived, multi-wavelength instrument 
which would then subsequently optimally decompose an explanatorial, 
geospectrally interpolatable, operationizable, time series dependent, 
medium resolution-derived, NDVI sub-mixel, reference, target 
biosignature.

Nearly all endmember canopied, NDVI biosignature 
decompositions in ArcGIS initially employ difference formulas to 
remotely qualitatively quantify the density of plant growth on the Earth 
— NIR radiation minus visible radiation divided by NIR radiation 
plus visible radiation, for example. Calculations of NDVI for a given 
extracted mixel always result in a number that ranges from minus 
one (-1) to plus one (+1); however, no green leaf would render a value 
close to zero [2]. Vegetation indices are mathematical combinations of 
various bands [4, 28].Negative values of NDVI correspond to water. 
Values close to zero generally correspond to barren areas of rock, or 
sand. Positive values represent shrub and grassland (approximately 
0.2 to 0.4µm), while high values indicate temperate rainforests (values 
approaching1) (http://earthobservatory.nasa.gov/). A zero means no 
vegetation and close to +1 (0.8 - 0.9µm) indicates the highest possible 
density of green leaves. 

By transforming an empirical dataset of raw, unmixed, medium 
resolution-derived, operationizable, explanatorily decomposable, 
medium resolution, satellite, radiance estimates into individual NDVI, 
canopy endmember, biosignature, time series reflectance in an ArcGIS-

http://www.plantcell.org/content/24/5/1921.full#def-1
http://www.plantcell.org/content/24/5/1921.full#def-2
http://www.plantcell.org/content/24/5/1921.full#def-1
http://www.plantcell.org/content/24/5/1921.full#def-2
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/
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derived, parameter estimator reflectance emissivity, wavelenght, 
transmittance coefficient values, ecologists or experimenters may create, 
robust, georeferencable shade, vegetated, S. damnosum s.l., canopied, 
riverine, larval habitat sub-images. These images may provide a rough 
measure of canopy architecture, light absorption, and photosynthetic 
and NPV activities based on decomposed, explanatorial, time series, 
canopy vegetation LULC-oriented reflectance surfaces associated to 
georeferenced, geosampled, prolific, riverine, canopied habitats. NDVI 
in ArcGIS is especially useful for continental to global-scale canopy 
vegetation monitoring as it can compensate for changing illumination 
conditions, surface slope, and viewing angle (http://phenology.cr.usgs.
gov). The basic idea of decomposing a spectroradiometric index is 
to collapse the multispectral or hyperspectral remote sensing values 
to a particular measure, which is related to some characteristics 
(i.e. vegetation LULC cover and greenness) of a georeferenced 
object [2,4,28].That said, a time series dependent, explanatorial, 
operationizable, medium resolution-derived, explanatorial, NDVI, 
unmixed,endmember,S. damnosum s.l., larval habitat, reference, 
canopy biosignature generated in ArcGIS would not tend to saturate 
over dense and/or sparse shaded, vegetation-oriented observational, 
predictor (e.g., immersed hanging vegetation) and would be sensitive 
to underlying dissimilarities (i.e., spatial non-homogeneity) in 
background canopy (i.e. substrate) reflectance, such as the presence of 
leaf litter, senescent (i.e. standing dead vegetation) and woody materials 
(e.g., twigs). Such differences in vegetation LULC coverage can 
influence accurately forecasting endmember, canopy shaded, biomass 
density-related, geometrically log-transformed, time series dependent 
integers and phenological variables tabulated from an, empirically, 
probabilistically regressed, eco-epidemiological dataset ofunmixed, 
georeferenced, geosampled, medium resolution-derived, geospectrally 
decomposable,S. damnosum s.l. larval habitat, photosynthetic or NPV 
covariate, parameter estimator reflectance emissivity, transmittance, 
wavelenght coefficient values.

Based on the currently applied moderate resolution remote 
sensing proxy methodologies, the following broad,endmember LULC 
categories of georeferenced, geo-spatiotemporal, medium resolution-
derived, shade, vegetated, S. damnosum s.l.,prolific, riverine larval 
habitats (e.g., sparse canopy) may be identified in ArcGIS, employing 
a explanatorily geo-spectrally interpolatable, field operational, NDVI, 
reference biosignature for: (1) geo-spatiotemporally mapping the 
structural properties of geosampled, seasonally prolific larval habitats, 
based on the geophysical structure of the canopy vegetation

(2) conducting spatial heterogeneity assessments based on primary 
productivity that affect the absorption of light energy in the habitat’s 
surrounding immersed hanging, floating and dead vegetation

(3) temporal heterogeneity assessment of stress factors that 
interfere with photosynthesis (and thus alter the reflectance spectrum 
of habitat vegetation)

(4) biomapping plant chemical attractants while summarizing 
the influence of LULC attractants of fauna, and canopy illumination 
quality as emitted from the riverine larval habitat.

These latter categories would enclose the range from the most 
frequently employed methodologies applied to other terrestrial taxa 
to the latest approaches found in literature. Thus, direct and indirect 
measurements in ArcGIS of explanatorial, shade-related, vegetated, geo-
spatiotemporally dependent, georeferenced, productive, S. damnosum 
s.l., geosampled riverine, larval habitat, immature productivity and 
habitat, health diversity and distribution may be optimally illustrated 

from an empirically regressed, operationizable, dataset of unmixed, 
medium resolution, NDVI-derived, stochastically/deterministically, 
geospectrally, explanatorily interpolatable, decomposed ,reference 
biosignature-related, photosynthetic and NPV, canopy endmember, 
covariate, parameter estimator, reflectance emissivity, transmittance 
wavelenght, coefficient values.

The recent success in applying hyperspectral mapping data 
in ArcGIS to endmember vegetation-related canopy LULC, geo-
spatiotemporal field eco-epidemiological, forecast, risk mapping has 
shown promise in rangeland classification. Rolfson [29] focused on 
acquiring a seasonal inventory of in-situ reflectance spectra of medium 
resolution-derived, rangeland, decomposed, plant species endmembers 
employing OBIA in ENVI and ArcGIS to evaluate their separability for 
a risk-related, hyperspectral, image classification analysis. The goals 
of the research also included determining the separability of species 
endmembers at different times of the growing season. Reflectance 
spectra were collected for three shrub species (Artemisia cana, 
Symphoricarpos occidentalis, and Rosa acicularis ) and five rangeland 
grass species native to southern Alberta, Canada (Koeleria gracilis, 
Stipa comata, Bouteloua gracilis, Agropyron smithii, Festuca idahoensis) 
and one invasive grass species (Agropyron cristatum). A library, built 
using the spectral database software the object-based classifier, which 
was subsequently populated using the decomposed explanatorial 
measurements with a primary focus ontime series dependent, shade, 
vegetated canopy reflectance values. Average extracted endmembers of 
canopied spectra acquired during the peak of sample greenness were 
compared employing three separability SMA measures [i.e., normalized 
Euclidean distance (NED), correlation separability measure (CSM) and 
Modified Spectral Angle Mapper (MSAM)] to establish the degree to 
which the species were remotely separable].

Spectral Angle Mapper (SAM) is a physically-based spectral 
classification that uses an n-D angle to match mixels to reference 
spectrain an OBIA (http://www.exelisvis.com/). Spectral Angle 
Mapper Classification is an automated method for directly comparing 
image spectra to aknown spectra (usually determined in a lab or in the 
field with a spectrometer) or an endmember [2]. This method treats 
both (the questioned and known) spectra as vectors and calculates the 
spectral angle between them. This method is insensitive to illumination 
since the SAM algorithm uses only the vector direction and not the 
vector length. The optimal result of the SAM classification for a prolific, 
georeferencable, geosampled, medium-resolution–imaged, canopied, 
productive, S. damnosum s.l., riverine, larval habitat would be a 
datset showing the best match at each extracted shade canopy-related 
mixel. This method is typically used as a first cut for determining the 
mineralogy and works well in areas of homogeneous regions. (http://
www.exelisvis.com/). 

In Rolfson [29] the authors geo-spatiotemporally mapped 
hydrothermally altered rocks employing proxy medium resolution data. 
Absorption features were highlighted in the 2 µm region, for remotely 
diagnosing carbonate minerals and hydrothermal alteration minerals 
such as alunite, kaolinite, and calcite. The NED and CSM provided 
mineral indices that was insensitive to the grain size of minerals and 
topography. The Modified Spectral Angle Mapper (MSAM) method 
avoided misidentification due to mixture of the target mineral with 
different materials such as shade, canopied vegetation-oriented, time 
series dependent, explanatorial, canopied, LULC covariates. The 
mineral index images derived employing the MSAM method also 
exhibited a clear boundary between areas of contrasting mineralogy 
in the geosampled Cuprite region and Northern Grapevine Mountains 
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region; this result was consistent with a previously published geologic 
map and hyperspectral data. Further, investigation by the MSAM 
method identified several types of hydrothermal alteration zones 
associated with porphyry ore deposits near the Yerington District, 
Nevada. These results demonstrate the usefulness of MSAM method in 
terms of lithologic, medium resolution-derived,time series dependent, 
forecast-related, endmember, interpolatable risk mapping.

Findings such as in Rolfson [29] suggest that the choice of 
separability measures may be an important factor when analyzing 
decomposed empirically regressable, geosampled, geospectrally 
decomposable, explanatorily interpolatable, reference biosignature, 
photosynthetic and NPV canopy endmember, reflectance components. 
The differences observed in the separability results over time may 
suggest that the consideration of phenological patterns in planning 
data acquisition for optimum riverine classification of georeferenced, 
S. damnosum s.l., riverine, larval habitats, geospectrally decomposed, 
endmember, NDVI-related, biosignatures. Subsequently, this sub-
mixel, remote dataset of stochastically/deterministically, interpolated, 
geopredictive variables may have a high level of importance for geo-
spatiotemporally, remotely, probabilistically regressively, targeting 
prolific, unknown, unsampled, S. damnosum s.l., larval habitats in 
African riverine environments based on field-geosampled, interpolated 
count data.

While global explanatorial geo-classifications have relied mostly 
on multi-temporal, canopied, endmember, LULC dynamics for 
geospectrally explanatorily interpolating, sub-mixel, decomposed 
medium resolution-imaged, immature, S. damnosum s.l., habitat, 
reference-related, gaseous biosignatures have not ever been used.There 
are currently no known remotely detectable canopy endmember, 
gaseous biosignatures strictly associated with oxygenic and anoxygenic 
photosynthesis [13]. In the absence of gaseous biosignatures, a 
geosampled, georefernced, prolific, S. damnosum s.l., canopy-related, 
vegetation associated, LULC, shaded surface reflectance features 
would be the only possibly detectable biosignature. An oxygenic 
photosynthesizers and chemosynthetic pigment would have to be 
generated and diagnostically tested employing their own surface, time 
series, canopied, end member, reflectance biosignatures which may 
reflect more strongly in medium resolution wavelengths where their 
pigment absorption occurs.

In particular, investigations of canopied, vegetation-related LULC 
phenology in the hyperspectral domainshave been limited in African 
riverine environments. Vegetation phenology can provide a useful 
signal for geo-classifying geo-spatiotemporal LULC, but phenology 
can cause spectral misspecifications in stochastic/deterministic 
explanatorial interpolators especially when complex unmixed 
geospatial objects such as, red, green and blue (RGB),decomposed, S. 
damnosum s.l., riverine, larval habitat, canopy, emissitivity values are 
generated from vegetation-related, LULC components(e.g., immersed 
hanging vegetation, floating dead vegetation, turbid water).Remotely 
sensed changes in sub-mixel, canopy vegetation, LULC, time series, 
spectral responses caused by phenology can conceal longer term 
changes in the landscape [30,31]. Multi-temporal data that captures 
these spectral differences in ArcGIS can improve separability of 
vegetation landscape types over endmember geo-classifications based 
on single-date imagery [www.esri.com]. Global-scale explanatorial, 
time series dependent, LULC endmember classifications have utilized 
differences in vegetation phenology derived from multi-temporal 
empirical datasets to map the distribution of ecoregions [32-34]. 

While global-scale monitoring of phenology has been successful, 

operationizable, hyperspectral, endmember, sub-mixel, decomposed, 
risk–related, vegetation-oriented, forecastable, geo-spectrally 
interpolatable, data variables of seasonal changes in explanatorial, 
LULC have been limited due to the restricted abilities of coarse 
resolution aerial platforms to repeatedly geosampled large areas [35-
38]. The spectral detail provided by medium resolution-derived data 
may allow classification of vegetation and monitoring of the LULCand 
NPV components of seasonal, prolific, canopied, S. damnosum s.l., 
georeferenced, larval habitats geosampled in an African riverine 
environment in ArcGIS. The effects of vegetation phenology on 
endmember selection and LULC species mapping employing average 
RMSE may then robustly explore geo-spatiotemporal changes in the 
characteristics of selected, unmixed, decomposable, shade, vegetated, 
explanatorily interpolatable, operationizable, time series dependent, 
NDVI, canopied, biosignature-related, explanatorial, geospatial 
objects. Multiple endmember spectral mixture analysis is a linear 
mixing model that uses a RMSE metric [4].

The images modeled by these medium resolution-derived, 
operationizable, time series dependent, absorption-related, canopy 
endmembers in ArcGIS may demonstrate geo-spatiotemporal changes 
between canopy vegetation species in a prolific, georeferenced, S 
damnosum s.l., riverine, larval habitat based on field geosampled, 
spectral explanatorial, count data. The extensive diffuse multi-
scattering reflected by medium resolution imaged, shade vegetated, 
georeferenced, canopied, riverine, larval habitat geo-spatiotemporally 
dependent, decomposed, canopy endmember objects may prevent 
conducting invasive regression analyses of explanatorial, geosampled 
photosynthetic materials (e.g., percentage of floating shaded 
vegetation) and NPV (e.g., canopy twigs) thus, causing error in 
unmixed NDVI, biosignature, endmember, interpolation calculations. 
As mentioned previously explicit mathematical relationships of the 
light–canopy interaction have been developed exclusively for sub-
meter resolution, imaged canopies with non-reflective backgrounds. 
Therefore, an empirical, operationizable dataset of light sensitive 
explanatorial, proxy, covariate, coefficient values in ArcGIS, composed 
of medium resolution-derived, geo-spectrally unmixed,time series 
dependent, NDVI,canopied endmember,reference biosignature,values 
as temporally rendered from a georeferenced, shade, canopied, prolific, 
S damnosum s.l., riverine, larval habitat geosampled in an African 
riverine environment, may have the disadvantage of unquantifiable 
scattered spectra where image correction is not trivial and, as such, 
noise may be introduced during mixel decomposition.

Importantly, time series dependent, NDVI spectral libraries for 
maintaining decomposed, medium, resolution-derived, sub-mixel, 
endmember data products in object based classifiers are generally 
derived in laboratory conditions for example, employing controlled 
situations using artificial irradiance and minimalized atmospheric 
effects. However, the spectral reflectance of temporally dependent, 
canopied, georeferenced, S. damnosum s.l., riverine, larval habitat, 
vegetated, LULC, ecogeographically classified, explanatorial, surface 
data, topographic, feature attributes represent elements that have 
experienced extensive chemical, physical and biological weathering 
and, as such, might contain moisture. Conventional medium resolution 
satellite maps of intertidal sediment domains employing point samples 
can be spatially unrepresentative, due to errors introduced through 
moisture-ridden sediment geosampling and subsequent interpolations 
[35,39]. Light from the canopy, soil, LULC surfaces can influence 
decomposability of geospectrally explanatorily, interpolatable, 
unmixed, NDVI, endmember, reflectance values by a large degree. 
This is of concern in forecast, vulnerability, eco-epidemiological, risk 
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endmember mapping productive, georeferncable, seasonal vegetated, 
canopy, shaded, S damnosum s.l., larval habitat, photosynthetic and 
NPV regressors for identifying unsampled, unknown habitats since 
in many African semi-arid and arid riverine environments tend to 
have higher cover of bare ground. Heute and Jackson [40] found that 
the soil reflectance LULC surface impact on NDVI values in ArcGIS 
was greatest in areas with between 45% and 70% vegetative cover. 
The unmixed endmember reflectance spectrum of a whole canopy is 
influenced by factors such as the effects of leaf area, the orientation of 
leaves, ground coverage, and presence of non-leaf elements, areas of 
shadow and soil surface reflectance [41].

Overall as Jiang et al. [42] reported, there exist many perspectives 
and discrepancies between decomposed endmember, NDVI, unmixed, 
fractional, LULC-, vegetation cover, absorption-related reflectance 
values for optimally remotely discriminating the scale effect of any 
canopy object. The principle behind derivation of endmember, 
fractional vegetation, medium resolution, LULC-related, radiance 
cover aggregated from NDVI, canopy-related, ArcGIS data is to relate 
the decomposed, biosignature information to reference values, such as 
dense vegetation and bare soil, assuming the individual component, 
NDVI, sub-mixel, data can be represented by the reference data [1,3,4]. 

However, even if component, medium resolution-derived, NDVI, 
decomposed, endmember data in ArcGIS and in ENVI technology can 
be estimated without error, there would still be sources of spectral, sub-
mixel, probabilistic uncertainty caused by the scale effect of the NDVI 
especially when retrieving canopy-oriented, vegetation-related, radiance 
LULC fractions from the original synthesized, moderate resolution, 
decomposed, NDVI biosignature. It remains unclear the extent to 
which the sub-mixel scale, moderate resolution-derived, unmixed 
NDVI corresponds to the scales and what possible relationships exist 
between the unmixed material for any type of seasonal, S. damnosum 
s.l., riverine,larval habitat-related, explanatorial, probabilistic, time 
series dependent, explanatorily interpolatable, forecast-oriented, eco-
epidemiological, risk mapping. The relationship between medium 
solution-derived NDVI and radiance fractional, LULC specified, 
vegetation-related, canopy cover in ArcGIS may be directly influenced 
by the scale effect of the decomposed, riverine, larval habitat endmember 
NDVI. Understanding this residual forecast effect may be essential 
to understanding the relationship between fractionalized, NDVI, 
biosignature, endmember, absorption radiance estimates in ArcGIS 
and for accurate retrievals of operationizable, interpolatable, seasonal, 
shade, canopy, decomposed reflectance emissivity, transmittance 
data (remove period) in ENVI. These geospectral, ecobiological 
explanatorial, time series dependent, covariate parameter, estimator 
attributes may limit the general use of medium resolution, spectral 
libraries in the unmixing procedures(e.g., sub-mixel decomposition) 
of a georeferenced, shade, vegetated, prolific, geosampled, seasonally 
canopied, S. damnosum s.l., riverine,larval habitat.

A discontinuous, geospectrally decomposed, within canopy–
related, medium resolution imaged, prolific, S. damnosum s.l., riverine, 
larval habitat, NDVI, explanatorily interpolatable biosignature target 
in ArcGIS may also cause extensive endmember confusion among 
known light sensitive, photosynthetic and NPV covariate coefficient 
measured values in a regression equation. As Rundquist [43] reported 
NDVI has been criticized because of substrate reflectivity, as well as 
its insensitivity to increases in vegetation LULC-related biomass past 
particular thresholds. For example, discontinuous, dense, canopy 
endmembers can cause an increase of the blue/red radiation ratio in 
vegetated canopies generating higher photosynthetic rates per unit leaf 

area [44].Vegetation have distinctive spectral characteristics as was 
observed by Gates [45] who noted that canopy vegetation LULC in 
ArcGIS leaf reflects and transmit incident radiation in a manner that 
is uniquely characteristic of pigment cell containing water by solution. 

Reflectance also will vary with wavelengths for within medium 
resolution imaged, geosampled, explanatorial, georeferencable, prolific, 
S. damnosum s.l., riverine, larval habitat, shade, canopied, endmember, 
unmixed, biosignature-related, fractionalized, vegetated materials in 
ArcGIS as energy at certain wavelengths may be scattered or absorbed 
to different degrees. These sub-mixel, reflectance, covariate parameter 
estimator coefficient value variations may not be evident when time 
series-dependent, geospectral reflectance curves (i.e., plots of reflectance 
versus wavelength) are employed for different sized, decomposable, 
medium resolution imaged, georeferencable, riverine,larval habitat–
related, explanatorial, time series dependent, canopied, geospatially, 
probabilistically regressable objects. Thus, the explanatorial shaded, 
canopy endmember, explanatorial, time series biometrical properties 
of vegetated LULC in different medium resolution wavelengths 
of the electromagnetic spectrum may not be analyzed thoroughly 
for efficiently monitoring prolific, S. damnosum s.l., larval habitats 
geosampled in African riverine environments nor, utilized for 
ecogeographic and ecohydrologic, forecast,eco-epidemiological, risk, 
modelling of explanatorial, ecobiophysical, georeferencable processes 
(e.g., presence of chorophyll canopy pigments)related to vegetative 
vigor and physiognomy characteristics of these habitats.

Tucker [46] tested various combinations of the red, NIR, and 
green bands to predict biomass, water content, and chlorophyll 
content of grass plots in ArcGIS. The NDVI was strongly correlated 
with chlorophyll content and crop characteristics that were directly 
related to chlorophyll content, such as green biomass and leaf water 
content. Monteith and Unsworth [47] conducted a theoretical analysis 
which revealed that vegetation indices (VIs) are uniquely related to the 
amount of incident light reflected and therefore absorbed by a canopy, 
assuming a low and constant value for soil absorption. Myneni et al. 
[48] showed that NDVI was near-linearly related to the chlorophyll 
content of single soybean leaves and were curvilinearly related to the 
chlorophyll content of soybean canopies.This reflux relationship may 
have been due to surface leaves intercepting more light than leaves 
deeper in the canopy.

Since most photosystems includes the first steps of the Z-scheme, 
delineating oxidized chlorophyll a molecules in OBIA it may be 
vital for uncertainty diagnostic testing non-normal endmember, 
wavelenght transmittance errors in ArcGIS may when generating an 
optimal, unmixed, empirical,time series dependent, geospectrally 
interpolatable, medium resolution-derived, proxy, explanatorial, 
biophysical, photosynthetic or NPV covariate, parameter estimator 
dataset of decomposed, canopied biosignature-related regression 
values. It is called the Z scheme because it links the two photosystems 
in a way that resembles the letter"Z". (http://commons.wikimedia.org/
wiki/File:Z-scheme.png).The “Z‐scheme” describes the oxidation/
reduction changes during the light reactions of photosynthesis. All 
photosynthetic organisms have chlorophyll a [4,13].

Chlorophyll a is a type of chlorophyll that is most common and 
predominant in all oxygen-evolving photosynthetic organisms such as 
higher plants, red and green algae. Foliar pigments such as chlorophyll 
a play a crucial role in plant photosynthesis through the conversion of 
solar radiation into stored chemical energy and can provide important 
information on gross primary productivity [4,7]. The amount of solar 
radiation absorbed by a leaf is largely a function of foliar concentrations 

http://commons.wikimedia.org/wiki/File:Z-scheme.png
http://commons.wikimedia.org/wiki/File:Z-scheme.png
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of photosynthetic pigments, therefore low concentrations of 
chlorophyll can directly limit photosynthetic potential and hence 
primary production [2].Chlorophyll a is best at absorbing wavelength 
in the 400-450 nm and 650-700 nm of the electromagnetic spectrum. 
Its molecular formula is C55H72O5N4Mg. Chlorophyll a is a specific 
form of chlorophyll employed in oxygenic photosynthesis which 
absorbs most energy from wavelengths of violet-blue and orange-
red light: It also reflects green/yellow light and, as such, contributes 
to the observed green color of most plants [49]. If these wavelengths 
are spectrally unmixed improperly in an OBIA, they will generate a 
false, non- interpolatable, eco-explanatorial, shade, canopy, vegetated, 
S damnosum s.l., larval habitat, NDVI, endmember, biosignature-
oriented, explanatorial risk map in ArcGIS.

Further, during photosynthetic activities of canopy, shade 
vegetated, geosampled, georeferencable, S damnosum s.l., riverine, 
larval habitats in ArcGIS, two compounds are commonly generated: 
nicotinamide adenine dinucleotide phosphate (NADPH) and 
adenosine triphosphate (ATP).The NADPH is the main reducing 
agent in chloroplasts, providing a source of energetic electrons to other 
reactions. Its production leaves chlorophyll with a deficit of electrons 
(i.e., oxidization), which must be then obtained from some other 
reducing agent. The excited electrons lost from chlorophyll in a medium 
resolution imaged, shade, canopy, vegetated, seasonal-geosampled, 
georeferenced, prolific, S damnosum s.l., riverine, larval habitat must 
then be remotely captured in order to generate a robust, geospectrally, 
explanatorily interpolatable, sub-mixel, robustifiable, decomposable, 
field and remote, operationizable, NDVI, canopy biosignature but, it 
may be confused with an electron transport chain such as plastocyanin 
for example, during decomposition. In photosynthesis, plastocyanin 
functions as an electron transfer agent between cytochrome f of 
the cytochrome b6f complex from photosystem II and P700+ from 
photosystem I [50]. Cytochrome b6f complex and P700+ are both 
membrane-bound proteins with exposed residues on the lumen-side of 
the thylakoid membrane of chloroplasts [26]. The thylakoid membrane 
is the site of the light-dependent reactions of photosynthesis with the 
photosynthetic pigments embedded directly in the membrane [51] 
which may be remotely inaccessible at moderate resolution.

Besides chlorophyll, canopy, shade, vegetated, remotely 
explanatorial, geospatiotemporally, geosampled, productive S. 
damnosum s.l., riverine, larval habitats geosampled in African riverine 
ecosystems also use pigments such as carotenes and xanthophyll 
[1]. Algae use chlorophyll, but various other pigments are present 
as phycocyanin, carotenes, and xanthophylls in green algae, 
phycoerythrin in red algae (rhodophytes) and fucoxanthin in brown 
algae as well as diatoms resulting in a wide variety of colors that 
may be geospectrally associated with a georeferenced, geosampled, 
shade, vegetated, remotely explanatorial, prolific, medium resolution 
imaged,S damnosum s.l., shade canopied, riverine, larval habitat. 
Canopy reflectance results from a complex interaction between 
pigment concentrations, canopy structure, background signal and 
illumination conditions (e.g., sun-sensor-target geometry) [52].These 
light harvesting biosignature endmembers may render fractionalized 
radiance misspecifications during geospectral interpolation in ArcGIS 
of explanatorily decomposed, medium solution-imaged, canopy-
oriented, stomata conductance-related, reflectance emissivity, 
wavelenght, transmittance data feature attributes. 

Leaf reflectance is controlled by the presence of foliar constituents 
such as chlorophyll, nitrogen, carotenoids, and water [2] In visible 
wavelengths, chlorophyll absorbs strongly in red and blue spectral 

regions, with maximum absorbance between 660 and 680 nm and 
maximum reflectance in green wavelengths (560 nm) [2,4]. Internal 
leaf structure also affects the amount of incident radiation absorbed, 
scattered and reflected through the upper epidermis, due to refractive 
discontinuities between intercellular air spaces and cell walls [46]. 
Broadleaves have a thin epidermal layer, long palisade cells and more 
air spaces surrounding spongy mesophyll cells, whereas cylindrical 
needle leaves have an undifferentiated, densely packed mesophyll 
and thick cell walls [13]. Research has suggested that NIR reflectance 
is controlled by the ratio of mesophyll cell surface to intercellular air 
spaces. As such, differences in broadleaf reflectance spectra in a prolific, 
geo-spatiotemporally-resampled, medium-resolution imaged, shade, 
canopied, S. damnosum s.l., riverine habitat analyzed in ArcGIS, could 
exist even with the same chlorophyll content; making chlorophyll 
content estimation across plant functional types complex.

At the canopy level, reflectance is also governed by leaf architecture, 
clumping, leaf angle distribution, tree density, NPV canopy elements 
[46], along with solar/viewing geometry, ground cover and understory 
vegetation [28]. Conifer canopies reflect less NIR radiation than 
broadleaf canopies, which is a function of the optical properties of the 
leaves, non-photosynthetic elements and leaf angle distribution [2]. 
Vertical leaves promote a deeper penetration of incident radiation 
within the canopy, where multiple scattering within the crown allows 
for a higher probability of photon absorption [47]. It is also therefore 
possible that reflectance factors from two georeferenced, explanatorial, 
medium-resolution-derived, prolific, rieverine, larval habitat, seasonal, 
decomposed canopies are different in ArcGIS even if the spectral 
reflectance of the constituent leaves are the same. 

Although, the chloroplastic carotenoid, zeaxanthin has been shown 
to act as a blue radiation sensor mediating guard-cell movement 
[4], precisely geospectrally capturing and modulating gas exchange 
between the leaf cells and the surrounding canopy architecture in 
a medium resolution-derived, time series dependent, endmember, 
NDVI-related, empirical dataset of georeferenced, geosampled, 
decomposable, interpolatable, unmixed, S. damnosum s.l., riverine, 
larval habitat, canopy biosignature variables may be remotely 
tedious. Further, a geo-spatiotemporally dependent, empirical 
dataset of georeferenced, medium resolution-derived, geospectrally 
decomposable, NDVI-oriented, canopy, endmember biosignature 
covariate parameter estimator, reflectance emissivity, transmittance 
coefficient, fractionalized, radiance values may be more difficult to 
interpolate accurately due to an inability to define scale, leaf-level, gas 
exchange component variables in the geosampled, seasonal, riverine 
larval habitat, sub-mixel, empirical dataset. Unfortunately, the changes 
observed within medium resolution-derived, shade, canopy-related, 
riverine,S. damnosum s.l., vegetated,larval habitat, NDVI-related, 
explanatorial, endmember, canopied, profiles may compromise 
quantification of multiple, ecobiological, geo-spatiotemporally and 
non-ecogeographically dependent, photosynthetically-oriented and 
NPV operationizable, explanatorial, time series dependent parameter 
estimators. Scaling and interpolating leaf-level fluxes are essential at 
the canopy level [2,4]. 

Amongst the most relevant issues on scaling fluxes in a canopy-
oriented, explanatorial, vegetated-related LULC, geospatiotemporally-
dependent, medium resolution-derived, shaded or non-shaded, 
NDVI-related, productive, S. damnosum s.l., riverine, larval habitat, 
decomposed, biosignature, endmember-related regressors may be 
the multiple representations of canopy light levels and assimilation 
capacities of the unmixed photosynthetic and NPV covariates. Light 
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utilization is a primary factor determining plant ecosystem productivity 
[53,54] and is a function of light interception by the plant canopy and 
the response of photosynthesis to irradiance. Increasing leaf mass 
per unit ground area increases light interception by the canopy and 
is positively correlated with NPP across a range of ecosystems [55]. 
However, the cumulative interception of light through a prolific, 
georeferenced, geo-spatiotemporally-geosampled, shade, vegetated, S. 
damnosum s.l., riverine larval habitat canopy may cause light limitation 
of photosynthesis in the lower canopy. To maximize seasonal, canopy-
level, carbon uptake, changes in photosynthetic light response that 
maximize leaf-level carbon uptake under prevailing light conditions 
should optimally occur through the canopy crown [56].During 
photosynthesis in green plants, light energy is captured and used to 
convert water, carbon dioxide, and minerals into oxygen and energy-
rich organic compounds [13].

Although geospectrally extracted,medium resolution-derived, 
seasonal,vegetated, S. damnosum s.l., georeferencable, prolific, 
riverine, larval habitat, explantorily shade canopied, time series 
dependent, canopy biosignature-related reflectance emissivity, 
wavelenght, transmittance components in ArcGIS and ENVI may play 
an important role in revealing mass exchange and controlling factors 
in the energy and atmosphere, the medium resolution, sub-mixel, 
radiance endmember response from the stomatal conductance for the 
whole canopy may be misrepresented in the unmixed model as one 
empirical function. Such a non-mechanistic representation of multiple 
imaged, endmember, radiance fractionalized, shaded and canopied, 
spectral conductance may contain erroneous, residual, multicollinear, 
S. damnosum s.l., riverine, larval habitat, or autocorrelation 
coefficients. Unmixed medium-resolution, shade, canopy, vegetated, S. 
damnosum s.l., riverine, larval habitat, canopy endmembers involved in 
multicollinearity can be combined into a single variable, however, this 
formulation may not be appropriate for resolving non-independence 
in geosampled,photosynthetic and NPV reflectance, covariates.

There are four principal assumptions which justifying the use of 
linear regression models for purposes of inference or prediction: (1) 
linearity and additivity of the relationship between dependent and 
independent variables: (2) statistical independence of the errors (in 
particular, no correlation between consecutive errors in the case of time 
series homoscedasticity (i.e, constant variance) of the errors (a) versus 
time (in the case of time series data)(b) versus the predictions (3) versus 
any independent variable; and, (iv) normality of the explanatorial, time 
series, dependent error distribution [29]. For conducting a robustifiable, 
time series, geospectral, explanatorial, geosampled interpolation on 
an empirical dataset of decomposed endmember, georeferencable,o
perationizable, geo-spatiotemporal, geosampled, S. damnosum s.l., 
larval habitat,canopy,biosignature-related,covariates parsimoniously, 
the photosynthetic and NPV , LULC, predictor variables must reveal 
independence,homoskedacisty, and normal distribution of errors [1]. 

Several methods have been described to reduce collinearity and 
other violations of regression assumptions in moderate resolution 
remote sensing in ArcGIS models by applying iterative approaches 
to unmixing and endmember selection. Based on a suggestion 
made by Bateson and Curtiss [57] on manual endmember selection, 
several follow-up papers [58,59] were published to automate and 
refine procedures for iterative unmixing, but currently in literature, 
statistics such as scale and local variance and theoretical models 
based on convolution have not been proposed to support resolving 
multicollinearity in medium resolution-derived, NDVI, endmember, 
time series dependent, canopy biosignature-related, reference, 

explanatorial, forecasting-related categorical and continuous variables. 
In addition, in unmixing operationizable, geospectrally, stochastically/
deterministically, explanatorily, interpolatable, medium resolution 
data applications, canopy endmember selection and the resulting 
abundance image errors are often associated with RMSE without a 
critical review of the level of accuracy and uncertainty in decomposed, 
temporally dependent, biosignature-oriented, unmixed datasets.

Regarding the collinearity problem in a geospectrally-oriented, 
explanatorial, time series, eco-epidemiological, explanatorily geo-
spatiotemporally dependent, empirical datasets of shade, canopied, 
S. damnosum s.l., vegetated, biosignature-oriented, riverine, larval 
habitat, canopy endmember decomposed, geopredictive variables, 
predictorvariables, classical multivariate, explanatorial, residual, 
uncertainty, probabilistic, non- normality diagnostic models may 
resolve any non-independence employing Euclidean geometrical 
algorithms. In Euclidean geometry this relation is intuitively visualized 
by points (e.g., geo-spatiotemporal prolific, larval habitats ,geosampled 
in an African riverine environment based on immature count data) 
lying in a row on a "straight line". However, in most current seasonal, 
entomological-related, remotely sensed, aggregated geometries (e.g., 
Euclideanized habitat measurements) a line is typically a primitive 
(i.e., undefined) object type, so such visualizations will not necessarily 
be appropriate [7,60]. 

An explanatorily, geo-spatiotemporal, resampled, risk, forecasting 
eco-epidemiological, model in ArcGIS for remotely qualitatively 
quantitating Euclidean geometry may offer an interpretation of how 
resampled, georeferenced, S.damnosum s.l. riverine, larval habitat, 
explanatorial, time series reflectance points, lines and other object 
types become collinear within the context of that model [61-63]. For 
instance, in spherical geometry, where lines are represented in the 
standard model by great circles of a sphere [61-63], sets of explanatorily, 
collinear, decomposable, geo-spatiotemporally, resampled, shade, 
canopied, prolific, S. damnosum s.l., vegetated, riverine, larval habitat 
reflected points may lie in a circle. Such points would not lie on a 
"straight line" in the Euclidean sense, and would not be thought of as 
being in a row. A mapping of a geometry to itself which sends lines to 
lines is called a collineation; it preserves the collinearity property [2]. 
The rendered S. damnosum s.l., vegetated, larval habitat operational 
radiance maps (or linear functions) of the vector spaces may then 
be viewed as geometric maps, (i.e., map lines to lines), that is, the 
map habitat collinear point may be set to collinear point sets (i.e., 
collineations) in ArcGIS. In projective geometry these linear larval 
habitat reflectance mappings would be homographies. 

In ArcGIS projective geometry, a homography is 
an isomorphism of projective spaces, induced by an isomorphism 
of the vector spaces from which they are derived (www.esri.com). 
Thus, geo-spatiotemporally dependent, decomposable, geospatially 
interpolatable, explanatorily, resampled, shade, canopied prolific, 
medium-resolution-imaged, S. damnosum s.l.,georefernced, riverine, 
larval, habitat bijections that map lines to lines in Geostatistical Analyst 
TM in ArcGIS for example, would be a collineation. In mathematics, 
a bijection (or bijective function or one-to-one correspondence) is a 
function between the elements of two sets, where every element of one 
set is paired with exactly one element of the other set, and every element 
of the other set is paired with exactly one element of the first set [2]. 
Hence, there are no unpaired elements. A bijective function f: X → Y is a 
one-to-one (injective) and onto (surjective) mapping of a set X to a set 
Y [64]. In ArcGIS there are collineations which are not homographies, 
but the fundamental theorem of projective geometry asserts that it is 
not so in the case of real projective spaces of dimension at least two.
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Historically, ArcGIS homographies and projective spaces have 
been introduced to study perspective and projections in Euclidean 
geometry, and the term "homography", which, etymologically, roughly 
means "similar drawing" date from a specific time period. At the end of 
19th century, formal definitions of projective spaces were introduced, 
which differed from extending Euclidean or affine spaces by 
adding points at infinity. The term "projective transformation" 
originated in these abstract constructions. These ArcGIS data products 
may divide classes for any explanatorial, empirical entomological 
dataset (e.g., decomposed, endmember, medium resolution-derived, 
NDVI reflectance eco-geographic or non eco-geographic wavelenght-
oriented, endmember, covariate, parameter estimators) that have 
been shown to have equivalent numbers of time series dependent, 
empirically geosampled explanatorial regressors. 

A projective space may be thus constructed in ArcGIS as the set 
of the lines of a vector space over a given field for parsimoniously, 
geospectrally, interpolating an empirical operationizble, datatset 
of geosampled, stochastically/deterministically georeferncable, 
explanatorily, decomposable, S. damnosum s.l. riverine, larval habitat-
related, canopy endmember, biosignature-oriented, time series 
dependent, forecasting independent variables geosampled over a 
African riverine community. This construction could facilitate using 
tools from linear algebra for the study of the ArcGIS homographies. The 
alternative approach consists in defining the projective space through 
a set of axioms which do not involve explicitly any field (e.g., incidence 
geometry, synthetic geometry). In this context, geo-spatiotemporally 
dependent, ArcGIS-related seasonal geosampled, riverine, larval 
habitat explanatorily interpolated, time series dependent collineations 
would be easier to define than remotely tabulated, medium-resolution-
derived, S. damnosum s.l. related homographies (i.e, "projective 
collineations").

Equivalently Pappus'shexagon theorem and Desargues' 
theorem may be generalized in ArcGIS for remotely qualitatively, 
probabilistically, regressively quantitating empirical, geosampled, 
operationizable, eco-epidemiological, datasets of georeferncable, 
projective, geospectrally decomposable, endmember, medium 
resolution-derived,explanatorily interpolatable, shaded, S. damnosum 
s.l. riverine, larval habitat, canopy reflected, fractionalized geometries. 
In mathematics, Pappus' hexagon theorem states that given one set 
of collinear points A, B, C, (e.g., endmember, riverine, larval, habitat 
geocordinates) and another set of collinear points a, b, c, then the 

intersection points X, Y, Z ofline pairs Ab and aB, Ac and aC, Bc and 
bC are collinear, lying on the Pappus line. Projective planes in which 
the "theorem" is valid are called Pappian planes[64].These three 
points would be the points of intersection of the "opposite" sides of 
the hexagon AbCaBc which would hold in a projective plane over 
anycanopied biosignature-related, decomposed, radiance-related, geo-
spatiotemporally, geosampled, ArcGIS S. damnosum s.l., larval habitat, 
georeferencable, medium resolution field. However, this model would 
fail for projective planes over any noncommutative division ring.

A choosen set of projective ArcGIS imposed, geospectrally, 
interpolatable, geo-spatiotemporally fractionalized, canopy radiance 
endmember, explanatorial, empirical dataset of operationizable, 
medium resolution-derived, shade, canopied, S. damnosum s.l. riverine, 
larval habitat reflux coordinates may be optimally geo-represented as 
C=(1,0,0), c=(0,1,0), X=(0,0,1), A=(1,1,1). Then the lines AC, Ac, AX 
may be given by x2=x3, x1=x3, x2=x1, by cartographically delineating 
the georeferenced,geosampled,points B, Y, b to beB=(p,1,1), Y=(1,q,1), 
b=(1,1,r)for some p, q, r. The three lines XB, CY, cb in ArcGIS would 
then be ecogeographically and/or ecohydrologically seasonally 
represented asx1=x2p, x2=x3q, x3=x1r, so they would pass through 
the same canopy-related, eco-epidemiological, capture point (e.g., 
prolific, geosampled, shade canopied, S. damnosum s.l., georefernced, 
riverine,larval habitat) a if and only if rqp=1. The condition for the 
three lines Cb, cB and XY x2=x1q, x1=x3p, x3=x2rin ArcGIS would pass 
through the same geosampled endmember point Z which could be 
subsequently quantized when rpq=1. So this last set of three lines in 
a canopy, endmember, mapped georefernced, productive, seasonally 
shaded, S. damnosum s.l., larval habitat geosampled in an African 
riverine environment would be concurrent if all the other eight sets 
are defined in ArcGIS and since multiplication is commutative, thus 
pq=qp. Equivalently, X, Y, Z in the medium resolution-derived, time 
series dependent, explanatorial, shade, canopied, S. damnosum s.l., 
larval habitat,empirical dataset would be diagnosed as collinear.

The  dual  of this  incidence theorem  states that given one set 
of concurrent lines A, B, C, and another set of concurrent lines a, b, c, 
then the lines x, y, z defined by pairs ofexplanatorial, S. damnoum s.l., 
endmember, geo-spatiotemporal, decomposed, canopy biosignature, 
seasonal, reflectance points resulting from pairs of intersections 
A∩b and a∩B, A∩c and a∩C, B∩c and b∩C would be concurrent[4].
Pappus's theorem is a  special case  of  Pascal's theorem  for a conic—
the limiting case when the conic degenerates into 2 straight lines[27]. 
The Pappus configuration is the configuration of 9 lines and 9 points 
that occurs in Pappus's theorem, with each line meeting 3 of the points 
and each point meeting 3 lines [2]. In general, the Pappus line does 
in ArcGIS not pass through the point of intersection of ABC and abc 
[65].  This configuration is  self-dual. Since, in particular, the 
lines  Bc,  bC,  XY  will have the properties of the lines  x,  y,  z  of the 
dual theorem, the collinearity of X, Y, Z in an ArcGIS explanatorial, 
empirical, dataset of operationizable, time series dependent, shade 
canopied, prolific, riverine,S. damnosum s.l. larval habitat explanatorial, 
georeferencable, biosignature, endmember reflectance emissitivty, 
transmittance wavelenght-oriented, geopredictive variable would be 
equivalent to concurrence of Bc, bC, XY (Figure 2).

Suppose an ecologist or experimenter chooses projective, 
temporally dependent, S. damnosum s.l., shade, canopied, riverine 
larval habitat decomposed, explanatorial reflectance coordinates 
with C=(1,0,0), c=(0,1,0), X=(0,0,1), A=(1,1,1) in ArcGIS.On the 
lines AC, Ac, AX, given by x2=x3, x1=x3, x2=x1, the points B, Y, b 
would then be B=(p,1,1), Y=(1,q,1), b=(1,1,r)for some p, q, r. 

Figure 2: The Levi graph of the Pappus configuration of a bipartite distance-
regular graph in Arc GIS with 18 vertices and 27 edges.
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The three lines XB, CY, cb could then be optimally graphed as 
x1=x2p, x2=x3q, x3=x1r, so they would pass through the same S. damnosum 
s.l. riverine larval habitat reflectance pathway a, if and only if rqp=1. The 
condition for the three lines Cb, cB and XY x2=x1q, x1=x3p, x3=x2r to 
pass through the same point Z then would be rpq=1. So this last set of 
three lines would be concurrent if all the other explanatorial, empirical, 
probabilstically regressable, decomposed endmember reflectance 
ArcGIS datasets for example are concurrent since multiplication 
is commutative; thus, pq=qp again. Equivalently, X, Y, Z would be 
collinear. Projective space [i.e., P(V)] of dimension n over a field K 
in ArcGIS may be defined as the set of the lines in a K-vector space 
of dimension n+1. If a basis of V has been fixed, a canopy, reflected, 
medium resolution-derived, productive, canopied, S. damnosum s.l,.
riverine, larval habitat, geo-spatiotemporally geosampled time series, 
parameter estimator of V may be cartographically represented by a 
point 0( ,..., )nx x  ofKn+1. A point of P(V), being a line in V, may thus 
be represented by the coordinates of any nonzero point of this line, 
which would be homogeneous coordinates of the projective point in 
ArcGIS.

Given two projective spaces P(V) and P(W) of the same dimension 
inArcGIS, a homography is a mapping from P(V) to P(W), which is 
induced by an isomorphism of vector spaces f: :f v W→  [65]. Such 
an isomorphism in a canopy, shaded, riverine, S. damnosum s.l, riverine, 
larval habitat, decomposition, canopy endmember, biosignature-
related, eco-epidemiological, geospectral, forecasting, risk model would 
induce a bijection from P(V) to P(W) because of the linearity of f. Thus, 
if two georefernced, S. damnosum s.l., larval habitat canopy reflectance 
points in an ArcGIS geodatabase are geo-spatiotemporally dependent 
isomorphisms, f and g could optimally define the same homographic 
delineation if and only if there is a nonzero element a of K such that 
g=af. This may be written in terms of a dataset of temporally dependent, 
shade canopied, S. damnosum s.l, riverine, larval habitat, decomposed, 
forecasting endmember, biosignature homogeneous coordinates in the 
following way.

A homography φ in ArcGIS may be defined by a nonsingular n+1 × 
n+1 matrix [ai, j] (i.e., the matrix of the shade, canopied, georeferenced, 
S. damnosum s.l. larval habitat homography. This matrix may be 
defined up to the, multiplication by a nonzero element of K. Hence, the 
endmember, homogenous, geospectrally interpolated, explanatorial, 
canopy reflux coordinates 0[ : ... : ]nx x  of the unmixed medium 
resolution derived, georefernced, riverine, larval habitat and its geo-
spatiotemporally-geosampled, operationizable, image coordinates 
would be realized by ( )0 : ..... : ny y  and φ. Coincidentally this  
optimally regressable, residually forecasted, canopy reflectance would 
be geospatially related to 0 0,0 0,n n ny a x a x= + ,0 0 ,n n n n ny a x a x= +
by simply adding points (i.e., other geosampled, prolific, riverine, 
larval habitats, reflected canopy points) at infinity to affine spaces 
(i.e., projective completion) in ArcGIS and adding the preceding 

formulas which would then become affine geocoordinates, employing 

1,0 1,1 1 1,
1

0,0 0,1 1 0,

...

...
n n

n n

a a x a x
y

a a x a x
+ + +

=
+ + +

,0 ,1 1 ,

0,0 0,1 1 0,

...

...
n n n n n

n n

a a x a x
a a x a x

+ + +
=

+ + +
.

 
The residualeco-epidemiological, forecasts from this model 

could then generalize the expression of the homographic function. 
By so doing, the endmember shade, canopied, S. damnosum s.l. 
larval habitat mixed decomposition and subsequent interpolation of 
the geospectrally, explanatorily, decomposed, canopy endmember, 
biosignature reflectance could define a partial function between affine 

spaces, which would be outside the hyperplane where the denominator 
is zero.

Conversely, in ArcGIS, an isomorphism is a homomorphism (or 
more generally a morphism) that admits an inverse. Two mathematical 
objects are isomorphic if an isomorphism exists between them [64]. 
An automorphism is an isomorphism whose source and target 
coincide [2]. The interest of isomorphisms for resolving endmember 
collinearity in a decomposed, explanatorial, geo-spatiotemporal dataset 
of S. damnosum s.l. larval habitat medium resolution, sub-mixel, 
biosignature-related, reflectance –oriented, predictive variables would 
be based on the fact that two isomorphic objects cannot be distinguished 
by using only the properties employed to define morphisms; thus, 
isomorphically geospectrally interpolated, larval habitat, canopy 
endmember reflectance objects geosampled in an African riverine 
environment must be considered extensively heterogeneous as long as 
one considers only these properties and their consequences. For most 
algebraic structures, including groups and rings, a homomorphism is 
an isomorphism if and only if it is bijective [65].

In topology, where the morphisms are continuous functions, 
isomorphisms are also called bicontinuous functions [64] In ArcGIS, 
where the morphisms are differentiable functions, isomorphisms are 
also called diffeomorphisms (www.esri.com). A canonical isomorphism 
is a canonical map that is an isomorphism [2]. Two objects are said to 
be canonically isomorphic if there is a canonical isomorphism between 
them. For example, a canonical, explanatorial, operationalizable, shade 
canopied, S. damnosum s.l. larval habitat geospectrally interpolatable, 
forecast, eco-epidemiological, risk map, regressively remotely 
targeting, productive, unsampled, unknown, immature habitats from 
a finite-dimensional vector space V to its second dual space is simply a 
canonical isomorphism in ArcGIS; on the other hand, V is isomorphic 
to its dual space but not canonical in general, in most commercial 
cartographic software. Isomorphisms are formalized using category 
theory [5]. A morphism f : X → Y in a category in a ArcGIS constructed 
S. damnosum s.l. larval habitat, eco-epidemiological, geospectral 
endmember, forecasting, risk model is an isomorphism if it admits a 
two-sided inverse, meaning that there is another morphism g : Y → X in 
that category such that gf=1Xand fg=1Y, where 1X and 1Y are the identity 
morphisms of X and Y, respectively in the model, resdiual forecasts.

Further, in coordinate geometry, in n-dimensional ArcGIS eco-
geographical space, a set of three or more distinct reflectance points 
from a remotely sensed, medium resolution derived, decomposed, 
georeferenced, geosampled empirical dataset of shade, canopied, 
riverine –related, geo-spatiotemporal, S. damnosum s.l., vegetated, 
larval habitat, time series explanatorial, endmembers are collinear if 
and only if, the matrix of the coordinates of these vectors is of rank 1 
or less. For example, given three geosampled, S. damnosum s.l., larval 
habitat, sub-mixel reflectance points X=(x1, x2, .. , xn), Y=(y1, y2, .. , yn), 

and Z=(z1, z2, .. , zn) where the matrix 
1 2 n

1 2 n

1 2 n

 x  ... x
  y  .... y
  z  .... z

x
y
z

 

is of rank 1 or less, 

the points would be collinear. Equivalently, for every subset of three 
decomposed, explanatorial, operationizable, time series dependent, S. 
damnosum s.l., riverine, vegetated, explanatorial, larval habitat, shade-
related, canopyreflectance points X=(x1, x2, .. , xn), Y=(y1, y2, .. , yn), 
and Z=(z1, z2, .. , zn), could be remotely quantized by the matrix

1 2 n

1 2 n

1 2 n

1  x  ... x
1   y  ... y  
1   z  ... z  

x
y
z

 
 
 
  

 which would be of rank 2 or less when the points 
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are collinear. In particular, for three geosampled, decomposed, larval 
habitat, explanatorial, time series dependent, reflux points in the plane 
(n=2), the above matrix would be square and the points collinear if 
and only if its determinant is zero; since 3 × 3 determinant is plus or 
minus twice the area of a triangle whose three points are vertices. This 
then would be equivalent in ArcGIS to the statement that the three 
reflux geosampled, georefernced, riverine, larval habitat, endmember, 
covariate points are collinear if and only if the triangle with those 
points as vertices has zero area.

Three distinct, decomposed, georeferenced, geosampled, 
geospectrally, explanatorily interpolatable shade, canopied, S. 
damnosum s.l., vegetated, larval habitat, endmember, reflectance 
points in ArcGIS may be defined as straight, meaning all the points 
are collinear, if and only if, for every three points A, B, and C, and 
the following determinant of a Cayley–Menger determinant is zero 
(with d(AB). Equivalently, a set of at least three distinct, decomposable, 
shade, canopied, S. damnosum s.l., larval habitat, explanatorial 
geosampled points are collinear if and only if, for every three points A, B, 
and C with d(AC) are greater than or equal to each of d(AB) and d(BC). 
If so the triangle inequality d (AC) ≤ d (AB) + d(BC) in ArcGIS will 
hold with equality. In this approach, deconvolving an uncertainty-
oriented,ArcGIS or SAS (i.e., AUTOREG) second-order autocorrelation 
matrix into linear operationizable, explanatorial, combinations of 
field-level, geo-spatiotemporally, geosampled, shade, canopied, 
vegetated LULC-oriented, S. damnosum s.l. larval habitat endmember, 
georeferenced decomposed biosignature-oriented, medium resolution 
imaged, ecohydrological, ecogeographic, predictor variables may 
simplify some of these problems. Remotely sensed entomological data, 
as a result, is often highly geospatially auto correlated [2].

To enable data collection by medium resolution remote sensing 
instruments the Earth's continuously varying surface is regularized 
into a grid of consistently sized and shaped mixels [4]. The remote 
characterization and quantification of explanatorial, operationizable, 
time series dependent, latent, autocorrelation coefficients can provide a 
valuable source of information for both theoretical and applied studies 
in remotely sensed, empirically, probabilistically regressed canopy 
endmember, decomposed, biosignature-oriented, geosampled, time 
series dependent, field explanatorial, predictor variables [12,65-70]. 
A measure of the degree to which a set of explanatorial, decomposed, 
geospatial, medium resolution derived, biosignature-related, time 
series and their geospatially associated ,sub-mixel, data values cluster 
together in space (i.e., positive spatial autocorrelation) or dispersed 
(negative spatial autocorrelation) can be measured in ArcGIS. For 
example, an HTML file summarizing results from global Morans I, for 
example maybe generated in ArcGIS Geospatial AnalystTM which may 
reveal slight negative autocorrelation (‘cold spot’) in the geosampled, 
canopy, decomposed endmembers.

Consequently, various techniques may be developed in ArcGIS to 
assess the spatial dependence characteristics of distance–related, field-
level, geosampled, explanatorial, empirical datasets of georeferenced, 
shade-related, vegetated,S. damnosum s.l., riverine, larval habitat, 
time series dependent, operationizable canopy, endmember-
related, geospectral, biosignature-oriented, decomposed,redictor 
variables .An autocorrelation error covariance matrix and a spatial 
eigendecomposition algorithmic, orthogonal, filter analyses 
was employed in Jacob et al. [71,] for example, for providing a 
computationally attractive and feasible description of variance-related, 
time series-oriented, probabilistic, regressive, uncertainty estimates 
for correctly identifying sub-resolution clusters of georeferenced, 

geosampled, prolific, malaria mosquito -related, canopied, aquatic, 
larval habitats of Anopheles arabiensis s.s. based on larval/pupal 
productivity. Autoregressive regression coefficients for a spectrally 
decomposable, aquatic, larval habitat, time series model were assessed 
using global error techniques which were reported as error covariance 
matrices. A global statistic summarizes error estimates from multiple 
geographic locations [62,72].

A method of probabilistic, regression error estimation for geospatial 
explanatorial, time series simulation An.arabiensis s.s., models 
was then demonstrated employing the autocorrelation indices and 
multiple, synthetic, decomposed, orthogonal, eigenfunction-related, 
spatial filters to distinguish among the effects of the geosampled, 
biophysical, canopied covariate, parameter estimator uncertainties. 
The residual forecasts were based on a stochastic simulation of the 
ecological geosampled, time series dependent, immature, canopied, 
Anopheles, aquatic larval habitat geosampled decomposed endmember 
covariates. The authors assumed that a test for normalized diagnostic 
checking error residuals in a seasonal geosampled, An. arabiensis 
s.s. geo-spatiotemporal, aquatic, larval habitat, autoregressive, 
endmember, decomposable, eco-epidemiological, forecasting, 
diagnostic, risk model may enable suitable intervention efforts (e.g., 
targeting productive, aquatic, habitat, geospatial clusters), based on 
seasonal, geosampled, larval/pupal productivity rates. The authors 
employed the asymptotic distribution of the time series dependent, 
covariate, parameter estimator, reflectance emissitivty, wavelenght 
transmittance coefficients from probabilsitic, a residualizable 
autocovariance matrix in ArcGIS. The models considered extended 
any normal regression analysis previously considered in the literature. 

Field and remote-related explanatorial geosampled data were 
collected during July 2006 to December 2007 in Karima rice-village 
complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate 
statistics, correlations, distributions. ArcGIS then generated global 
autocorrelation statistics from the ecological geosampled, time series 
dependent, explanatorial, empirical,canopied, An. arabiensis s.s. –
related, eco-epidemiological, caovariate, parameterized datasets. A 
local autocorrelation index was also generated using spatial covariance 
estimators (i.e., Moran's I). 

The Moran's statistic was explanatorily decomposed into orthogonal 
and uncorrelated, eco-epidemiological, vulnerbility-based endemic 
transmission (e.g., mesoendemic) geoclassified LULC, topographic 
patternized components using a Poisson model with a gamma-
distributed mean (i.e. negative binomial regression). The eigenfunction 
values rendered from the spatial configuration matrices were then used 
to define expectations for qualitatively, regressively, quantitating, prior 
distributions. A set of posterior means were defined. After the model 
had converged, samples from the conditional distributions were used 
to summarize the posterior distribution of the explanatorial-related, 
geospatiotemporally-geosampled, canopy-oriented, An. arabiensis 
s.s. -related parameter estimators. Thereafter, a time series dependent, 
geospatial, residual trend analyses was employed to evaluate variance 
uncertainty propagation in the model using a autocorrelation, time 
series, uncertainty-oriented, ecogeographically, probabilistically 
weighted, diagnonalized, ArcGIS matrix.

By specifying uncertainty, regressive, coefficient estimates in an 
Bayesian-related, probabilistic estimation algorithmic, regression-
based, residualized eco-geographic framework, the canopy covariate, 
parameter estimator Number of tillers was found to be a significant 
predictor, positively associated with the geosampled, clustering, 
seasonally-oriented, An. arabiensis s.s., aquatic,larval habitats. The goal 
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of Bayesian inference is to compute a distribution over the most plausible 
parameter estimator values [73,74]. This “posterior” distribution was 
obtained by combining the likelihood with a “prior” distribution P (θ) 
over the field and remotely explanatorily, geosampled, malarial, larval 
habitat, parameter values θ. The spatial filter model output accounted 
for approximately 19% redundant information in the empirically, 
decomposed, ecological, An. arabiensis s.s., geosampled, larval habitat, 
eco-epidemiolgical data. In the residual, probabilistic, error estimation 
model there was significant positive autocorrelation (i.e., clustering of 
habitats in geographic space) based on log-transformed larval/pupal 
data and the geosampled canopy covariate Depth of habitat.

On occasion a time series probabilistic, diagnostic, autocorrelation-
related, error-prone, error covariance, geo-spatiotemporally 
dependent weighted matrix and/or an eigenfunction decomposition, 
orthogonizable, spatial filter analyses may not be able to prioritize 
control strategies for correctly identifying an empirical, decomposable 
eco-epidemiological, probabilistically regressable, geopredictor 
dataset of georeferencable clustering covariates, parameter estimators 
ecogeographically, cartographically representing explanatorily 
geosampled, prolific, entomological, operationizable, canopied 
endmember, explanatorial, covariate coefficients. For example, Jacob 
et al. [75] generated a sub-resolution malarial larval habitat, regression-
related, seasonal forecasting, canopy-related, unmixed, endmember, 
interpolated, vulnerability map for Uganda which involved the analysis 
of disease incidence using a prevalence-associated, responsible-
oriented, explanatorial, geo-spatiotemporally-dependent, variable 
which was available as aggregate counts over a geographical region 
subdivided by administrative boundaries (e.g., districts). 

Cases as counts were employed as a response variable in a Poisson 
regression-related, auto-probability, eco-epidemiological, model 
framework in GEN MOD for quantitating the empirical explanatorial, 
operationizable, dataset of time series dependent, district-level 
covariates paramter estimators. (i.e., meteorological data, densities 
and spatialdistribution of Health Centers, etc.) geo-spatiotemporally, 
geosampled from 2006 to 2012. Results from both a Poisson and 
a negative binomial regression with a non-homogenous, gamma, 
distributed mean revealed that the canopy estimators rendered from 
the model were significant but the regressors provided virtually had 
no predictive power. Inclusion of multiple entomological-related 
indicator variables denoting the time sequence and the georeferenced, 
explanatorial, district-level, quantitated, geolocational, spatial 
structure was then articulated in ArcGIS with Thiessan polygons which 
also failed to reveal meaningful geospatially interpolatable covariates. 
Thereafter, an Autoregressive Integrated Moving Average (ARIMA) 
model was constructed in ArcGIS which revealed a conspicuous but 
not very prominent, first-order,geo-spatiotemporal, autoregressive 
structure in the individual district–level,eco-epidemiological, time 
series dependent, risk-related, forecasting,canopy models which were 
thereafter subsequently fitted to the time series, explanatorial district-
level data to better understand the geosampled data and to predict 
future points. Univariate (i.e., single vector) ARIMA is a forecasting 
technique that projects the future values of a series based entirely on its 
own inertia [12,73].

A random effects term was then specified employing the monthly 
time series, geosampled, Ugandan malarial data. This specification 
included a district-level intercept term that was a random deviation 
from the tabulated intercept term which was based on a normalized 
frequency distribution. The random effects specification revealed a non-
constant mean across the explanatorily, time series probabilistically 

regressed, canopied, geospatial, geosampled, malarial data across 
the districts. This random intercept geographically represented the 
combined effect of all the omitted covariates that caused districts to be 
prone to the malaria prevalence than other districts.

Additionally, inclusion of a random intercept in ArcGIS assumed 
random heterogeneity in the districts’ propensity or underlying risk 
of malaria prevalence which persisted throughout the entire duration 
of the time sequence under study. This random effects term displayed 
no spatial autocorrelation, and failed to closely conform to a bell-
shaped curve. The model’s variance however, implied a substantial 
variability in the prevalence of malaria across the districts. The 
estimated model contained considerable overdispersion (i.e., excess 
Poissonized variability); the quasi-like hood scale was 76.565. The 
following equation was then employed to forecast the expected value 
of the prevalence at the district level; prevalence =exp [-3.1876= 
(random effect)]. This research proved compilation of remotely sensed 
georeferencable, explanatorial, geosampled, geo-spatiotemporal, 
eco-geographical, ecohydrological and cartographical data can allow 
continual updating of random effect term estimates in cases where 
zero autocorrelation (i.e., chaotic landscapes) are reported in spatially 
dependent error matrices in ArcGIS.

Hence, when geospatially interpolating decomposed ,explanatorial, 
sub-mixel, canopied endmember, reflectance values in place of scene-
invariant values to estimate FVC in a medium resolution-derived image, 
for example, the accuracy of FVC estimates may be increased, providing 
evidence that it may be useful to consider the effects of geospectral 
autocorrelation when conducting a robust endmember, unmixed, 
biosignature-oriented, NDVI-related.geo-classified, LULC,regression-
based, vulnerability, mixture analysis of georeferenced, shade-oriented, 
canopy vegetated, decomposed, S. damnosum s.l., larval habitats 
geosampled in African riverine environments. 

However, medium-resolution, remotely sensed, endmember 
reflectance spectra may be biased by several intervening factors, and the 
biases may be propagated into estimations of the FVC by algorithms 
based on a linear mixture model (LMM) [12].The errors propagated 
in FVCs generated from a Sub-mixel, vector entomological, aquatic, 
immature habitat, LULC composition estimation in ArcGIS and 
ENVI commonly employ a linearizable mixture model and fuzzy 
membership functions. The membership function of a Fuzzy set is a 
generalization of the truth values of variables may be any real number 
between 0 and 1.;by contrast, in Boolean logic, the truth values of 
variables may only be 0 or 1 [2]. shade, vegetated, S. damnosum s.l., 
georeferenced, canopied, larval habitat may depend on the retrieval 
algorithm due to differences in the assumptions of the model as well 
as constraints employed in the algorithm. Optimally, these differences 
may be fully understood in ArcGIS prior to algorithm selection for 
practical forecasting LMM mapping of unknown, unsampled, prolific 
S. damnosum s.l. shade, canopied, riverine larval habitats based on 
FVC-induced geo-spatiotemporal ecogeographic, ecohydrological, 
explanatorial, covariates, parameter estimators. 

Although numerous studies have investigated the relationships 
between errors propagated by different algorithms, these relationships 
have not been fully understood from a stochastic/deterministic, 
probabilistic algorithmic, perspective. Introducing techniques for 
deriving the analytical underpinnings residual endmember uncertainty 
propagation in FVC based on several unmixing algorithms may 
enable robust, parsimonious, geospectral, explanatorial, interpolation 
of an decomposed, empirical dataset employing estimation FVC-
induced algorithms based on a, medium resolution-derived, NDVI, 
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endmember, sub-mixel, reference, canopy biosignature-related, 
decomposed, photosynthetic or NPV covariate, parameter estimator, 
wavelenght, reflectance emissivity, transmittance coefficient values. 
The derivation would assume that measurement noise is band-
correlated additive noise. The bias errors propagated in a tabulated 
FVC from the medium resolution-derived, NDVI decomposed, 
georeferenced, shade, vegetated, S. damnosum s.l., canopied, riverine, 
larval habitat biosignature may then optimally be deduced as being 
geo-spatiotemporally dependent on the canopy endmember spectra 
assumed in the algorithm, the target spectrum, and the empirically 
geosampled, photosynthetic and NPV covariate, parameter estimator, 
coefficient values of the vegetation index. These covariate coefficient 
values may be employed as constraints, for also regressively 
probabilistically quantitating magnitude of the input error. It may 
be found, for example that the relationships among the propagated 
errors in ArcGIS assume asymmetric elliptical forms with absorption 
coefficients that are determined by the input variables. Such results 
can suggest that the relationships of the shade, canopy, vegetated, 
biosignature-related, canopy, endmember, geospatial, explanatorial, 
time series interpolation of the extracted, riverine, larval habitat, sub-
mixel data variables depends heavily on the choice of unmixed spectra 
as well as the spectrum of the target decomposed mixel and the 
vegetation index employed as a constraint. Such findings should 
assist in the selection of an optimum geospatial algorithm in ArcGIS 
based on prior knowledge of the target field for identifying unknown, 
unsampled, seasonally, shaded and non-shaded, productive, canopied, 
S. damnosum s.l. riverine larval habitats.

Theoretically, remotely, qualitatively, probabilistically regressively, 
explanatorily quantitating geospectrally dependent, explanatorial 
error and latent autocorrelation functions in a geo-spatiotemporally 
dependent, medium resolution-derived, shade, canopied, S. damnosum 
s.l. vegetated, riverine, larval habitat, NDVI, endmember,biosignature-
related, reference, signature for forecasting, eco-epidemiological, 
optimizable, risk, model residual reflectance emissivity, wavelenght, 
transmittance output would require employing cost-effective, non-
Gaussian ensemble of weighted matrices in ArcGIS. A direct comparison 
of the prediction of these ensembles within experimentally measured, 
seasonal,S. damnosum s.l., larval habitat, canopy spectra may be possible 
for a georeferenced, medium resolution-derived, decomposed, NDVI, 
sub-mixel, eco-epidemiological, geosampled datsets. Also the time 
autocorrelation function of an initially prepared non-stationary state 
in a medium resolution derived S. damnosum s.l., larval habitat, NDVI, 
endmember, reference, biosignature may be efficiently geospectrally 
qualitatively quantitated by post- decomposition techniques. By so 
doing, the repulsion of eigenstates in a particular time domain may 
be clearly manifested in a georeferencanle, riverine larval habitat sub-
mixel decomposition results. An eigenstate is the measured state of 
some object possessing explanatorily quantifiable characteristics such 
as position, momentum [73]. 

Jacob et al. [76] adjusted second moment bias in eigenspace 
employing a Bayesianistic, explanatorial, empirical, operationizable, 
time series dependent, geoparametric paradigm in ArcGIS. 
Dirichlet Tessellations and Worldview1 (WV-1) 0. 41m remove 
space please( .41) spatial resolution data was initially employed for 
ecogeographically geolocating productive, aquatic larval habitats 
of West Nile mosquito vector Culex quinquefasciatus in Trinidad. 
Optimal, observational, explanatorily, interpolatable observational, 
eco-epidemiological, probabilistic predictors associated to prolific, 
geosampled, georeferencable, habitats were also determined. The 
design of the mixed model incorporated spatial autocorrelation whilst 

including the influence of other aspatial georeferenced, temporally 
dependent, photosynthetic and NPV explanatorial, time series 
dependent, predictor variables. The authors employed geospatially 
lagged, simultaneous, autoregressive, uncertainty-oriented, models 
based on multiple bio-ecological, environmental-related, parameter 
estimators of geosampled immature Cx. quinquefasciatus data overlaid 
onto WV-1 data to help implement a remote, habitat-based ArcGIS 
cyberenvironment surveillance system in Trinidad geospectrally 
specific for remotely targeting prolific larval habitats.

The authors employed Geomatica Ortho Engine® v. 10.2 for 
extracting a Digital Elevation Model (DEM) from the WV-1 raw 
imagery. Results of the DEM analyses indicated a statistically significant, 
inverse, linear relationship between total immature, geosampled, Cx. 
quinquefasciatus data and elevation (m) (R2 = -0.439; p < 0.0001), with 
a standard deviation of 10.41. Additional geo-spatiotemporally, field-
geosampled, eco-epidemioloigcal, information was derived employing 
data from an orthogonal, algorithmic, grid-matrix constructed in 
an ArcGIS geodatabase and overlaid onto the WV-1 data. A unique 
identifier was placed in the centroid of each 1km x1km grid cell. 
Univariate statistics and Poisson probability regression models were 
then constructed in PROC REG employing the time series dependent, 
covariate, paramter estimator, time series dependent, coefficient values 
in SAS/GIS®.The Cx. quinquefasciatus eco-epidemiological, forecasting, 
endmeic, transmission-oriented, geospectral, risk model was over 
dispersed. Hence, we employed a negative binomial regression with 
a non-homogenous, gamma, distributed mean in PROC REG to 
compensate for the overdispersion (i.e, over-Poissian variation) due to 
embedded outliers in the empirical, geo-spatiotemporally-geosampled 
dataset and to compensate for the violation of the Poisssion 
assumption that the variance was equal to the mean in the dataset. 
By so doing, the authors were able to achieve a final model that was 
checked for robustness using a step-wise backward elimination process 
to normalize any heteroskedastic and/or multicolinear emissivity. 
wavelenght, endmember, forecasters.

Regression coefficient estimates were then employed to define 
expectations for parsimoniously simulating prior distributions in a 
Generalized Bayesian Hierarchical probabilistic matrix employing 
Markov Chain Monte Carlo (MCMC) specifications in ArcGIS. 
One of the most popular methods for simulations is Markov Chain 
methods which are a class of sampling algorithms for quantitatively 
iterating a probability distribution based on a chain that has the desired 
distribution as its equilibrium distribution [70]. The state of a MCMC 
chain can be used as a sample of the desired distribution especially 
where the quality of the sample improves as a function of the number of 
steps [73, 76].The Bayesian regression model geospatially and aspatially 
adjusted the model estimates employing a Wishart matrix. In Bayesian 
statistics, in the context of the multivariate normal distribution, the 
Wishart distribution is the conjugate prior to the precision matrix Ω = 
Σ−1, where Σ is the covariance matrix [2].

A geospatial, time series, explanatorial, residual, probabilistic, trend 
analyses was then performed using latent autocorrelation indices which 
linked tabular data in SAS PROCLMIXED® with Culex egg-raft count 
in an ArcGIS, cyberenvironment. The probabilistic estimation matrix 
identified prolific habitats based on the operationizable, covariate 
Distance to the nearest house. An Ordinary kriged-based, time series, 
stochastic interpolator was then constructed in Geostatistical Analyst 
Extension of ArcGIS based on the adjusted Bayesianized, explanatorial, 
regression estimates. For total Cx. quinquefasciatus egg-raft count, first 
order trend was fitted to the semivariogram at a partial sill of 5.931 
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km, nugget of 6.374 km, lag size of 7.184 km, and a range of 31.02 km 
using 12 lags. The semivariogram depicts the spatial autocorrelation of 
the measured sample points [73]. Once each pair of predicted habitat 
geolocations was cartographically plotted, an empirical semivariogram, 
was also fit through various interpolator-based diagnostic statistics 
(sill, nugget etc) [12,73].

The authors then assessed the performance accuracy of the 
interpolation procedures based on the magnitude and distribution 
of errors between observed and model-predicted values employing 
Voroni tessellations in ArcGIS. In mathematics, a Voronoi diagram is 
a partitioning of a plane into regions based on distance to points in a 
specific subset of the plane [73]. That set of points (called seeds, sites, 
or generators) is specified beforehand, and for each seed there is a 
corresponding region consisting of all points closer to that seed than 
to any other (i.e., Voronoi cells) [12]. The Voronoi diagram of the geo-
spatially, probabilistically, empirically, regressed , eco-epidemioloigcal 
dataset of S. damnosum s.l., endmember, interpolated, covariate, 
parameter estimators points was found to be operationizable, in a 
plane is a triangulation DT(P)].The model was aggregated such that no 
point in P was inside the circumcircle of any triangle in DT(P) [4]. The 
Voroni residuals divided the ecogeographic and non-ecogeographic 
space between the individual georeferenced, geosampled, Cx. 
quinquefasciatus larval habitats by XY explanatorial coordinates in 
2-dimenisional space which revealed that the uncertainty-oriented, 
geophysical, parameter estimator, endmember residuals in the 
interpolation model were within normal statistical limitations.

Delaunay triangulations constructed in ArcGIS may maximize the 
minimum angle of all the angles of the triangles in the triangulation 
while avoiding skinny triangles in a post-stochastic, explanatorial, 
geospectral, interpolation of an empirically regressed georeferncable eco-
epidemiological, dataset of geosampled, seasonal, medium resolution-
derived, shade canopied, S. damnosums s.l. riverine, vegetated, larval 
habitat, NDVI unmixed, submixel, canopied, endmember reflectance 
emissitivty, wavelenght, unmixed, biosignature-related, transmittance 
constituents. The state being measured and described (e.g., the 
photosynthetic capacity or productivity of the plant canopy may be 
then qualitatively, remotely, probabilistically, regressively quantized. 
By so doing, the actual influence of chlorophyll content of materials, 
for example, in a georeferncable, geo-spectrally decomposable, 
riverine, S. damnosum s.l., larval habitat, for example, may be also 
parsimoniously, regressively, quantitated and potential optimizable, 
regressable predictor variables (i.e. position or momentum) may 
be seasonally identified. Therefore, an eco-epidemiological dataset 
of operationizable, geo-spectrally-oriented, explanatorial, geo-
spatiotemporally, interpolated, residual forecasts rendered from a 
shade canopied, S. damnosum s.l. georeferencable, riverine shade, 
vegetated, larval habitat, NDVI unmixed, endmember, unmixed, ENVI 
model, for example, can be experimentally measured either directly 
and/or indirectly, for tabulating a definite computable, operationizable, 
spatialized value, (i.e., eigenvalue). "Eigenvalue" refers to a mathematical 
property of square matrices [77]. In medium-to-coarse geospatial 
resolution satellite images, single decomposed mixels often contain a 
mixture of different types of LULCs [4]. Use of very high resolution 
imagery can mitigate this mixel problem in ArcGIS to some degree, but 
the relatively higher cost and lower frequency at which high resolution 
imagery is typically acquired can be an issue when implementing 
control strategies of IVM such as remotely targeting, georeferenced, 
shade, vegetated, canopied, seasonally prolific, S. damnosum s.l. larval 
habitats geosampled in African riverine environments. 

RapidEyeTM is a constellation of 5m medium resolution satellites 
each offering five spectral bands of information at a cost effective price 
of 1.28 U.S. dollar / kilometre (km) which can provide imagery over 
relatively large areas (swath of 77 km) and a temporal resolution of 
1 day, increasing the successful acquisition of cloud-free data. Each 
sensor is capable of collecting image data in five distinct bands of the 
electromagnetic spectrum: Blue (440-510 nm), Green (520-590 nm), 
Red (630-690 nm), and NIR (760-880 nm). The nominal resolution on 
the ground is 5m (http://www.satimagingcorp.com/satellite-sensors/
other-satellite-sensors/rapideye/).

Further, RapidEye adds a fifth band, the Red-Edge (690-730 nm) 
to the traditional, multispectral, set of blue, green, red and NIR. The 
Red Edge is a region in the red-NIR transition zone of vegetation 
reflectance spectrum and marks the boundary between absorption 
by chlorophyll in the red visible region, and scattering due to leaf 
internal structure in the NIR region. This way, vegetation cellular 
structure in an empirical geosampled, dataset of shade, canopied, 
georeferenced, explanatorial, unmixed, NDVI, biosignature-
related, ggeospatiallly explanatorily interpolatable, S. damnosum 
s.l. larval habitat geo-spectrally decomposed, phosotosynthetic and 
NPV covariate, parameterized estimators, reflectance, wavelenght, 
emissitivty, transmittance coefficients values in ArcGIS may be 
remotely, qualitatively, regressively quantized as each canopy plant 
cell which would act like an elementary corner reflector. For example, 
quantitating, endember probabilsitic, spectral irradiance effects of 
rapid, seasonal, canopy changes in a georeferencable, riverine, prolific, 
S. damnosum s.l., larval seasonal LULC habitats, may be determined 
from 5% to 50% reflectance, which may be remotely captured between 
680 nm to 730 nm. RapidEye’s traditional broadband and Red-Edge 
indices have been evaluated for grassland nitrogen and biomass [78, 
79], crop canopy chlorophyll content [80], Forest Leaf Area Index 
(LAI) [81], and wheat ground cover and LAI [82].

Leaf Area Index (LAI) is defined in ArcGIS as a simple ratio 
between the total one side leaf surface of a plant and the surface 
area of the LULC on which the plant grows (www.esri.com). LAI is 
a dimensionless value, typically ranging from 0 for bare ground to 
8 for dense vegetation [2]. LAI is one of the most important LULC 
explanatorial, time series dependent, predictor variable governing the 
canopy processes [83] and is related to leaf and canopy chlorophyll 
contents, photosynthesis rate, carbon and nutrient cycles, dry and 
fresh biomass, and growing stages [84]. Hence, LAI has been applied 
in plants and environmental studies of evaporation, transpiration, 
light absorption, yield estimation, growth stages of crops and chemical 
element cycling [85-88]. A common non-destructive surrogate for LAI, 
which is based on reflectance of red and NIR bands, is using the NDVI 
[89].

Effective LAI is routinely quantified with optical instruments that 
measure gap fraction through the probability of beam penetration of 
sunlight through the vegetation-related LULC in ArcGIS. However, 
there have been few efforts to obtain theoretically consistent effective 
leaf area indices from those measurements. For example, to apply 
the Beer–Lambert law, multiple gap fraction measurements may be 
averaged in two ways: (1) by taking the mean of the logarithms of 
the individual gap fraction values or (2) by taking the logarithm of 
the mean gap fraction. The Beer–Lambert law, or the Beer–Lambert–
Bouguer law relates the attenuation of light to the properties of the 
material through which the light is traveling [4]. 

Interestingly, studies have established relationships between VIs 
and LAI [90,91] and biomass yield using moderate resolution data 
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in ArcGIS [92-94]. Overall, these VIs showed variable sensitivity to 
different levels of LAI and biomass. NDVI is sensitive to low LAI (i.e. 
LAI < 2–3), but saturates at medium to high LAI [91]. A similar pattern 
is observed for the relationship between moderate-resoluion- derived 
NDVI and biomass, with NDVI saturating at medium to high (fresh) 
biomass (around 2 kg/m2) [93]. 

Since the RapidEyeTM constellation’s Red Edge band is sensitive to 
chlorophyll status and leaf and canopy structure, it is expected that this 
band would contribute to the characterization of different LULC plant 
cover types (e.g., vegetated, canopy, shaded, prolific, S. damnosum 
s.l., larval habitat, geosampled in an African riverine environment).
Schuster, Förster and Kleinschmidt [94] tested the Red Edge band in 
an LULC classification project in ArcGIS. Sixteen classes including two 
forest classes (deciduous and coniferous) were assessed. They found 
that the Red Edge band provided an overall classification accuracy 
that was consistently higher than without it. In terms of individual 
classes, the most significant improvements were obtained with classes 
comprised of open landscape vegetation. Recio et al. [95], found that 
optimal could be achieved by involving endmember biosignature-
related, NDVI, decomposable illumination variables derived from the 
Red Edge band. Conrad et al. [96] employed multiple indices in ArcGIS 
combining the Red Edge, Red and NIR bands in a multi-temporal 
approach to separate several crop types. The authors concluded that 
using the three bands as a way to characterize this sensitive portion of 
the sub-mixel reflectance spectrum permitted an accurate separation of 
the crop types under investigation.

Recent studies support the hypothesis that a broad Red Edge band, 
as employed in the RapidEye sensors, is also suitable for obtaining 
information about the chlorophyll and nitrogen content of plants 
in ArcGIS [97,98]. Crop management yield strongly depends on an 
adequate supply of nitrogen [99,100]. This study assessed whether 
vegetation indices derived from broadband RapidEye™ data containing 
the Red Edge region (690–730 nm) were equal to those computed from 
narrow band data in predicting nitrogen status and other canopied 
products in a geo-spatiotemporally, geosampled, prolific, S. damnosum 
s.l., riverine, larval habitat. 

The application of endmember algorithms at broad spatial extents 
may enable the production of foliar 5m Rapid EyeTM geosampled S. 
damnosum s.l larval habitat ArcGIS chlorophyll maps, which are 
powerful tools for promoting a better understanding of riverine-
related, chlorophyll, canopy dynamics over space and time. These 
spatially continuous maps are vital for monitoring vegetation stress 
and for enhancing understanding of habitat canopy plant-environment 
interactions and the controlling mechanisms on chlorophyll content. 
The ability of this technique to characterize variations in endmember 
chlorophyll content across different canopy-oriented, vegetation LULCs 
may help identify riverine habitat species and structures which would be 
important for making the method operational across multiple seasonal 
extents, and for its inclusion in photosynthesis and carbon cycle Rapid 
Eye TM,S. damnosum s.l, larval ecogeographic and non-ecographic, 
forecasting, eco-epidemioloigical, endemic, transmission-oriented, 
risk models. Various single and combined indices have been computed 
from in‐situ spectroradiometer data and simulated RapidEye™ data.  
For example, Schelling [101] found a combination of the RedEdge 
NDVI was able to predict chlorophyll concentration in wheat with a 
coefficient of determination of R²=0.77.In statistics, the coefficient of 
determination, denoted R2is a number that indicates how well data 
fit a statistical model [102]. This transition zone may be the basis of 
accurately interpolating a decomposed, Red Edge, chorophyll ,unmixed 

NDVI-related, biosignature as determined cartographically from an 
empiricial dataset of decomposed explanatorily, georeferenced, shaded, 
S. damnosum s.l. vegetated riverine ,larval habitat canopy pigment 
covariate, parameter estimator, reflectance emissivity, wavelenght 
transmitatnce coefficients. This procedure may be synthesized 
optimally in ArcGIS employing the normalized difference between the 
reflectance in the red visible (0.6µm) and the NIR (0.8µm) reflectance 
spectrum.

Thus, a seasonal endmember, unmixed, spectral analyses 
of a prolific, canopied, S. damnosum s.l., riverine, larval habitat 
biosignature, employing RapidEyeTM can reveal whether seasonal, 
canopy, chlorophyll concentration increases, the typical slope in the 
Red Edge spectral region and shift towards the NIR. Further the Red 
Edge inflection point wavelength (λi) may be employed as an indicator 
for this shift. Accordingly, several 5m spectral indices employing 
narrow bands, both from ground-based RapidEyeTM measurements 
have been successfully applied to also determine green biomass, water 
content, chlorophyll content and nitrogen status [12,100]. Knowledge 
about nitrogen status may represent an important factor for accurately 
explanatorily geospectrally interpolating a decomposed, RedEdge, 
NDVI, endmember sub-mixel biosignature for identifying unknown, 
unsampled, shade, vegetated, canopied prolific ,S. damnosum s.l., 
riverine, larval habitats, in African riverine environments.

Also the Red Edge position (REP) may be employed to estimate 
the chlorophyll and other light sensitive pigments content of leaves 
in a decomposable, Red Edge, NDVI biosignature in an OBIA which 
may be a way to also remotely assess canopy health of a georeferenced, 
canopy, shaded, S. damnosum s.l., vegetated, riverine, larval habitat. Red 
Edge NDVIs may reveal higher correlations with field measurements of 
seasonal canopy plant health (http://www.satimagingcorp.com/satellite-
sensors/other-satellite-sensors/rapideye/). Further, a dataset of remotely 
regressive, explanatorial, decomposed, unmixed endmember-specified, 
Red Edge, NDVI, decomposed, biosignature-related, photosynthetic and 
NPV, sub-mixel, covariate, parameter estimator, reflectance emissivity 
transmittance coefficients values may measure and monitor plant growth 
(vigor), vegetation LULC cover, and biomass production of seasonally 
productive, geosampled, georeferencable, S. damnosum s.l. canopied 
riverine larval habitats.

Here we present the mathematical basis which is linked to a Red 
Edge geospectrally extracted, NDVI-related, endmember, sub-mixel, 
biosignature decomposition for generating a three-dimensional 
(3-D) shade, vegetated, canopy-based, riverine, S. damnosum s.l., 
larval, habitat-related, ecogeographic and non-ecogeographic, 
forecasting, time series dependent, eco-epidemiological, risk model 
forecasts of unknown, unsampled seasonally interpolated habitats 
in ArcGIS. The differential form of the radiative transfer equation 

[i.e.,] ( ), , ,
1 1.

4V V V S V a V V v S V
t

I I K K I J K I d
C C Ω

∂
+Ω∆ + + = + ∫ Ω

∂ ∏  was 

employed where jν was the emission coefficient, kν, s was the scattering 
cross section, and kν, a was the absorption cross section of the cost-
effective, 5m satellite system, data products. The differences in the 
geospectral, explanatorial, georeferenced, canopy, endmember 
parameter estimators in the Red Edge, NDVI, S. damnsoum s.l., 
reflectance, response model was then qualitatively assessed employing 
various forms for the emission and absorption coefficients. A 
general solution in terms of the these coefficients was then written 

as: ( ) ( ) ( ) ( ) ( )',, ' 'V S S

o

v So S S
V V o S VI S I S e j S e dSΓ−Γ= + ∫  employing the 

data products where τν(s1, s2) was the optical depth of the medium 

http://en.wikipedia.org/wiki/Statistics


Citation: Jacob BG, Novak RJ, Toe LD, Sanfo MS, Lassane K, et al. (2016) Ecogeographically and Non-Ecogeographically Forecasting Discontinuous 
Canopied Simulium damnosum s.l. Habitats by Interpolating Metrizable Sub-Mixel Mean Solar Exoatmospheric Quantum Scalar Irradiance 
where θi is a Zenith Angle and Diatomically Etiolated Xanthophylls with Azimutually Isotropic Sources of Chloroplastic Carotenoid Zeaxanthins 
Spectrally Extracted from a Decomposed RapidEye™ Red Edge Normalized Difference Vegetation Index Reference Biosignature: A Case 
Study in Burkina Faso and Uganda. J Remote Sensing & GIS 5: 152. doi:10.4172/2469-4134.1000152

Page 45 of 103

Volume 5 • Issue 1 • 1000152
J Remote Sensing & GIS
ISSN: 2469-4134 JRSG, an open access journal 

between positions s1 and s2: ( ) ( )
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marginalize please Thereafter, a robust, time series dependent, S. 
damnsoum s.l. riverine larval habitat, shade, canopy, endmember, Red 
Edge, NDVI, geo-spatiotemporal, unmixed, Biosignature-related, eco-
epidemiological, sub-mixel, model was constructed. Subsequently the 
endmember biosignature reflectance was geospectrally interpolated 
over two African riverine environments.

The main goal of this article was first to determine the feasibility 
of quantitatively geospectrally decomposing a vegetated, shade, 
canopied, Red Edge, NDVI,S. damnosum s.l., riverine, larval habitat, 
canopy, endmember biosignature in ArcGIS and secondly to present a 
robust, cost-effective, method for accurately classifying geo-spectrally, 
explanatorily interpolatable, predictive, geo-spatiotemporal, eco-
epidemiological, risk–based, LULC, mapping patterns. Initially, we 
employed data collections from an eco-epidemiological riverine, 
breeding, eco-epidemiological, study site in Burkina Faso. We created a 
Red Edge NDVI employing the 5m satellite data product in ENVI. We 
geospectrally decomposed a canopy endmember bundles and generated 
bounding fractional images for conducting a subscene simulation 
exercise based on computed shaded canopy surface fractional radiance 
values. 

We assumed that geospectral changes can be partially or fully 
considered in a georeferenced, geosampled, shade, vegetated, riverine-
related, S. damnosum s.l., canopied, larval habitat, atmospheric radiative 
transfer model for PAR estimation in ArcGIS. We also assumed that 
geo-spatiotemporally, probabilsitically, regressively quantitating these 
changes may additionally take into account the angular variability of 
the incident diffuse PAR in a time-series dependent, Red Edge NDVI, 
canopy, biosignature-oriented, endmember, sub-mixel, unmixed, 
eco-epidemiological, forecasting, risk-related, reflectance model. An 
atmospheric radiative transfer model, code or simulator calculates 
radiative transfer of electromagnetic radiation through a planetary 
atmosphere (http://circ.gsfc.nasa.gov/ ). Thus, we also assumed that 
regressively quantitated, extremely contrasting, seasonally prolific, 
S. damnosum s.l. larval habitat decomposed endmember, unmixed, 
interpolatable, reflectance emissivity transmisttance values for the 
within- canopy invariant photosynthetic and NPV eco-epidemiological, 
biophysical, structural attributes employing a RedEdge NDVI 
endmember biosignature wavelenghts in ArcGIS may determine how 
variations in geo-radiometric observations and structural properties 
of the georeferenced, geosampled, larval habitat at different red and 
NIR scales impact the spectrum of radiation reflected by the vegetated, 
geo-classifed, LULC, canopied surface. Unmixing a mixel into its 
component parts it is possible to enableimore accurate estimation of 
the areal extent of different land cover classes [2].

Currently, spectral endmember quantification of time series 
dependent, unmixed, canopy vegetation-related geo-classified LULCs 
at different red and NIR scale calculations tend to use the isotropic 
diffuse PAR in their absorbed PAR (APAR) and canopy-related, LULC, 
photosynthesis calculations only [103]. Unfortunately, this assumption 
regarding the radiation regime would give rise to APAR and 
canopy photosynthesis errors in a time series dependent, predictive, 
autoregressive, shade-related, canopied, S. damnosum s.l. riverine, 
larval habitat, Red Edge NDVI endmember biosignature-oriented, 
forecasting, eco-epidemiological, unmixed, forecasting, risk model 
[104]. Conversely, the spectral properties of dominant constituents 
within a medium resolution-derived , shade, canopied, riverine, 
larval habitat mixel may deconvolve, geo-spectrally decomposed, 
Red Edge, NDVI constituents rendering explanatorily interpolatable, 

canopy LULC surface, radiance fractional, abundance,endmember 
radiance values in ArcGIS.We also employed a SPA for unmixing the 
georeferencable,vegetated, shade, canopied, Red Edge, S. damnosum 
s.l., larval habitat, NDVI, endmember biosignature as from literature 
it is the only spectral extraction technique that builds on convex 
geometry and orthogonal projections by including a constraint on the 
adjacency of endmember candidate mixels.

Common endmember extraction algorithms presume that the 
number of materials present is either known or may be predetermined 
by employing geospectral geodatabases or other approaches [4]. We 
utilized an orthogonal projection for endmember extraction of an 
empirical dataset of explanatorial, shade, canopied, S. damnosum s.l., 
vegetated, larval habitat imaging geospectrometric LULC and NDVI 
extracted endmember radiance values in ArcGIS. The unmixing 
algorithm was then based on a fully unsupervised approach and 
employed convex geometric characteristics. The subsequent extraction 
of the S.damnosum s.l., larval habitat endmembers from the Red 
Edge, decomposed, NDVI biosignature was based on three main 
stages in ENVI as follows: 1) approximate estimation of the initial 
number of image-based, shade, canopied endmembers employing 
absorption features present in the spectrum of the larval habitat mixel; 
2) extraction of the initial canopy endmembers by projecting the 
decomposed eco-epidemiological data onto an orthogonal subspace; 
and 3) determination of the exact number and geolocation of each 
endmember. Here, the dimension of the subspace was varied until the 
best estimation of the subspace was achieved.

The Red Edge NDVI data was then examined within a radiative 
transfer model in ArcGIS. Recent studies on canopy radiative transfer 
functions have led to the development of the canopy spectral invariant 
theory [4, 105, 106], according to which variations of canopy scattering 
(i.e., reflectance plus transmittance) and absorptance are mainly 
influenced by linear-based, explanatorial, optical properties (i.e., 
spectral leaf transmittance and reflectance) of individual leaves and 
wavelength independent, canopy, structural variables (e.g., the canopy 
interceptance). 

The theory of spectral invariants or p theory states that the 
canopy scattering coefficient at any wavelength can be related to the 
leaf scattering coefficient at the same wavelength through a spectrally 
invariant canopy structured parameter-the photon recollison 
probability [107]. The p theory has recently gained interest of the 
modeling community as an effective tool for characterizing scattering 
in clumped foliage canopy, vegetated, geo-classified LULC structures. 
The spectral invariant relationships have been reported for ecological 
canopy transmittance [108,109] and reflectance [110,111], suggesting 
that the canopy leaving radiation can further be broken down into its 
reflected and transmitted portions of an Red Edge NDVI.

We assumed that, the SPA and the radative transfer model could 
illustrate the influence of a new decomposed endmember on a dataset 
of proxy, explanatorial, shaded, spectral, canopy vegetation, LULC–
related, geo-spatiotemporally- geosampled, echydrologic and non-
ecogeographic structural variables as illuminated by a S. damnosum 
s.l., larval habitat, Red biosignature while providing vital information 
on the convergence of the algorithm. Though the rate of convergence 
speed can vary in unmixing algorithms with the complexity of 
the scene[5], we assumed the LULC patterns rendered from the 
larval habitat, endmember decomposition of a Red Edge, NDVI, 
canopied biosignature in ENVI would reveal the largest changes 
in volume ratio at the beginning of the image extraction process, 
followed by progressively smaller changes and, thereafter, followed 
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by a convergence towards a plateau.Common endmember extraction 
algorithms presume that the number of materials present is either 
known or may be pre-determined by spectral eco-geographic databases 
[4]. We assumed that the SPA algorithm may extract the larval habitat 
endmembers from the Red Edge, S. damnosum s.l., larval habitat, 
NDVI, spectral, canopied, endmember biosignature without reducing 
the data dimensionality. Further, we assumed the algorithm would 
employ the spectral angle and the spatial adjacency of the decomposed, 
Red Edge, NDVI biosignature to constrain the selection of candidate 
mixels representing an autoregressively, forecastable, riverine, S. 
damnosum s.l., larval habitat, endmember, reflectance spectrum. 

We then employed a geometric-optical risk model analysis in 
ArcGIS where the Red Edge reflectance was modeled as a function of 
the self-shadowing structure of the geo-spatiotemporally, geosampled 
S. damnosum s.l. larval habitat canopy, which treated the decomposed 
photosynthetic and NPV explanatorial, time series dependent, data, 
feature attributes as a collection of discrete objects-individual plant 
crowns that were arranged on a plane. The pattern of sunlit and 
shadowed objects and background that is seen from a particular 
viewing position in a geometric-optical is taken as the primary factor 
controlling the directional reflectance [112].We assumed that the 
pattern of light and shade associated with a Rapid Eye, 5m, data-
derived, Red Edge, NDVI product may be modeled using geometric 
optics, Boolean set mathematics, and theorems from stereology. [i.e., a 
method that utilizes random, systematic sampling to provide unbiased 
and quantitative data for extracting quantitative information about 
3-D material remotely derived from measurements made on two-
dimensional planar sections of the material [73].

Principles of geometric optics and Boolean models for random 
sets of autoregressively, forecastable, riverine, S. damnosum s.l., larval 
habitat, endmember, reflectance spectrum. in 3-D space may provide 
the mathematical basis for constructing an eco-epidemiological 
forecasting, risk model in ArcGIS from bidirectional radiance. The 
model may be defined at two levels: whole-canopy and individual-leaf. 
At the whole-canopy level, the riverine Rapid Eye TM 5m scene may 
be treated as a collection of discrete canopy envelopes with simple 
geometric shapes that are arranged on a contrasting background. 

Originally developed as a practical alternative to radiative transfer 
models for complex, naturally-vegetated, canopied, land surfaces that 
cannot be approximated as plane-parallel canopies, the geometric-
optical approach has been extended to leaves as objects in both 
plane-parallel and discrete canopies. In essence, the geometric-optical 
approach amounts to a careful description of single scattering with 
a very simplified treatment of multiple scattering [113]. A similar 
approach to modeling for directional reflectance of forest covers was 
developed independently by Estonian researchers in the former USSR 
[114]. Though our approach shares some similarity to this research, 
they are some significant differences. Notably, our objective was 
to clearly remotely distinguish canopy gaps and to emphasize the 
importance of the proportion of the sunlit and viewed crown surface 
of a georeferenced, geosampled, shade, vegetated, medium resolution, 
imaged, vector entomological-related, canopied, riverine, geospatial, 
seasonal object. We assumed that this process would enable us to treat 
mutual shadowing and the directional effect of foliage clumping properly 
in an explanatorial operational dataset of decomposed, RapidEyeTM 

Red Edge, NDVI, geo-spatiotemporal, endmember biosignature, 
covariate, parameter estimators in an ArcGIS cyberenvironment and in 
ENVI via a OBIA. By so doing we assumed we would conduct a robust 
interpolation for identifying unknown, unsampled, prolific seasonal, S. 
damnosum s.l. habitats.

We also generated multiple, Rapid Eye TM explanatorial, 
geomorphological, endmember, unmixed, covariate, parameter 
estimator, eco-epidemiological, operationizable time seriesdatasets 
of remotely synthesized geospectrally-dependent, explanatorial, 
photosynthetic and NPV canopy coefficient values from a digitized, 
LULC surface-based, shade vegetated, S. damnosum s.l. habitat, 
unmixed, time series, biosignature-oriented, risk model using the 
5m data. Digital Elevation Models (DEM) are topographic maps that 
provide a geometrically correct reference frame over which other 
satellite data layers can be draped in ArcGIS [www.esri.com]. Since 
remote sensing classifications and biomass estimation algorithms 
of vegetation-related LULCs in rugged areas are hampered by 
topographic effects [4] DEMs may be used as the basis for topographic 
correction [115-118]. Implementing an unmixing approach on 
an interpolatable, Red Edge, geospectral, NDVI biosignature over 
a 5m DEM in an area of complex topography such as an African 
riverine environment may require the ability to remove anisotropic 
effects, (i.e., variations in the spectral response on inclined surfaces 
compared to that of a horizontal surface) efficiently. We assumed 
a horizontally homogeneous, Lambertian surface, reflecting energy 
equally in all shaded canopy directions of a decomposed, empirical, 
operationizable, dataset of geosampled, georeferenced, RapidEyeTM 
imaged, unmixed, explanatorily interpolatable, S. damnosum s.l., 
iverine, larval habitat, photosynthetic and NPV canopy, covariate, 
parameter estimator, reflectance, emissivity, wavelenght, time series 
dependent, transmittance series coefficients may be explicitly a part of 
the calculations of albedo in Red Edge NDVI decomposed endmember, 
geo-spatiotemporally-geosampled dataset.

Lambertian reflectance LULC is the property that defines an 
ideal "matte" or diffusely reflecting surface ( e.g., canopied trailing 
vegetation) of georeferncable, productive S. damnosum s.l., riverine, 
larval habitat. The apparent brightness of a Lambertian surface to 
an observer is the same regardless of the observer's angle of view 
[4]. More technically, the surface's luminance is isotropic, and the 
luminous intensity obeys Lambert's cosine law. Even when lights are 
isotropic and distant, smooth Lambertian objects can produce infinite-
dimensional sets of images [2]. But recent experimental work [11,29] 
has indicated that the set of images produced by an object under a wide 
range of lighting conditions lies near a low dimensional linear subspace 
in the space of all possible images. This quantitative illumination 
technique may be used to construct efficient recognition algorithms 
that handle lighting variations in a geospectrally decomposed, 
explanatorial, Red Edge, canopied, S. damnsoum s.l. larval habitat, 
NDVI, endmember biosignature. In this paper we explain these 
empirical results analytically and use this understanding to produce 
new recognition canopy, illumination-oriented, photosynthetic and 
NPV decomposition algorithms.

Interestingly, canopy vegetative LULC surfaces that are not 
Lambertian reflectors are the measured bidirectional reflectance 
distribution functions (BRDFs)which can change with illumination 
angle.Thus, a remotely detected, medium resolution-derived, shaded, 
prolific, georefernced, S. damnosum s.l., geosampled, vegatative, 
riverine, larval habitat, probabilistically regressively quantitated, 
decomposed, BRDF, wavelenght-related, covariate, parameter 
estimator, reflectance, emissivity transmittance coefficient dataset, 
the canopy endmembers could be attributable to seasonal shifts in 
the vegetative classified, LULC explantorial, geosampled, canopied 
structure. These changes may be caused by changes in illumination and 
viewing geometry of the 5m sensor. Factors which affect reflectance 
from canopy vegetated LULC surfaces and contribute to the non-
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Lambertian nature of these surfaces include: (1) geospectral properties 
of canopy elements and substrate; (2) the canopy architecture (that is, 
leaf area index (3) illumination and viewing directions [2].

Our strategy was to divide the canopy radiation field of the 
georeferenced, larval habitat, 5m, Rapid Eye TM, geospectrally 
explanatorily decomposed, Red Edge, canopied, S. damnsoum s.l. 
larval habitat, NDVI, endmember biosignature reflectance emissivity 
transmittance variables employing ENIV and ArcGIS into three 
components: non-canopied, unscattered sunlight, single-scattering 
radiance, shadowing and multiple-scattering radiance. By so doing, 
we assumed that we would be able to regressively quantitate single-
scattering radiance from the 5m, submixel, unmixed canopied 
biosignature components evaluated by a numerical integration as we 
insisted on the explicit inclusion of the “hotspot effect”. Vegetation 
canopies often exhibit a pronounced peak in reflectance in the 
backscatter direction (i.e. where the sun and the sensor are at the same 
angular position relative to a given point on the earth surface), known 
as the 'hot spot’ or 'opposition surge' [119]. 

A canopy BRDF was formulated in ArcGIS employing the 
various 5m, satellite data, products after creating the explicit 
radiance calculation formulae of all the imaged larval habitat 
reflectance, emissitiy transmisttance components. The bidirectional 

reflectance distribution function (BRDF; ( )1, 2rf ω ω ) is a function 
of ecogeographically geoclassified, LULC , canopied endmember, 
predictive variables that defines how light is reflected at an opaque 
surface. The function is employed both in the optics of real-world light, 
in computer graphicsalgorithms, and in computer vision algorithms 
[4]. The function takes an incoming light direction, 1,ω  and outgoing 
direction, ,rω  (taken in a coordinate system where the surface normal 
n lies along the z-axis), and returns the ratio of reflected radiance exiting 
along ω to the irradiance incident on the surface from direction 1,ω . 
Each direction ω is itself geospatially parameterized by azimuth angle
φ and zenith angle θ , therefore the BRDF as a whole is a function of 
actually illumination-oriented, geo-spatiotemporal remote variables. 
The BRDF has units sr−1, with steradians (sr) being a unit of solid angle 
[4]. The BRDF is an intrinsic property of a surface, which describes 
the angular distribution of radiation reflected by it, for all angles of 
existence and under any given illumination geometry [120]. The data 
was then exported into ENVI where a Red Edge, canopied, NDVI, 
endmember biosignature was subsequently created.

Canopy architecture may play a significant vital role in determining 
the BRDFs from a decomposed geosampled, S. damnosum s.l., 
riverine, larval, habitat, vegetative, LULC-related, canopy geolocation. 
Leaves are oriented at a variety of inclination angles, thereby varying 
effective illumination and viewing angles [10]. The result may be a 
complex pattern of reflected and transmitted, larval habitat, canopy, 
RapidEyeTM radiation values. Canopy architecture in these habitats, 
however can seasonally change due to wind, heliotropism, and water 
stress. Non-Lambertian behavior of these vegetative canopies must be 
thus understood to relate changes in canopy reflectance to vegetative-
related, explanatorial, LULC reflectance, emissivity transmittance 
properties rather than shadow and incoming wavelenght soley. One 
of the purposes of this study was to determine if the effects of leaf and 
substrate optical properties, canopy architecture, and illumination 
and viewing angles on BRDF of a geosampled, prolific, georefernced, 
S. damnosum s.l., canopied, riverine, larval habitat could be robustly 
decomposed and then interpolated to determine geolocations of 
prolific, georefernced, riverine larval habitats. The implications of 
these effects on Red Edge, NDVI, and the interpolated, derivative, 

canopy, endmember LULC spectra may reveal the fraction of absorbed, 
photosynthetic, covariate, wavelenght, parameter estimator coefficients 
is vital for identifying geolocations of prolific, riverine, shaded habitats.

Numerous studies of photosynthetic acclimation to changing 
environmental conditions have only focused on the top layer (young 
and sunlit) leaves in the canopy. However, the leaves in the low 
layer in a shaded, within canopy, geo-spatiotemporally, geosampled, 
RapidEyeTM imaged, prolific, S. damnosum s.l., riverine, larval habitat 
may reveal different responses compared with young leaves for 
risk mapping and acclimating canopy age with immature black-fly 
productivity. The leafage distribution within the riverine larval canopy 
with varying leaf nitrogen and chorophyll content may determine 
the photosynthetic and NPV capacity and sink strength of the whole 
plant. Moreover,the change in photosynthetic and NPV capacity in 
regard to the elevated temperature may represent an acclimation of 
photosynthesis to temperature combined with the changes in African 
riverine phenological events. It may be found that a rise in canopy 
growth temperature stimulates plant development with increased 
photosynthesis during the peak riverine growing period. However, 
the ribulose- 1,5-bisphosphate carboxylase/oxygenase (Rubisco) has 
been found to be inactive under high temperatures which may disturb 
aggregating S. damnosum s.l., riverine, larval habitat , seasonal, canopy, 
photosynthetic profiles.

Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly 
known by the abbreviation RuBisCO, is an enzyme involved in the 
first major step of carbon fixation, a process by which atmospheric 
CO2 is converted by plants to energy-richmolecules such as glucose 
[2]. In chemical terms, it catalyzes the carboxylation of ribulose-1,5-
bisphosphate (also known as RuBP). It is probably the most abundant 
protein on Earth. As ribulose 1.5-bisphosphate carboxylase/oxygenase 
(i..e, Rubisco) activity limits light-saturated canopy photosynthesis 
under present atmospheric condition, the effects of an overexpression 
Rubisco content and photosynthesis may be examined in a geospectrally 
decomposed, Rapid Eye TM imaged, geo-spatiotemporally, geosampled, 
shaded prolific, S. damnosum s.l. riverine larval habitat dataset of 
leaves at different positions in the canopy. Rubisco content in the 
transformant may be significantly greater in the uppermost, fully 
expanded canopy leaves but decreased to levels similar to those in 
wild-type plants in the lower leaves in the decomposed, riverine, larval 
habitat, geo-spatiotemporal, forecasting, eco-epidemiological, canopy, 
endmember, LULC derivative spectra-related, time series dependent, 
ecohydrological, ecogeographic and non-ecogeographic, forecasting, 
risk model. The mRNA levels of total Rubisco in these leaves may be 
much less than those in the expanding riverine larval habitat canopy.

Geospectrally decomposed, explanatorily interpolatable, S. 
damnosum s.l., riverine, larval habitat, canopy leaves, where Rubisco 
synthesis is active may suggest commensurately low level of synthesis. 
Although the activation state of Rubisco may be lower in the 
uppermost, fully expanded habitat canopy leaves of the transformant, 
may be recovered to its full level in the lower leaves. As a result, the 
photosynthetic rate may not differ in leaves at the same position in 
the habitat. Similarly, whole plant biomass may not differ between 
varying canopy photosynthetic plant genotypes. The enzyme ribulose 
bisphosphate carboxylase oxygenase (RuBisCO) would catalyze the 
reaction between RuBP and CO2 in the riverine, larval, habitat canopy. 
The product would be the highly unstable 6-carbon intermediate 
known as 3-keto-2-carboxyarabinitol 1,5-bisphosphate. This six-
carbon intermediate would decay virtually instantaneously into two 
molecules of 3-phosphoglycerate (3-PGA). RuBisCO also catalyzes 
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RuBP with oxygen (O2) in a process called photorespiration, a process 
that is more prevalent at high temperatures [2]. RuBP is also involved 
in photorespiration, in which it combines with O2 to become 3-PGA 
+ phosphoglycolic acid. In the Calvin Cycle, RuBP is a product of the 
phosphorylation of ribulose-5-phosphate by Adenosine triphosphate 
(ATP). Ribulose-1,5-bisphosphate involved canopy photosynthesis 
synthesis processes in a geo-spatiotemporally, geosampled, seasonally 
productive, S. damnosums.l., riverine, larval habitat. Regarding 
elevation in growth CO2, a decrease in Rubisco content may be 
observed in a, geosampled productive, georeferencable, canopy shaded, 
riverine, S. damnosum s.l., larval habitat coupled with lower content 
of chorophyll and leaf nitrogen especially when the nitrogen supply is 
insufficient during riverine flooding.

On the other hand, water stress is a well-knownlimiting factor for 
carbon uptake and growth of canopy plants. Seasonal canopy water 
deficiency may result in stomatal closure, decreased intercellular 
CO2 content, Rubisco inactivity, accumulation of free radicals and 
disruption of light harvesting complexes in a geosampled, productive, 
georeferencable, canopy shaded, S. damnosum s.l., riverine, larval 
habitat. Moreover, the synthesis of chorophyll may be inhibited 
leading to decreases in the light-harvesting protein associated with 
photosystem II (PSII).Consequently, we attempted to model the 
response ofa RapidEyeTM imaged geosampled, S. damnosum s.l., 
riverine, larval habitat, canopy plants changes to elevation and 
geospectrally unmixed treatments of qualitatively regressively 
quantitated, geo-spatiotemporal climate and LULC explanatorial, 
wavelenght covariate, parameter estimator, reflectance, emissivity 
transmittance coefficients. Additionally we attempted to quantitate the 
variation in impacts according to leaf canopy position in the riverine 
georeferenced habitat. Based on the literature, a united measurement on 

gas exchange and chorophyll fluorescence we assumed would provide 
useful information about the ecophysiological performance of an 
aggregation of geosampled, productive, georeferencable, S. damnosum 
s.l., larval habitat, shaded, canopy plants under environmental stress 
(e.g., riverine, flooding).

Thereafter, the RapidEyeTM, Red Edge, NDVI, endmember 
biosignature, waveband data was employed as a dependent variable in a 
stochastic interpolator (i.e., Ordinary kriged-based algorithm). Based on 
an canopy endmember, kriged, probabilistic estimation technique, the 
data regularization framework known as stochastic interpolation recovers 
well-behaved functional representations of input data [12]. Our stochastic 
interpolation of the shade canopied, S. damnosum s.l., riverine, larval 
habitat, geo-spatiotemporally, ecohydrologially, ecogeographically, and 
non-ecogeographically geosampled, discontinuous, canopy endmembers 
split the interpolation operator into a discrete deconvolution that was 
followed by a discrete convolution of the decomposed data. 

At the heart of the process was a row stochastic, uncertainty-
oriented, matrix which represented the approximation of the larval 
habitat canopied, Rapid Eye TM, 5m data by a probabilistic regression 
weighting of the unmixed reflectance, emissivity transmittance, 
predictor values. It allowed the direct inclusion of various models 
(e.g., Voroni polygons) in to the post data regularization process. We 
examined connections to radial basis functions for constructing a 
generalized Rapid EyeTM canopy endmember, algorithmic framework 
for providing a unique mechanism for linking the canopy endmember,S. 
damnosum s.l., riverine, larval habitat, decomposed, sub-mixel, ec-
epidemiological, data with conventional interpolation which in this 
investigation was built on non-negative operators. Decomposed 
photosynthetic and NPV canopy endmembers can be implemented 

 
Figure 3: A map of Burkina Faso.
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with flexibility to yield data approximation, interpolation, peak 
sharpening, non-linear smoothing, and all manner of hybrid schemes 
in a principled way by a deliberate choice of different generators of the 
row space of the convolution matrix[4,115].

We then investigated the explanatorily, geospectrally 
interpolated,unmixed,Rapid Eye TM NDVI, canopy biosignature’s 
ability to discriminate canopy vegetation, LULC-type and other 
ecohydrological, ecogeographical and non-ecogeographical, 
explanatorial, 5m,imaged, geospatial seasonal riverine objects (e.g., 
shaded floating vegetation), within the canopy S. damnosum s.l., riverine, 
larval habitat, decomposed, geo-calssifed LULC endmembers in a 
Boolean model. The Boolean model for a random subset of the plane or 
higher dimensions analogously is one of the simplest and most tractable 
models in stochastic geometry [4]. Our model formulation included 
identifying the larval habitat, canopied, LULC reflectance observed in 
the backscattering and forward scattering regions, respectively rendered 
from the Red Edge decomposed biosignature. Our assumption was that 
by performing an integration of the BRDF in a seasonal geosampled, 
vegetated, shade, canopied, S. damnosum s.l., larval habitat, NDVI, 
canopy, endmember, photosynthetic, reflectance, response model, an 
instantaneous hemispherical reflectance (i.e., spectral surface albedo) 
could be remotely probabilistically qualitatively, regressively, resdiually 
quantitated and thereafter geospectrally robustly interpolated. Our 

assumption was that integration of the BRDF with respect to both 5m 
wavelength and the angle of existence would yield the albedo. By so 
doing, we assumed we could also employ the Red Edge, decomposed, 
NDVI-related, geospectral endmember, biophysical, parameter 
retrieval technique via BRDF over a heterogeneous northern Ugandan 
riverine region to target prolific unsampled, unknown, habitats based 
on geo-spatiotemporally field-geosampled, immature Similium count 
data. 

Due to local differences in climate, LULC soil type, vegetation species, 
etc., in African riverine environments we assumed that the geospectral, 
canopy, endmember, explanatorial, characteristics of soil and canopy 
vegetation LULC may exhibit positive geospatial autocorrelation. As 
such, we employed an eigenfunction decomposition algorithm (see 
Griffth 2003) to predict variations in the geospectral characteristics 
of the various Rapid Eye TM imaged green, vegetation-related, 
LULC-related canopy covariate, parameter estimator, coefficient 
across ecogeographic space. We assumed that the algorithm would 
geospectrally quantize the geo-spatially, explanatorily, interpolated 
reflectance, emissivity transmittance values for generating robust, 
sub-mixel, Red Edge, NDVI, endmember, residualized forecasts. For 
example, we assumed that the accuracy of FVC estimates estimated in 
ArcGIS would increase, providing evidence that the photosynthetic 
canopy-related covariates may be useful when considering the effects 

 
Figure 4: The Chutes Dienoka study site.
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of latent geospectral autocorrelation for a mixture analysis of shade 
canopied,empirically geo-spatiotemporally, geosampled,S. damnosum 
s.l., georeferenced, riverine, larval habitats.

Evidence-based targeting of interventions is a crucial component 
in the fight against vector-born, infectious disease, larval habitats as 
targeted interventions are more efficient and more cost-effective 
than untargeted interventions [8]. Environmental onchocerciasis 
management programs have typically implemented as "all-out" 
campaigns by treating all potential breeding habitats. In contrast, 
remotely, regressively targeted, onchocerciasis, environmental 
management using OBIA and ArcGIS can be based on a sound 
understanding of the heterogeneity in seasonal immature Similium 
productivity. However, deficiencies in field and remote methodology 
for measuring such productivity hamper our progress in understanding 
these habitats and other unknown, unsampled habitats cost effectively 
in African riverine communities. To address these issues, we develop 
a framework of habitat-based interventions by adoption of a medium 
resolution, remote sensing, eco-epidemiological landscape approach in 
ArcGIS to elucidate mechanisms underlying canopy vegetated LULC, 
decomposed, explanatorial components in ENVI that affect immature 
Similium productivity. The importance of vigorous quantitative 

estimation of this productivity is highlighted in a geospectral, 
stochastic, explanatorial interpolator.

In regions with riverine-based geospatial variation, the selection 
of a single, sub-meter, spatial resolution data product for an imaged, 
immature, vegetated, shade, canopied, riverine Similium habitat may 
be unnecessary. The ideal LULC-related vector arthropod-related 
observation depends on quantitating the process of the phenomenon 
and on the landscape spatial heterogeneity [2,4,115]. Further, since in 
African riverine ecosystems, shade canopied, geo-spatiotemporally, 
geosampled, S. damnosum s.l., riverine, larval georeferenced habitats 
differ in their capacity of immature production [1], intervention 
efforts remotely , regressively, targeting productive habitats on a 
geo-classified canopied LULC using a proxy, medium resolution, 
decomposed, NDVI, endmember-oriented biosignature encompassing 
geospectrally explanatorily interpolated, shade, vegetated ,canopy 
spectra in ArcGIS may be more efficient than mobilizing field sampling 
eco-epidemiological teams. Thus,our research objectives were to: 
a) generate a 5m, Rapid EyeTM, Red Edge, probabilistic, NDVI map 
from a georeferenced S. damnosum s.l. larval habitat geosampled in a 
Burkina Faso riverine ecosystem b) digitally segment the, vegetated, 
shade, canopied habitat, NDVI mixels based on geospatial/geospectral 
and texture LULC characteristics within an object-based framework, 
c) determine the regions in which the canopied,riverine, habitat tissue 
optical characteristics is most significantly influence using a 3-D 
radiative transfer canopy wavelenght reflectance data, a successive 
progressive algorithm, a geometric-optical model and a BDRF function, 
d)determine the variability in leaf, woody stem, and standing litter 
emissivity and transmittance properties across a wide array of habitat 
canopy plant species, genera, growth forms, lifeforms, and functional 
groups along a strong climatic gradient and across a broad range of 
foliar biochemistry. f) Test the relative importance of tissue optical, 
canopy structural, pigments and variability in driving changes in 
LULC (5m mixel-level) radiance for specific, riverine, within-canopied 
ecosystem types (e.g., trailing vegetation) e) krige the geo-spectrally 
extracted decomposed, canopy immature, habitat, endmember 
biosignature-related, components over a northern Ugandan riverine 
environment and, field verify estimates derived from the interpolator 
for targeting productive unknown, unsampled S. damnosum s.l., larval 
habitats based on geo- spatiotemporal, field-geosampled count data.

Material and Methodology
Study site

Burkina Faso is a landlocked country in West Africa whose 
geographic coordinates lie at a latitude: 13° 00´ North of the Equator 
and a longitude of: 2° 00´ West of Greenwich Meridia. It is surrounded 
by six countries: Mali to the north, Niger to the east, Benin to the 
southeast, Togo and Ghana to the south, and Côte d'Ivoire to the 
southwest (Figure 3). The size of this country, formerly called the 
Republic of Upper Volta, is 274,200 square kilometers (105,900 sq. 
mi) with an estimated population of more than 15,757,000. Of the 
total land area, water covers approximately 400 km². Burkina Faso has 
three distinct seasons: warm and dry (November–March), hot and dry 
(March–May), and hot and wet (June–October). Annual rainfall varies 
from about 250 mm to 1,000 mm in the country. 

The eco-epidemiological riverine village study site (Chutes 
-Dienoka) is in the south western region of Burkina Faso about 250 
kilometers from Oaugadodogu the capital (Figure 4). The terrain 
surrounding the study site is mostly flat with undulating plains and 

Figure 5: A map of Uganda.
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Figure 6: The Achwa river study site.
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hills. Most of the region lies on a savanna plateau, with fields, brush, 
and scattered trees. The geological history of the study site is marked 
by Precambrian volcanic activity and Eburnean faulting and folding. 
These geological events, followed by successive erosion cycles have 
given rise to the basis of the relief in some portions of the study site 
which are comprised of peneplain and sandstone plateaux. 

The Plateau of Bobo-Dioulasso is the highest part of the bedrock 
at the study site; its surface is rolling with gentle slopes, sometimes flat 
which betrays the presence of ferralitic cuirasses either at the surface 
or at very shallow depth. These cuirasses form gently sloping glacis 
with slopes of under 5 percent. There are seven main soil types in the 
river ecosystems which include: leached ferruginous; brown eutrophic; 
vertisols; ferralitic; halomorphic, hydromorphic and raw mineral 
soils. The first two soils cover more than two thirds of the riverine 
epidemiological study site. 

In the study site there are four types of pasture vegetation which 
include:1) savannah with sparse tree cover on buttes with laterite 
pans including such plants as Butyrospermum paradoxum, Burkea 
africana, Loudetiopsis scaëttae and Schizachyrium sanguineum; 2) 
treed savannas with Isoberlinia doka and Andropogon ascinodis; and, 3) 
grassy savannah on bowal with Loudetia togoensis and Diheteropogon 
hagerupii; savannas in temporarily flooded riverine areas with Imperata 
cylindrica andSchizachyrium brevifolium; and, grasslands of land 
flooded for long periods with Oryza barthii and Acroceras amplectens. 
The basin of the Niger Riverdrains 27% of the study site surface area. 
The Niger's tributaries – the Béli, the Gorouol, the Goudébo and the 
Dargol – are seasonal streams and flow for only four to six months a 
year.

The Niger River (is the principal river of western Africa, extending 
about 4,180 km (2,600 mi). Its drainage basin is 2,117,700 km2 (817,600 
sq. mi) in area. Its source is in the Guinea Highlands in southeastern 
Guinea. It runs in a crescent through Burkina Faso Niger, on the 
border with Benin and then through Nigeria, discharging through a 
massive delta, known as the Niger Delta or the Oil Rivers, into the Gulf 
of Guinea in the Atlantic Ocean. The Niger is the third-longest river 
in Africa, exceeded only by the Nile and the Congo River (also known 

as the Zaïre River). Its main tributary is the Benue River which runs 
directly through the Chutes-Dienkoa epidemiological study site.

Uganda is a landlocked country in East Africa. The country is 
located on the East African plateau, lying mostly between latitudes 
4°N and 2°S (a small area is north of 4°), and longitudes 29° and 35°E 
(Figure 5). It averages about 1,100 meters (3,609 ft.) above sea level, and 
this slopes very steadily downwards to the Sudanese Plain to the north 
where the Gulu study site is located. Although generally equatorial, the 
climate is not uniform as the altitude modifies the climate. Southern 
Uganda is wetter with rain generally spread throughout the year. At 
Entebbe on the northern shore of Lake Victoria, most rain falls from 
March to June and in the November/December period. Further to 
the north a dry season gradually emerges, for example, at the Gulu 
epidemiological study site which is located about 120 km from the 
South Sudanese border where November to February is much drier 
than the rest of the year.

The main soil types are 18 divided into 7 groups based on their 
occurrence and agricultural productivity. The Uganda surfaces cover 
most areas south of Lake Yoga. This group embraces five types of deep, 
sandy clay loams with medium to high productivity. The Tanganyika 
surfaces cover most areas north of Lake Kyoga, West Nile and some 
parts of the South Western tip of Uganda, embracing five types of 
sandy clay loam with low to medium productivity. The Karamojong 
surfaces cover the North Eastern part of the country and embrace 
two soil types of sandy clay loams and black clays with very low 
productivity. Rift valley soils in the Western and Northern parts of the 
country, bordering on the Western Rift Valley, embracing two types 
of mainly sandy clay loams with alluvial parent rock of medium to 
high productivity. Volcanic soils are dominant in Mt. Elgon, Northern 
Karamoja, and the extreme South Western tip of Uganda (Kabale and 
Kisoro) with medium to high productivity except in N. Karamoja 
where their productivity is low. Alluvial soils are found outside the 
Rift Valley, mainly in Central Northern Uganda (Lango and Acholi) as 
well as West of Lake Victoria. The productivity of these sandy soils is 
very low. The last group of soil types is in Northern Uganda and their 
productivity is low.

Based on topography, Uganda has been divided into four relief 
regions: - 1) Above 2 000 meters - 2% of the land area,2)1 500 - 2 
000 meters - 5% of the land area 3)900 - 1 500 meters - 84% of the 
land area and 4) Below 900 meters - 9% of the land area. The rainfall 
pattern resembles that of the northern system, with more rain at higher 
altitudes. Mixed cropping is common with a wide variety of crops. The 
system is in the sub-humid zone where the vegetation community is 
moist Butyrospermum/Combetrum/Terminalia grassland. Livestock 
activities are limited by the presence of tsetse fly. As in the northern 
system, tobacco and cotton are major cash crops. 

The Achwa River is a river of Uganda where our study site is 
geolocated (Figure 6). The river begins in hills in the northwestern part 
of Katakwi Province and flows through Lira Province and becomes the 
border between the provinces of Pader and Gula where the Agago River 
and then the Pager River flow into it. The Achwa River forms most of 
the border between the provinces of Atiak and Gitgum before crossing 
into Sudan east of the border town of Nimule and joining the White 
Nile about ten miles northwest of Nimule. That particular section of 
the White Nile is known as Bahr el Jebel or "River of the Mountain", or 
Mountain Nile. The Achwa drains much of the northeastern highland 
and northern plateau of Uganda. Like most rivers in the region the flow 
of the Achwa is strongly influenced by the season and weather. It is 
prone to flooding at times [121].

Figure 7: Rapid Eye 5 m data for the Chutes-Dienkoa study site.
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The distance from the Achwa's headwaters to the White Nile is 
about 185 miles. The river flows through East Sudanian savannah which 
encompasses much of northeastern Uganda. This hot, dry, wooded 
savannah at the Gulu study site is composed mainly of Combretum 
and Terminalia shrub and tree species and tall elephant grass which 
has been adversely affected by agricultural activities, fire, clearance for 
wood and charcoal. Presently however, large blocks of relatively intact 
habitat remain outside protected areas. 

Remote sensing data
RapidEye satellite sensor was successfully launched from the 

DNEPR-1 Rocket on August 29th, 2008 at Baikonur Cosmodrome 
in Kazakhstan. The RapidEye constellation of five Earth Observation 
satellites has been in operation since February of 2009. The system 
images a 77 kilometer wide swath, which produces more than 5 km2 

five of earth every day for its archive and over one billion km2 every 
year (www.satimagingcorp.com).

The RapidEye Basic (1B) products are geometrically corrected 
to an idealized sensor and satellite model, and band aligned. They 
are delivered as NITF (National Imagery Transmission Format) files 
together with Rapid Positioning Capability (RPC) described by rational 
functions. The horizontal accuracy of Level 1B products is determined 
by satellite attitude (which is adjusted by pre-marking Ground Control 
Points during image cataloging) and ephemeris as well as terrain 
displacement, since no terrain model is used in the processing of the 1B 

products. The worldwide RapidEye Ground Control Point database has 
been mainly populated with GCPs derived from the GeoCover 2000 
Landsat mosaic, along with other reference data of higher accuracy 
to create the available GCPs used during cataloging and processing. 
Moving into the future, the GCPs created from the GeoCover 2000 
mosaic will be replaced with points derived from the GLS 2000 Lands 
at mosaic. The replacement process with start in areas with the largest 
deviation between the two datasets. The default accuracy of the Basic 
product, using GCPs derived from the Landsat mosaic, is 45m CE90 
(RMSE 1-D = 21m) or better. In the case where GCPs of better accuracy 
are available, this accuracy will not exceed 23m CE90 (RMSE 1-D = 
11.00m) These geo-location accuracies are valid for image collected at 
Nadir over flat (< 10oslope) terrain.

Over 70% of RapidEye's imagery has a view angle of less than 10°, 
as the view angle of RapidEye™ imagery is always less than 20°. The 
system also has the capability for daily revisit to any point on earth. 
RapidEye™ products are collected by a 12 bit imager. During on-
ground processing, radiometric corrections are applied and all image 
data are scaled up to 16 bit dynamic range. The scaling is done with a 
constant factor that converts the (relative) pixel digital numbers (DNs) 
from the sensor into values directly related to absolute radiances. The 
scaling factor was originally determined pre-launch. However, absolute 
radiometric calibration for each sensor element of each band is now 
continually monitored and adjusted. This factor is applied so that the 
resultant single DN values correspond to 1/100th of a Watt/m2 sr-1 μm.

The focal plane of the RapidEye sensors is comprised of five 
separate CCD arrays, one for each band. This means that the bands 
have imaging time differences of up to three seconds for the same 
point on the ground, with the blue and red bands being the furthest 
apart in time. During processing, every 1B and L3A product isband 
co-registered using a DEM to roughly correlate the bands to the 
reference band (red-edge), then a final alignment is done using an 
auto-correlation approach between the bands. For areas where the 
slope is below10°, the band co-registration should be within 0.2 pixels 
or less (1-sigma). 

Variable Description Units
GCP Ground control points Decimal-degrees
FlOW flowing water Presence or absence
TURB Turbidity of water Formazin Turbidity Unit 

AQVEG Aquatic vegetation Percentage
HGVEG Hanging vegetation Percentage
DDVEG Dead vegetation Percentage

MMB Man-made barriers Type (e.g., dams, bridges)

Table 1: Environmental predictor variables geosampled of the S. damnsoum s.l. 
habitat.

Figure 8: Red Edge NDVI for a shade canopied S. damnosum s.l. larval habitat.
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The image was atmospherically corrected using the quick 
atmospheric correction (QUAC) procedure in ENVI 4.8 (ENVI, 2006). 
The QUAC procedure in ENVI is based on the empirical finding that 
the average reflectance of diverse material spectra is not dependent on 
each scene, thus processing is much faster compared to first-principles 
methods (ENVI, 2006). QUAC determines atmospheric compensation 
parameters directly from the information contained within the image 
(mixel spectra) thereby. letting the retrieval of accurate reflectance 
spectra (ENVI, 2006). QUAC determines average baseline (darkest 
channel) and endmembers by using both vegetation and bright spectral 
filter in any particular image (http://exelisvis.com).

In this research the Order Polygon contained 5 vertices consisting 
of longitude/ latitude (decimal degrees) geographic coordinates using 
a WGS-84 ellipsoid. The Rapid Eye data contained 64 km2 of the 
land cover in the study sites (Figure 7). The Rapid Eye imagery was 
classified using the Iterative Self-Organizing Data Analysis Technique 
(ISODATA) unsupervised routine in ERDAS Imagine v.8.7™ (ERDAS, 
Inc., Atlanta, Georgia). Unsupervised classifications are commonly 
employed for the identification of sub-meter resolution-derived time 
series dependent, LULC classes associated with explanatorial, prolific 
vector insect habitats based on geo-spatiotemporal, field-geosampled 
count data [1,3,75,76]. The clearest, cloud-free images available of 
the contiguous sub-areas of the study sites were used to identify land 
cover and other spatial features associated with the georeferenced S. 
damnosum s.l. habitats.

Habitat mapping
Initially, base maps were generated using the 5m RapidEye 

in ArcGIS 10.3tm with differentially corrected global positioning 
systems (DGPS) ground coordinates of a prolific, seasonal, vegetated 
canopy, shaded, S. damnosum s.l., riverine, habitat geosampled, at 
the Chutes-Dienkoa study site village in Burkina Faso. The DGPS 
ground coordinates were acquired from a CSI max receiver which has 
a positional accuracy of +/- .178 (84). Using a local DGPS broadcaster 
can compensate for ionospheric and ephemeris effects which can 
improve horizontal accuracy significantly and can bring altitude error 
down in a geo-spatiotemporal-sampled, predictive, entomological, 
larval habitat distribution model [1,3,75,76]. 

The georeferenced, riverine, shade, canopied, geosampled, S. 
damnosum s.l., larval habitat, remote attributes was entered into the 
VCMS™ relational database software product (Clarke Mosquito 
Control Products, Roselle, IL). The VCMS™ database supports a mobile 
field data acquisition component module, called Mobile VCMS™ 
that synchronizes field-geosampled data from industry standard 
Microsoft Windows Mobile™ devices and can support add-on DGPS 
data collection [http://store.elecdata.com/field_data_collection/vcms.
aspx]. Mobile VCMS™ and its corresponding FieldBridge® middleware 
software component were used to support both wired and wireless 
synchronizing of the seasonal field-sampled data collected from the 
georeferenced, S.damnsoum s.l., larval habitat, discontinous canopy. 
The data collected with the Mobile VCMS™ was then synchronized 
directly into a centralized VCMS™ relational repository database. 

Thereafter, geocoded spatial display of the geo-spatiotemporal, 
geosampled, S.damnosum s.l.georeferenced, larval habitat data 
attributes was mapped using the embedded VCMS™ GIS Interface 

Figure 9: A Rapid Eye 5 m Digital elevation model for the Dienkoa study site.

http://www.sciencedirect.com/science/article/pii/S0924271614001476#b0090
http://www.sciencedirect.com/science/article/pii/S0924271614001476#b0090
http://www.sciencedirect.com/science/article/pii/S0924271614001476#b0090


Citation: Jacob BG, Novak RJ, Toe LD, Sanfo MS, Lassane K, et al. (2016) Ecogeographically and Non-Ecogeographically Forecasting Discontinuous 
Canopied Simulium damnosum s.l. Habitats by Interpolating Metrizable Sub-Mixel Mean Solar Exoatmospheric Quantum Scalar Irradiance 
where θi is a Zenith Angle and Diatomically Etiolated Xanthophylls with Azimutually Isotropic Sources of Chloroplastic Carotenoid Zeaxanthins 
Spectrally Extracted from a Decomposed RapidEye™ Red Edge Normalized Difference Vegetation Index Reference Biosignature: A Case 
Study in Burkina Faso and Uganda. J Remote Sensing & GIS 5: 152. doi:10.4172/2469-4134.1000152

Page 55 of 103

Volume 5 • Issue 1 • 1000152
J Remote Sensing & GIS
ISSN: 2469-4134 JRSG, an open access journal 

e = ENVI()
 
; Open an input file
File = Filepath('_burkinafaso ', $
 Root_Dir=e.Root_Dir)
Raster = e.OpenRaster(File)
 
; Process a spatial subset
Subset = ENVISubsetRaster(Raster, Sub_Rect)
 
; Get the task from the catalog of ENVITasks
Task = ENVITask('QuerySpectralIndices')
 
; Define inputs
Task.INPUT_RASTER = Subset
 
; Run the task
Task.Execute
 
; Get the task from the catalog of ENVITasks
Task2 = ENVITask('SpectralIndices')
 
; Define inputs
Task2.INPUT_RASTER = Subset
Task2.INDEX = Task.
 
; Run the task
Task2.Execute
 
; Get the fielddata' data collection
DataColl = e.Data
 
; Add the output to the data collection
DataColl.Add, Task2.OUTPUT_RASTER
 
; Display the result
View1 = e.GetView()
Layer1 = View1.CreateLayer(Task2.OUTPUT_RASTER)
 
; Print the available indices to the
; ENVI command line
Task.AVAILABLE_INDICES
Start the application
e = ENVI()
 
; Open an input file
File = Filepath(burkinafaso Subdir=['data'], $
 Root_Dir=e.Root_Dir)
Raster = e.OpenRaster(File)
 
; Process a spatial subset
Subset = ENVISubsetRaster(Raster, Sub_Rect])
 
; Get the task from the catalog of ENVITasks
Task=ENVITask('SpectralIndices')
 
; Define inputs
Task.INDEX = ['Normalized Difference Vegetation Index',]
Task.INPUT_RASTER = Subset
 
; Define outputs
Task.OUTPUT_RASTER_URI = e. 
; Run the task
Task.Execute
 
; Get the data collection
DataColl = e.Data
 
; Add the output to the data collection
DataColl.Add, Task.Output_Raster
 
; Display the result
View1 = e.GetView()
Layer1 = View1.CreateLayer(Task.Output_Raster)
Table 2: ENVI Query Spectral Indices Task routine for separating geosampled, 
georeferenced, vegetated, canopy shaded, S. damnosum s.l. larval habitat mixels.

Start the application
e = ENVI()
 
; Open an input file
File = Filepath(, Subdir=' S. damnosum s.l.data'], $
 Root_Dir=e.Root_Dir)
Raster = e.OpenRaster(File)
 
; Process a spatial subset
Subset = ENVISubsetRaster(Raster, Sub_Rect=[600,200,799,399])
 
; Get the task from the catalog of ENVITasks
Task=ENVITask('SpectralIndices')
 
; Define inputs
Task.INDEX = ['Normalized Difference Vegetation Index',]
Task.INPUT_RASTER = Subset
 
; Define outputs
Task.OUTPUT_RASTER_URI = e.
 
; Run the task
Task.Execute
 
; Get the data collection
DataColl = e.Data
 
; Add the output to the data collection
DataColl.Add, Task.Output_Raster
 
; Display the result
View1 = e.GetView()
Layer1 = View1.CreateLayer(Task.Output_Raster)
Table 3: Refining the shade canopied S. damnosum s.l. larval habitat spectral 
indexusing the ENVI Spectral Indices Task API routine.

Accuracy 
measure%

No Red 
Edge

Only 
Red 
Edge

W=1 W=10 W=20 W=50 W=100

Overall Accuracy 90.92 83.13 92.42 90.35 81.45 91.99 89.97
Kappa 87.81 77.78 87.33 88.12 75.24 86.51 84.41

Dense Vegetation 98.31 98.43 98.21 96.91 99.24 96.58 99.21
Sparse vegetation 83.11 74.29 89.69 87.81 66.42 71.29 68.66

Bare land 82.55 72.18 81.57 82.36 55.72 85.21 79.25
Water 100 100 100 100 100 100 100

Table 4: An accuracy assessment comparing different weights assigned to the Red 
edge spectral band.

 

Figure 9: Red Edge S. damnosum s.l. NDVI signature with hot spot.
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Kit™ which was developed utilizing ESRI’s MapObjects™ 2 technology. 
VCMS including connectivity with hand held computers and field 
data collection devices including DGPS receivers. PalmOS and 
Windows PocketPC handhelds have been used for malaria [48] 
and, eastern equine encephalitis virus (EEEV) mosquito habitat 
monitoring [122]. The VCMS™ database supported the export of all 
the geo-spatiotemporally, geosampled, spectral parameters using any 
combination of the time-series dependent, georeferenced, riverine 
larval habitat remotely sensed, covariate, parameter, estimators in 
order to further process and display specific, explanatorial, LULC 
georeferencable, data explanatorial, feature attributes in a stand-alone 
desktop GIS software package (i.e., ArcGIS 10.3®). A polygon layer 
outlining the georeferenced S. damnosum s.l. habitat was then created 
by digitizing the RapidEye visible and NIR imagery.

Grid-based algorithm
A digitized matrix was constructed by applying a mathematical 

algorithm in order to fit the continuous and bounded, riverine, larval, 
habitat surfaces from a field and canopy-geosampled operationizable, 
attribute in ArcGIS. Each digitized grid cell within the matrix 
contained an attribute value as well as the S. damnosum s.l. larval 
habitat geocoordinates. As such, the geospatial location of each cell was 
implicitly contained within the ordering of the matrix. GIS grid-based 
data files consist of columns and rows of uniform cells coded according 
to georeferenced data values [4,115].Multiple data layers were then 
created using different coded values for the various field explanatorial 
attributes which were related to the same grid cell.

Each polygon was assigned a unique identifier. Field attribute 
tables were then linked to the polygons. The georeferenced, polygons 
were used to define the sampling frame, which was extended to include 
a 5 km buffer from the external boundary of the geo-spatiotemporal, 
geosampled, riverine larval habitat, eco-epidemiological study 
sites. This allowed for multiple interactions enabling retrieval and 
transformation of the geosampled S. damnosum s.l. larval habitat 
canopy parameters efficiently, regardless of spatial dimensionality of 
the habitat canopy.

Environmental parameters
Multiple georeferenced, photosynthetic, canopy-related, covariate, 

parameter estimators were then examined extensively employing 
longitude, latitude, and altitude data. The data was also comprised of 
individual geo-spatiotemporal geosampled empirical, observations of 
the georferenced S. damnosums.l larval habitat together with a battery 
of categorical canopy attributes (Table 1).

Vegetation indices
The different modules in ENVI 5.2 were employed to perform 

the Red Edge NDVI calculations. Red edge NDVI differs from other 
NDVIs by employing bands along the Red Edge, instead of the main 
absorption and reflectance peaks (http://www.satimagingcorp.com/
satellite-sensors/other-satellite-sensors/rapideye/). This index is a 
modification of the traditional broadband NDVI.

The RedEdge NDVI was computed directly without any bias or 
assumptions regarding plant physiognomy, canopy cover class, soil 
type, or climatic conditions, within a range from -1.0 to 1.0 employing 
the 5 m visible and NIR reflectance, (p), in ENVI using the expression: 

750 705

750 705

RENDVI ρ ρ
ρ ρ

−
=

+
. The difference of the RapidEye visible and NIR 

bands was divided by their sum, successfully in ENVI which formed the 

functionally equivalent NDVI, over the canopy and terrestrial surfaces 
of the georeferenced, vegetated, shade, canopied, S. damnosum s.l. eco-
epidemiological. Chutes Dienkoa, study site.

Narrowband greenness VIs are combinations of reflectance 
measurements sensitive to the combined effects of foliage chlorophyll 
concentration, canopy leaf area, foliage clumping, and canopy 
architecture[4]. Similar to the broadband greenness VIs, narrowband 
greenness VIs are designed to provide a measure of the overall amount 
and quality of photosynthetic material in vegetation, which is essential 
for understanding the state of vegetation. Narrowband greenness 
VIs are intended for use with imaging spectrometers [2]. Use of 
NIR measurements, with much greater penetration depth through a 
geo-spatiotemporally, geosampled, S. damnosum s.l., riverine, larval 
habitat canopy than red, allowed quantitating the total amount of 
green vegetation, geoclassified LULCs in the column until the signal 
saturates at very high levels (Figure 8). QuickBird applications include 
vegetation phenology (growth) studies, land-use and climatological 
impact assessments, and vegetation productivity modeling (www.
digitalglobe.com).

The following steps were then employed in ENVI in order to create 
the Red Edge NDVI. From the Toolbox, we selected Band Algebra > 
Spectral Indices. In the Spectral Index dialog, we chose an input image. 
The image contained wavelength metadata. We then employed ENVI 
to runk multiuple tasks on the 5m Rapid EyeTM data.

We selected an output filename and location. By so doing, this 
enabled the Preview check box to see a preview of the settings in ENVI. 
We clicked OK to process the data. The preview was calculated only on 
the area in the Image window. We selected the Display result option to 
display the output image when the processing was complete. We noted 
that the Red Edge NDVI image that consisted of multiple indices (i.e., 
where each Rapid Eye band was a different index.

The image was then segmented with a multi-resolution segmentation 
algorithm employing a fine scale parameter and 4 different weights 
(from 0 to 100) which were assigned to the Red Edge spectral band to 
evaluate its influence in the segmentation and classification process. 
Each canopy weight generated a segmented 5m image. Explanatorial, 
data feature attributes related to spectral information, geometry and 
texture were then calculated for each image segment employing the 
ENVI which was performed along with field data to select ‘classes 
(Dense vegetation, Sparse vegetation, Bare land, and Water).A decision 
tree approach was then applied to the samples to select the attributes 
that provided the best separation among the classes within the scenes.

Spatial hydrological model
The latest version of PCI Geomatics Orthoengine® software was 

then used to generate a RapidEye DEM from the geo-spatiotemporal, 
geosampled, canopied, S. damnosum s.l. habitat data. A DEM is a 
raster representation of a continuous surface, usually referencing the 
surface of the earth [4]. The accuracy of this georeferenced, data is 
determined primarily by the resolution (the distance between sample 
points). Other factors affecting accuracy are data type (integer or 
floating point) and the actual sampling of the surface when creating the 
original DEM. PCI software supports automatic overlay of vector insect 
habitat DGPS collections, geometric modeling using Toutins rigorous 
model, Rationale Polynomial Coefficients (RPC) models, automatic 
DEM generation, orthorectification and automatic mosaicking [www.
pcigeomatics.com] (Figure 9). 

The vegetation canopied, S. damnosum s.l. riverine larval habitat 

http://www.exelisvis.com/docs/broadbandgreenness.html
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QuickBird DEMwas initailly represented as a e represented as a raster 
[i.e, a grid of squares, also known as a heightmap when representing 
elevation] and as a vector-based triangular irregular network (TIN). 
The TIN DEM dataset is also referred to as a primary (measured) DEM, 
whereas the Raster DEM is referred to as a secondary (computed) 
DEM [4]. While a sub-resoltuin 3-D DEM may be useful for landscape 
modeling and visualization applications, they are most commonly 
employed for flood or drainage modeling, land-use studies, geological 
applications, and other applications [2].

Object-oriented classification
Before applying spectral index to the imagery, raw mixel values 

(i.e., DN values), we calibrated the Rapid EyeTMdata into physically 
meaningful units. The top-of-atmosphere (ToA) reflectance was 
employed to correct the noisy variables.  Image products delivered 
in  an integer format can be rescaled to the TOA reflectance using 
radiometric rescaling coefficients provided in the product metadata 
file (MTL file), The following equation is used to convert DN values to 
TOA reflectance for OLI data as follows: ρλ′=MρQcal+Aρ where: ρλ′ = 
TOA planetary reflectance, without correction for solar angle. Note that 
ρλ′  did not contain a correction for the sun angle.Mρ = Band-specific 
multiplicative rescaling factor from the metadata (REFLECTANCE_
MULT_BAND_x, where x was the band number),Aρ  = Band-specific 
additive rescaling factor from the metadata (REFLECTANCE_ADD_
BAND_x, where x is the band number),Qcal  = quantized and calibrated 
standard product mixel values (DN), TOA reflectance with a correction 
for the sun angle is then:ρλ=ρλ′ cos(θsz)  =ρλ′ sin(θse)   where: ρλ  = 
TOA planetary reflectance θse  = Local sun elevation angle. The scene 
center sun elevation angle in degrees is provided in the metadata 
(SUN_ELEVATION).θsz = Local solar zenith angle; θsz  = 90° - θse. 

The ENVI software easily converted the optical Red Eye band 
data to ToA reflectance values. A file was opened that ended with “_
MTL.TXT”. From the ENVI main menu bar, “Open Image File” was 
selected. ENVI automatically opened the canopy shaded S. damnosum 
s.l. larval habitat image as multiple files. For creating a reflectance data 
file from the ENVI main menu bar, the Basic Tools, Preprocessing 
and Calibration Utilities was used. The optical data file and the ENVI 
Calibration dialog opened all the filled in calibration parameters. 
By clicking the Reflectanceradio button an output file name (i.e., S. 
damnosum s.l.) was entered. The reflectance values ranged from 0.0 to 
1.0 which was stored in floating point data format. 

Digital Numbers were converted to radiance vegetated, shade, 
canopied S. damnosum s.l larval habitat georeferenced values. 
Thereafter, these radiance values were converted to reflectance values. 
The formula to convert DN to radiance values of the geosampled, larval 
habitat data was based on gain and bias within *L gain DN biasλ = +
where: Lλ was the cell value (i.e., radiance estimate) and DN was the cell 
value. It was noted that DN gain was the gain value for a specific Rapid 
Eye band and bias was the deviated value for any specific, canopy, 
shaded, S. damnosum s.l. reflectance band. The ENVI formula in Band 
Math as 0.05518 * (B1) + 1.2378 was calculated using a scene specific 
gain value of 0.05518 and an offset value of 1.2378. In the Band Pairing 
dialog B1 was matched with the appropriate optical band. The formula 
employed in this process was as follows: 

(( / ( ))LL LMAX LMIN QCALMAX QCALMINλ λ λ= − −

*( )QCAL QCALMIN LMIN
λ

− + where:Lλ was the cell value as 
radiance, QCAL was the DN, LMIN was the spectral radiance scales 
to QCALMIN, LMAXλ was Rapid Eye spectral radiance scales to 

QCALMAX, QCALMIN was the minimum quantized calibrated 5 m 
mixel value and QCALMAX was the maximum quantitated calibrated 
mixel value (i.e.,255) radiance to ToA reflectance.

The formula 2* * / *cos SL d ESUNλ λρ π θ= was then employed to 
quantitate multiple illumination, viewing angle, reflectance, wavelenght 

coefficients where: ρλ was the unitless 2* * / *cos SL d ESUNλ λρ π θ=
plantary reflectance; L was the RapidEye spectral radiance; d was 
the Earth-Sun distance in astronomical units; ESUNλ was the mean 
solar exoatmospheric irradiances and θs was solar zenith angle. Solar 
exoatmospheric irradiance and Rayleigh optical thickness within pass 
band of each space borne sensor were then estimated for calculating the 
most basic physical parameter, namely ground reflectance.

For calculating the solar exoatmospheric irradiance and Rayleigh 
optical thickness within the Rapid Eye band data, modern Rayleigh 
scattering calculations were employed in AreGIS. Spectral data on 
extraterrestrial solar radiation, Rayleigh scattering, ozone absorption 
and absorption by the uniformly mixed gases are critically evaluated 
and used for computing the integral Rayleigh optical thickness of 
the clean and dry atmosphere for a given relative optical air mass 
or solar elevation angle [2]. The results are commonly compared 
to the corresponding values calculated with the help of the three 
parameterization formulae. We used the Penndorf [122] method for 
calculating Rayleigh optical thickness of the geosampled, georefernced, 
S. damnosum s.l. riverine larval habitat canopy. In Penndorf’s paper, 
the refractive index of air was calculated using the equation of Edlén 

[123]: ( ) 8
2 2

2949810 255401 10 6432.8
146 41Sn

λ λ− −− × = + +
− −

where ns was the 

refractive index of air and λ is the wavelength of light in micrometers. 
This equation is for “standard” air, which is defined as dry air at 760 mm 
Hg (1013.25 mb), 15°C (288.15 K), and contains 300 ppm CO2. It is an 
empirical relationship derived by fitting the best available experimental 
data and is dependent on the composition of air, particularly CO2 and 
water vapor. Next, Penndorf [122] calculated the Rayleigh scattering 
coefficient for standard air using the classic equation that is presented 

in many textbooks [124,125]: 
( )
( )

23 2

24 2 2

24 1 6 3
6 7

S

S S

n

N n

ρσ
ρλ

∏ −  +
=  − 

 where σ 

was the scattering cross section per molecule; Ns was molecular density; 
the term (6 + 3ρ)/(6 − 7ρ) was the depolarization term, F(air), or the 
King factor; and ρ was the depolarization factor or depolarization ratio, 
which described the effect of molecular anisotropy. The F (air) term is 
the least known for purposes of Rayleigh scattering calculations and is 
responsible for the most uncertainty [4]. 

In the calculations of the S. damnosum s.l., riverine, larval 
habitat, canopy in in ArcGIS derived Rayleigh optical thickness, the 
depolarization term did not depend on temperature and pressure, but 
did depend on the shade mixture within the geosampled, georeferenced 
shaded, vegetated, canopied, S. damnosum s.l. explanatorial, larval 
habitat geosampled at the Chutes Dienkoa, eco-epidemiological, 
riverine, study site. Also, we assumed in the habitat Ns was dependent 
on temperature and pressure, but not depend on the gas mixture. The 
resulting value of σ, in the model was the scattering cross section per 
molecule of the gas which would then we assumed was independent 
of temperature and pressure, but not dependent on the composition 
of the gas. 

Note in the S. damnosum s.l. model, Ns depended on Avogadro’s 



Citation: Jacob BG, Novak RJ, Toe LD, Sanfo MS, Lassane K, et al. (2016) Ecogeographically and Non-Ecogeographically Forecasting Discontinuous 
Canopied Simulium damnosum s.l. Habitats by Interpolating Metrizable Sub-Mixel Mean Solar Exoatmospheric Quantum Scalar Irradiance 
where θi is a Zenith Angle and Diatomically Etiolated Xanthophylls with Azimutually Isotropic Sources of Chloroplastic Carotenoid Zeaxanthins 
Spectrally Extracted from a Decomposed RapidEye™ Red Edge Normalized Difference Vegetation Index Reference Biosignature: A Case 
Study in Burkina Faso and Uganda. J Remote Sensing & GIS 5: 152. doi:10.4172/2469-4134.1000152

Page 58 of 103

Volume 5 • Issue 1 • 1000152
J Remote Sensing & GIS
ISSN: 2469-4134 JRSG, an open access journal 

number and the molar volume constant, and was expressed as molecules 
per cubic centimeter, and that values. However, since (n2

s − 1)/(n2
s + 2) 

is proportional to Ns, Bucholtz [126], the resulting expression for σ in 
the shade, vegetated canopied, model was independent of temperature 
and pressure. Note that the usual approximation n2

s + 2 ≈ 3 was not 
included in the interest of keeping all calculations as accurate as 
possible. Results of such calculations were presented and the table of 
values employed over particular Rapid Eye™ wavelength ranges emitted 
from the georeferenced, geosampled, shaded, and vegetated canopied, 
S. damnosum s.l. larval habitat.

We used the general formula for calculating the shaded canopied, 
S. damnosum s.l. larval habitat.ground reflectance where (r) was 
tv Eo stz EdLs Lp d+-=qpr(cos ) . In this equation Lp denoted path 
radiance, d-earth to sun distance in astronomical units, Eo –bandpass 
exoatmospheric irradiance, Ed - down welling spectral irradiance from 
the atmosphere, tv – atmospheric transmittance along the path from 
the S. damnosum s.l. larval habitat to the Rapid Eye sensor, and tz – 
atmospheric transmittance along the path from the sun to ground. The 
transmittance terms were then calculated using the equations: tv= exp 
(-t secq v) and tz = exp (-t secq s ). Here vq and sq were, respectively, 
the zenith angles of the sun and sensor. The parameter t was the total 
optical thickness of the atmosphere, which included the effect of 
aerosol particles, ozone, water vapor and atmospheric, molecules. Out 
of these, the canopy illumination contribution was calculated which 
depended strongly on the Rapid EyeTM wavelength which we estimated 
from r = exp (-0.1188* h - 0.00116* h2 ) {0.00859 *l-4 (1 + 0.0013*l-2 
+ 0.00013*l-4 )} where h was the height of the georeferenced, canopy, 
shaded, S. damnosum s.l.,canopy vegetated, larval, habitat surface 
above sea level.

The solar zenith angle was then calculated employing the Solar 
Position Calulator. The solar zenith angle is the angle measured 
from directly overhead to the geometric centre of the sun's disc, as 
described using a horizontal coordinate system [2]. The horizontal 
coordinate system is a celestial coordinate system that employs the 
observer's local horizon as the fundamental plane. It is expressed in 
terms of altitude (or elevation) angle and azimuth. The solar elevation 
angle is the altitude of the sun, the angle between the horizon and the 
centre of the sun's disc [2,4,115]. If we write θs for the solar zenith 
angle, then the solar elevation angle αs=90° – θs. [127]. The calculator 
program returns solar zenith angle, declination, Julian day, equation 
of time, hour angle, instantaneous and daily extraterrestrial radiation 
values, and sunrise and sunset times (http://solardat.uoregon.edu/
SolarPositionCalculator.html).

Next, ENVI's Radiometric Calibration tool calibrated the Rapid Eye 
5 m imagery from spaceborne sensors to radiance and ToA reflectance. 
An atmospheric correction tool Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes (FLAASH®) then removed the effects of 
atmospheric scattering and gas absorptions to produce optimal surface 
reflectance of the geosampled, riverine, S. larval habitat data. FLAASH 
automatically scales reflectance data by 10,000 to produce integer data, 
which consumes less disk space (www.Ittvis.com/portals). Other tools 
in ENVI such as Dark Subtraction, Empirical Line Correction, Flat 
Field Correction, and Internal IAR Reflectance Correction also helped 
correct for atmospheric effects for preparing the multispectral data for 
generating the Red Edge spectral index.

Once a dataset of the explanatorial, remotely-dependent, 
operationizable, covariate, parameterized, estimator coefficients was 
constructed, ENVI spectral tools were used to analyze the 5m satellite 
image of the shade, vegetated, S. damnosum s.l., riverine habitat canopy. 

F 0 extraterrestrial solar radiance

F ( )• 	 Fresnel reflectance function

f ( )ΩΩ′,  BRDF of soil

gl ( )Ω 	 distribution function of the leaf normal orientation

( )ΩΩ′Γ , 	 area scattering transfer function of canopy 

Η 	 height of canopy in meters

i 0 	 extraterrestrial solar net flux incident on the top of atmosphere

( )ΩΙ ,0 τ 	 unscattered solar radiance

( )ΩΙ ,1 τ 	 single scattering radiance

( )ΩΙΜ ,τ 	
multiple scattering radiance

J ( )ΩΜ ,τ   source function of radiative transfer

κ 	 leaf dimension parameter
λ 	 wavelength

LAD 	 leaf angle distribution

LAI 	 leaf area index

0µ 	 cosine of solar zenith angle
η 	 leaf wax refractive index

N 	 total Lumber of layers of the coupled medium split for multiple scattering 
calculation, each of thickness τ∆
( )φµ,Ω solid angle consisting of cosine of zenith angle µ and azimuth angle 

φ

( )ΩΩ′Ρ , 	 phase function of atmosphere

0φ 	 solar azimuth angle

rl	 leaf reflectance

R s ( )ΩΩ′, 	 bidireccional reflectance factor of soil surface

R s 	 reflectance of Lambertian surface
τ 	 optical depth of medium
ατ 	 atmospheric optical depth

eα
τ

	 aerosolopticaldepth

Γτ 	 molecularopticaldepth

tτ 	 total optical depth of the coupled atmosphere-canopy medium
( )zul 	 leaf transmittance

( )zul 	 leaf area density 

ω 	 single scattering albedo
Table 5: Theradiative transfer equation predictor covariatecoefficients in 
thedecomposition of theradiationfield of thegeorefrencedS.damnosum s.l.riverine 
larval habiatmodel.

We input the data into ENVI® technology using the GeoTIFF format. 
ENVI supports Input File functions including GeoTIFF, NITF and 
Tile Product (.til) (www.ittvis.com/portals). In ENVI a spectrum plot, 
known as a z-profile, of the mixel under the cursor was run through 
all bands of the 5m image. The basic workflow involved importing the 
decomposed data collected at the Chutes –Dienkoa riverine study site 
from the explanatorial, operationizable, geospatially interpolatable, 
geosampled, shade, vegetated, canopied, S. damnosums.l., larval habitat 
habitat data into a spectral library. A spectral library was used in the 
endmember collection workflow to perform a supervised classification, 
based on the reflectance values of each image attribute and the habitat 
data. Binary Encoding, Spectral Angular Mapping (SAM) and Spectral 
Feature Fitting were then employed to rank and match any unknown 
spectrum to the materials in the library.
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The image endmembers of the georeferenced, shade, vegetated, 
canopied, S. damnosum s.l. habitat and its associated attributes were 
then extracted them from ENVI®’s spectral library. Several spectra 
corresponding to the different backgrounds in the geosampled, 
explanatorial, S. damnosum s.l., riverine, larval habitat (i.e., rippled 
water mixel components) scene had to be included, since multiple 
scatterings between floating leaves in the habitat, for example, and a 
bright soil background increased the NIR reflectance of eachsatellite 
data product generated in the object-based classifier. Leaf cells have 
evolved to scatter (i.e., reflect and transmit) solar radiation in the NIR 
spectral region [4,75].

After the calibration of all the spectrally dependent explanatorial, S. 
damnosum s.l. habitat canopy covariate coefficient estimates, we then 
determined if the images could be converted to match spectral contents 
within the ENVI library. Analogously, the reference endmembers 
spectra in the library were transformed into the endmembers spectra of 
thegeoreferenced larvalhabitat Red Eye image. We employed a random 
selection of mixels to assess the satellite classification accuracy. Each 
image class representative mixels were then selected and compared 
to a reference training dataset. During the segmentation procedure, 
image objects were generated based on several adjustable criteria of 
homogeneity such as colour, shape, and texture

Data pre-processing involved converting DN to radiance 
atmospheric correction using FLAASH™, and co-registration techniques. 
Image classification was then performedemploying an object-oriented 
approach. FLAASH™ generated multiple models (.gmd file). We then 
converted the Red Eye, georeferenced riverine S. damnosum s.l. habitat 
image DN to at-sensor radiance and computed at-sensor reflectance 
for normalizing the solar elevation angle. The equation we used was 

as follows: ( )
( )( )

2* *
* ( 90 * /180)

LBandN GainBandN BiasBandN D
BandN

EBandN COS
ρ

θ π
∏ +

=
−

 where, 

BandN=Reflectance for Band NLbandN=Digital Number for Band N 
D=Normalized Earth-Sun DistanceEbandN=Solar Irradiance for Band N. 
Most surfaces are not perpendicular to the Sun, and the energy they 
receive depends on their solar elevation angle. The maximum solar 
elevation is 90° for the overhead Sun.(http://www.britannica.com/ /
solar-elevation-angle).

The reference data was the “ground truth” data of the explanatorial, 
geo-spatiotemporal-geosampled, shade, canopied, S. damnosum s.l., 
riverine, georeferenced, larval habitat, within-canopy-related, spectrally 
dependent, explanatorial, predictor variables (e.g., floating vegetation 
fractionalized radiance values). Selected random image mixels from 
the thematic map were compared to the reference data. The estimated 
accuracy for the spectrally extracted data was then calculated using:  

( )/2 /2 1
1

x nP Z Z
n

α α
θ α

θ θ

 − = − ∠ ∠ = −
 − 

 where, x=number of correct 

identified mixels, n=total number of pixels in the sample, θ=the map 
accuracy, (1-α)=a confidence limit.

The successive projection algorithm (SPA)
The SPA was then employed in ArcGIS to generate canopy-

based, shaded, Red Edge, S. damnosum s.l., larval habitat, NDVI, 
endmember signature. P(i, j) denoted the spectrum for the spectrally 
extracted 5m mixels using the image coordinates (i, j), as the 
foundation of the unmixing algorithm which was defined by using

( ) ( ) ( )1, , ,ek

m
ki j i j i jk

p f ε== ∑ +


 and also where m was the number 

of the canopy endmembers, ke  was the kth endmember, ( ),i jε  
was the approximation error term (i.e., residual), and f (i j) k, was 
the fractional abundance for the kth endmember of 5 m mixel (i, j). 

The error term in ( ) ( ) ( )1, , ,ek

m
ki j i j i jk

p f ε== ∑ +


 computed the 

possible linear mixtures from ( ) ( ) ( )1, , ,ek

m
ki j i j i jk

p f ε== ∑ +


 and 

( ) ( )1, ,0, 1,... , 1m
k k ki j i jf K m f=≥ = ∑ =  which formed a simplex Cm 

defined by m vertices which corresponded to the Red Edge NDVI 
decomposed biosignature shade,canopied, unmixed endmembers, 

1 2, ,...., me e e  
. According to Jacob et al. [5] the volume of the simplex 

Cm can be calculated from the equation ( ) ( ) ( )
1
21 det

1mV C WW
m

τ =  −
where 2 1 3 1 1, ,...., nW e e e e e e= − − −  

     
 is the volume of the 

simplex defined by m endmembers, and where det (⋅) denotes the 
determinant of a matrix representing the operation of an absolute value. 
In this research, once the Red Edge, shade canopied, georeferenced, 
S. damnosum s.l., larval habitat, Red Edge, NDVI endmembers 

1 2, ,...., me e e  
were determined their fractional abundance was 

estimated through the least squares method which was equivalent to 

the projection 2 1 3 1 1, ,...., nW e e e e e e= − − −  
     

 
ion on the simplex.

Radiative transfer model
We then focused on the radiation field of the atmosphere and 

canopy as a single coupled medium, and the radiative transfer models 
of atmosphere and canopy which was separately described because of 
their different attenuating properties in ArcGIS. The coupled mediums 
illustrated the Red Edge, NDVI, S. damnosum s.l., larval habitat, 
decomposed, sub-mixel, endmember biosignature on various equations 
in which optical depth replaced the geometric altitude values. The top 
of atmosphere was set to -r=0 while the bottom was set to Ta, and 
the total optical depth to Tt. Therefore, the optical depth of the larval 
habitat canopy was calculated using Tt—Ta, which was interpreted 

employing LAI which was calculated using ( ).
max 1 c LAIP P e−= − where 

Pmax designated the maximum primary production and C  designated a 
growth coefficient. This inverse exponential function then generated a 
primary production function.

Next, in order to geospatially characterize the shade, vegetated, 
canopied, S. damnosum s.l., riverine, larval habitat, hotspot 
phenomenon effectively and obtain stable solutions of within-canopy, 
multiple scattering, we decomposed the spectrally extracted, Red Edge, 
unmixed biosignature signature into three parts; unscattered radiance

( )ΩΙ ,0 τ , single scattering radiance, and multiple scattering radiance 

( ),τΜΙ Ω ( ),τΙ Ω = ( )0 ,τΙ Ω  + ( )1 ,τΙ Ω  + ( ),τΜΙ Ω  in ArcGIS. A 

simple scheme was then represented by ( )0 ,τΙ Ω which was denoted by 
1, which was not scattered by the atmosphere, but was reflected directly 

by the within canopy surface features. In this research, ( )1 ,τΙ Ω  was 
the various Red Edge, NDVI, canopy, biosignature radiance values 
either scattered once by the atmosphere, denoted by 2, or once by the 

within canopy, structural, explanatorial, spectral variables which was 
denoted by 3. Also ( ),τΜΙ Ω  was the most complicated component, 
which included all of other imaged, riverine, larval habitat, canopied, 
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explanatorial, operationizable, georeferenced components in the 
radiation field of the coupled medium. Unscattered sunlight radiances 
( )0 ,τΙ Ω  were then characterized by the following radiative transfer 

equation and corresponding boundary conditions. When T< Ta the 
radiative transfer model rendered:

( ) ( )

( ) ( )
( ) ( )

0
0

0
0 0

0 0

,
, 0

0, 0

, , 0bot top
c

i

α

τ
µ τ

τ
δ µ

τ τ µ

 ∂Ι Ω
− + Ι Ω = ∂ Ι Ω = Ω−Ω <

Ι Ω = Ι Ω >


 

where bot
aτ the result was 

top
cτ where the optical depths was at the bottom of the atmosphere 

and the ToA of the larval habitat canopy, respectively. Here different 
notations from the 5m imager were used to indicate the physical 
meaning of the canopy boundary conditions. The model provided 
the upper boundary condition, which meant only parallel sunlight 
illuminated the atmosphere at the top of the riverine, larval habitat, 
shaded, canopy in the direction 0Ω . When ατ τ> , the residuals were:
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Jointly solving the above equations with these boundary conditions 
rendered:
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 The Red Edge, NDVI, biosignature, sub-mixel  information was 

expressed as ( )0
2 ,u τΙ Ω which represented the upwelling sunlight 

radiance within the georeferenced geosampled, vegetated, S. 
damnosum s.l. larval habitat canopy, and the function ( ),ε τ Ω . We 
modified the extinction coefficients of the canopy endmembers. We 
then incorporated the extracted, within-canopy, radiance values 
including the floating, hanging and surrounding dead vegetation 
canopy geospectral components employing:
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The Red Edge, NDVI, endmember, unmixed, biosignature  model 
in ArcGIS revealed that for single scattering radiances, unscattered 
sunlight became  the scattering source, and the boundary conditions. 
These conditions were then determined based on the fact that no 
incident single scattering radiances originated from above ToA or 
below the bottom of the canopy. When T<Ta occurred in the model, 
the residuals rendered:
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Additionally, when  T >T the decomposition, S. damnosum s.l., 
larval hábitat, eco-epidemiological, risk model rendered:
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where 0i′ was the 

incident solar net flux arriving at the top of the habitat canopy, 

( )0 0 0expi i ατ µ′ = −  In the downward direction 0µ < , the 
solution was easily derived. When T < Ta, the riverine,  larval habitat, 
Red Edge, NDVI, endmember, biosignature, risk decomposition model 
was solved using :
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where  t1 was defined by the equations
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( ) ( ) ( )( )1 1, , exp Gα ατ τ τ τ µ∆Ι Ω = Ι Ω − Ω −    
which represented the single scattering riverine larval habitat canopy 
radiances emerging from the atmosphere without scattering in the 
riverine S. damnosum s.l. larval habitat canopy. 
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In the upward direction (p > 0), the solutions were a little more 
complicated because of the hotspot effect which was determined by 

where t2 was: 2
0 0

1 1exp expt α
τ τ τ
µ µ µ µ

    
= − − − +    

    
 and the 

second integration at Ta < T < Tt. This equation was then explicitly 
obtained by means of an alternative integer and range, which was 

solved using ( ) ( ) ( )( )0
0 0 0, expiF G ατ τ τ µ

π
′

′ Ω = Γ Ω →Ω − Ω −   . The 

radiance ( )1 ,τΙ Ω  at Ta < T <Tt derived for the Red Edge, NDVI, 
endmember, unmixed biosignature signature material was then 
numerically evaluated without further assumptions. An explicit 
approximation to ( )1 ,τΙ Ω  was then derived and used for inversion in 
the canopy, biosignature-related, decomposition, eco-epidemiological, 
risk model.

Inverted geometric-optical model
We then employed the Li-Strahler geometric-optical model based 

on the assumption that the BRDF would retrieve georeferneced, S. 
damnosum s.l., habitat, shaded, canopy-oriented, structural variables 
from the decomposed, Red Edge, NDVI, endmember, biosignature 
variables in ArcGIS. The Li-Strahler geometric-optical model [113] 
is based on the assumption that the BRDF is a purely geometric 
phenomenon resulting from a scene of discrete 3-dimensional 
objects being illuminated and viewed from different positions in the 
hemisphere.

The unmixing technique in this algorithm has been previously 
described in Jacob et al. [1]. Briefly, the BRDF was first defined by 

( ) ( )
( )

( )
( )

,
cos

r r r r
r i r

i i i i i i

dL dL
f

dE L d
ω ω

ω ω
ω ω θ ω

= =  where L was the radiance, 

E was the irradiance, and θi was the angle made between ωi and the 
georeferenced, vegetated, shade, canopied,riverine, S. damnosum 
habitat and its associated floating, vegetation, LULC, surface reflectance 
emissivities. Because the BRDF is a four-dimensional function that 
defines how light is reflected at an opaque surface (2), the function took 
an incoming light direction, ωi, and outgoing direction, ωo, which were 
both defined in the Red Edge, NDVI, canopy, endmember signature 
with respect to the georeferenced, S. damnosum, larval habitat and its 
neighboring floating vegetation, hanging, floating and dead vegetation 

geoclassified LULC, and returned the ratio of reflected radiance exiting 
along ωo to the irradiance incident from direction ωi. Note, each 
direction ω was itself parameterized by azimuth angle φ and zenith 
angle θ, therefore, the BRDF was 4-dimensional. The BRDF had units 
sr−1, with steradians (sr) being a unit of solid angle.

We also employed Lambertian reflectionin ArcGIS. In computer 
graphics, Lambertian reflection is often used as a model for diffuse 
reflection [2]. This technique causes all closed polygons (such as 
a triangle within a 3D mesh) to reflect light equally in all directions 
when rendered [128]. In effect, a georeferenced, shade, vegetated, S. 

 

Figure 10: A decomposed Red Edge S. damnosum s.l. larval habitat NDVI 
signature.

Figure 11: A Geospectrally interpolated Red Edge S. damnosum s.l. larval 
habitat NDVI signature at the Dienkoa study site.
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damnosum s.l. canopied, larval habitat rotates around its normal vector 
will not change the way it reflects light [3]. However, the habitat canopy 
will change the way it reflects light if it is tilted away from its initial 
normal vector since the area is illuminated by a smaller fraction of the 
incident radiation [5]. Here the reflection was calculated by taking the 
dot product of the surface's normal vector, N, and a normalized light-
direction vector, L, pointing from the surface to the light source. 

The canopy reflection was calculated by taking the dot product of 
the surface's normal vector, N, and a normalized light-direction vector, 
L, pointing from the surface of the georeferenced habitat and its light 
sources. This number was then multiplied by the color of the surface 
and the intensity of the light of the canopy surface: .D Ll L NCI=  
where ID was the intensity of the diffusely canopy reflected light (i.e., 
surface brightness), C was the color and ILwas the intensity of the 
light. Because . cos cosL N N L α α= = , where α was the angle 
between the direction of the two vectors, the illumination intensity 
wasthe highest when the vector pointed in the same direction as the 
light vector (i.e., ( )cos 0 1= ).When the surface is perpendicular to the 

direction of the light), the normal vector is perpendicular to the light 
vector (i.e., ( )cos /2 0∏ = , the surface runs parallel with the direction 
of the light) [12].

The inverted geometric-optical model was then used to retrieve 
specific spectral Red Edge, NDVI, canopy biosignature canopied, 
georeferenced, operationizable, riverine, larval habitat, explanatorial, 
wavelenght ,emissivity, reflectance, covariate, coefficient estimates. 
The reflectance associated with a georeferenced habitat was treated 
as an area-weighted sum of four fixed reflectance components: sunlit 
canopy, sunlit background, shaded canopy, and shaded background. 
In the georeferenced shade, vegetated, S. damnosum s.l. canopied, 
larval habitat, geometric-optical model these four components were 
simplified to three: sunlit canopy–C, sunlit background–G and 
shadow–T . The endmember spectral components were derived using 
G, C, T components’ classes which were initially estimated by the 
5m Rapid Eye image using ENVI®. For inverting the model, parts of 
the three spectral canopied, larval habitat, shaded components were 
represented by (Kg) which was calculated using:

( ) ( ) ( ). . i V i VM Sec Sec o
gK e θ θ θ θ φ −∏ + − + =
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where, I q u q were the zenith angles of illumination and viewing.O was 
the average of the overlap function between illumination and viewing 
shadows of the Rapid Eye imagers, sub-mixel, endmember, spectral 
version of the decomposed, Red Edge, NDVI, S. damnosum s.l., habitat, 
unmixed, biosignature and their associated canopy floating, hanging 
dead vegetation-related LULC components as projected onto the 
background. j was the difference in azimuth angle between illumination 
and viewing in each model.	

Boolean models were then generated in ArcGIS. The equation 

( ) , ,
,

cos cosc
g A

i v

i s v sCR i v K G ds
A θ θ

= + ∫ ∫  was employed where gK  was 

expressed as ( )2 ' ' , ,i V i VR Sec Sec o
gK e λ θ θ θ θ ψ − ∏ + − =  and where ( ), , ,i vO θ θ ϕ  

was the average of the overlap function ( ), , ,i vO hθ θ ϕ  between 
illumination and viewing shadows of the georeferenced, geosampled, 
S. damnosum s.l. riverine larval habitat and its associated data feature 
attributes. The Boolean model for a random subset of the plane or 
higher dimensions, analogously is a common tractable models in 
stochastic geometry [4].

Further, φ  was the difference in azimuth angle between viewing 
and illumination positions of the 5 m Rapid Eye™ imaged objects 
associated to the riverine, georeferenced, geosampled, S. damnosum 
s.l., riverine habitat. To simplify the equation, the overlap function 
was approximated by the overlap area and center positions of the 
ellipses. This approximation is justified when solar zenith and viewing 
zenith angles are not too large [10]. In the case of long ellipsoidal 
shadows, however, this approximation could have overestimated 
the width of the S. damnosum s.l., riverine, habitat hotspot in the 
azimuthal direction and underestimated the width of the hotspot 
in the azimuthal direction. To improve the accuracy and preserve 
the proper hotspot width information, another approximation was 
developed as follows; 0ϕ = orϕ π= . First, the overlap function 
was determined in the principal plane. W 0ϕ =  and π were 
employed as the elliptical illumination estimates and then the viewing 
shadows were aligned in the same direction. The overlap area was 
approximated by an ellipse with one axis equal to the overlap length 
and the other equal to the S. damnosum s.l. geospatiotemporally-
geosampled, habitat width encompassing hanging, floating and 
dead vegetation spectral explanatorial components which yielded 

( ) 1, , sec sec tan tan cos
2i v i v i v

hO
b

θ θ ϕ θ θ θ θ ϕ ′ ′ ′ ′= + − −  
.	

Our Boolean analyses represented the decomposed, Red Edge, 
endmember, NDVI biosignature, riverine, larval, habitat canopy 

 

Figure 12: Voroni Tesselations for the geospectral interpolation of the 
decomposed Red Edge S. damnosum s.l. habitat signature of the Dienkoa 
study site.
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endmembers as a vector model. Vector space is an algebraic model 
for representing text documents and any objects, in general as 
vectors of identifiers, such as, for example, index terms [4].The goal 
of an ArcGIS Boolean analysis is to detect deterministic dependencies 
between items or similar data-structures in observed response patterns. 
These deterministic dependencies have the form of logical formulas 
connecting the items. Assume, for example, that a questionnaire 
contains items i, j, and k. Examples of such deterministic dependencies 
are then i → j, i ∧ j → k, and i ∨ j → k. Here each I dimension corresponded 
to a separated endmember (e.g., floating shaded vegetation). A final 
signature was generated (Figure 10).

Interpolation analyses
Spatial linear waveband predictors were then generated from the 

S. damnosum s.l. habitat Red Edge NDVI biosignature employing an 
Ordinary kriged-based equation in ArcGIS Geospatial Analyst. We 
geospectrally interpolated the decomposed biosignature values over 
the northern Ugandan riverine ecosystem. The algorithms for our 
interpolation have already been described in Jacob et al. [1]. Briefly, the 
dependent variable was the spectral illumination estimates generated 
from the decomposed, Red Edge, biosignature emissitives which was 
transformed to fulfill the diagnostic normality test prior to performing 
the kriging. The Ordinary kriged-based algorithm was then used to 
generate predictive maps. In order to to parsimoniously interpolate the 
value Z(x0), the decomposed, S. damnosum s.l. habitat, shaded, canopy, 
spectral values and its associated vegetation components, Z(x), the 
canopy biosignature x0was used where zi = Z (xi), i = 1..., n represented 
forecasted, georeferenced, prolific, riverine, habitat,geolocations, x1, 
xn. 

Ordinary kriging was computed as a linear unbiased explanatorial 
estimator, Ž(xo) of Z(x0) based on a stochastic-based model of the 
dependence quantified by the variogram γ(x, y) and by the expectation 
μ(x)=E [Z(x)] and the covariance functionc(x, y) of the random field 
(Figure 11). 

The kriging estimator was given by a linear combination of the 

algorithm: 
1

ˆ ( ) ( ) ( )
n

o i o i
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Z x w x Z x
=

=∑  employing the decomposed, Red 

Edge, NDVI, biosignature, shaded canopy, endmember datasets of 
zi=Z(xi) with weights wi (xo), i=1,.., n chosen, such that the variance 
in the spectral autoregressive model residuals was calculated by 
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which was further minimized using: 
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=

− = − =∑ .

A Voronoi diagram was also constructed in ArcGIS with the 
geosampled, explanatorial, riverine, larval habitat, georeferenced 
points as the centers of the decomposed, Red Edge, NDVI, biosignature 
polygons employing the Weighted Voronoi Diagram Extension in 
ArcGIS 10.3® for the Chutes Dienkoa eco-epidemiological riverine 
study site. Using the Generate tab in ArcGIS spatial Analyst a weighted 
Voronoi diagram was generated from the forecasted point features. 
The Graphical User Interface (GUI) has two tabs: Generate and Update 
(www.esri.com).

The Voronoi Diagram was generated in ArcGIS, whereby, a predicted 
S. damnosum s.l. habitat was associated with pi (i.e., spectral explanatorial 
canopy covariate coefficient) in each model using P={p1,.., pn} where 2 ≤ 
n ≤ ∞ and xi ≠ xj for i ≠ j, i, j In (Figure 12). The region was given by 

V(pi)={x: || x - xi|| ≤ || x - xj || for j ≠ ,  I }  ni i which was the Ordinary 
Voronoi polygon associated with p where the set given by V={ V(pi),.., 
V(pn)} was the planar Ordinary Voronoi diagram generated by P. A 
planar ordinary Voronoi diagram was then defined with half planes 

as follows where we let P={ pi,.., pn } 2R⊆ , where 2 ≤ n ≤ ∞ and xi 

≠ xj for i ≠ j, i, jε In. We called the region 
\{ }

( ) ( )i i j
j In i

V P H PP
ε

=   which 

was the ordinary Voronoi polygon in each model associated with pi 
and set V (P)={V (p1),.., V(pn)}. The planar Ordinary Voronoi diagram 
was then generated by P. A raster image showing normal Euclidean 
distance and adjusted Euclidean distance was then created as well as 
a Voronoi polygon shapefile. The riverine, larval, S. damnosum s.l., 
shade canopied, habitat, data, feature attributes predicted by the Red 
Edge, NDVI, unmixed, biosignature variables were then transferred to 
Voronoi polygons automatically by appending the spatial attributes of 
one layer to another.

Results
The Red Edge, NDVI, geospectral, explanatorial parameters were 

generated in, ENVI using the Rapid EyeTM 5m, data. For each NDVI 
value, the total areas were determined for specific, ArcGIS, geoclassified 
LULC, surface, vegetation-related cover endemic, transmission-
oriented zones associated to the geosampled, S. damnosums.l., riverine, 
larval, habitat canopy, (e.g., floating and emergent vegetation) and for 
a few hybrid, vegetation-cover classes consisting of open water and 
submersed vegetation surrounding the georeferenced riverine habitat. 
The vegetation LULC cover classes (dense canopy, sparse canopy, bare 
rock and water) comprised the largest total area of the NDVI value. 
The equation Image Server employed to generate the output produced 
a single-band dataset from each 5m data product. The differential 
reflection in the red and IR bands from the 5m imager enabled 
quantifying density and intensity of canopy, green, vegetation growth 
using the geospectral reflectivity of solar radiation. Our model revealed 
green leaves surrounding the shaded, S. damnosum s.l. habitat had 
better reflection in the NIR wavelength range than in visible wavelength 
ranges. When leaves are water stressed, diseased, or dead, they become 
more yellow and reflect significantly less in the NIR range [4,115].

The Red Edge NDVI produced in ENVI was subsequently exported 
into ArcMap. The NDVI was filtered in ArcMap for determining 
the lowest NDVI value that was associated to healthy, canopy green 
riverine, geo-classified LULC-relted vegetation of the geosampled, 
georeferenced, riverine S. damnosum s.l. larval habitat.To decide 
this value, the natural Rapid Eye color imagery as the top layer was 
color balanced and then added to the RedEdge NDVI canopy layer. 
By clicking on multiple 5m mixels with the Identity Tool, the edge of 
live/dead canopy LULC-related vegetation the imaged georefernced, 
S. damnosum s.l., riverine, larval habitat, gesoampled at the Chutes –
Dienkoa, eco-epidemiological, study site wasvisually detected on a risk 
map.

A Red Edge NDVI vale of 0.1 was determined for the brownish/
green (i.e, unhealthy sparse canopy) of the larval habitat canopy. 
Subsequently, a NDVI value of 0.9 was presumed to be associated 
with healthy, living, canopy vegetation. Thereafter, sequential classes 
of Red Edge, NDVI, quantitated values were created and then color 
coded accordingly. The Symbology Tab was employed to complete this 
step which was navigated to by using Layer Properties of the NDVI 
TIFF file. The symbology type was switched to “Classified” Histograms. 
Pressing the Classify button, set the exclusion values to -1.0 to 0.09. 

https://en.wikipedia.org/wiki/Determinism
https://en.wikipedia.org/wiki/Boolean_algebra_(logic)
http://www.esri.com
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ArcMap subsequently filtered out all values in this range for geo-
classifying the S. damnosum s.l. larval habitat 5m Rapid EyeTM data 
into operationizable, georeferenced clusters of similar values. The Red 
Edge NDVI Natural Breaks (i.e.jenks) was then created with 3 LULC 
classes (i.e., densed green vegetation, bare soil and water). By so doing, 
a schema was generated that separated stressed vegetation LULC (e.g., 
sedge) from the more vigorous vegetation LULC in the habitat canopy 
(e.g., emerging floating vegetation).We then created a copy of this 
NDVI layer and exported it back to ENVI. 

We then generated a correlation time series dependent, geospectral 
error matrix to determine the accuracy of the decomposed, Red Edge, 
NDVI, biosignature, parameter estimators. The row in the matrix 
cartographically represented the Red Edge NDVI data constructed 
from the decomposed, Rapid Eye data, 5m products, while the 
columns represented the reference data (i.e.,in-situ geosampled data). 
Measures of thematic accuracy were also generated including overall 
classification accuracy and percentage of omission, forecasting, 
explanatorial, predictor variables. The georeferenced, riverine, larval 
habitat, explanatorial, canopy-related, non-reflective, NPV, covariate, 
paramter estimator, coefficient, indicator, measurement values were 
the percentage of 5m mixels that were in a given Red Edge NDVI class, 
but were not eco-geographically or non-ecogeographically classified. 

Predicted sizes of open-water, submersed, and floating-and-
emergent canopy vegetation-related LULC cover areas were 
closely inspected for observed sizes in the polygonized dataset. An 
explanatorial, residualized, normalized, uncertainty-oriented output 
was then generated using the Kappa measures and the field-verified, 
geo-spatiotemporally dependent, photosynthetic, covariate, paramter 
estimator, coefficient values regressively devised from the Red Edge, 
NDVI, S. damnosum s.l., immature habitat, shade, canopied, geo-
spatiotemporally-geosampled, randomized variables. As primary 
accuracy measures, these canopy-related, biophysical, explanatorial 
change measures were normalized by the arithmetic mean of the 
calculated canopy entropies generated by the time series, geosampled, 
mapping variables.

A mixel-based classification of the geo-spatiotemporally, 
geosampled, shaded, S. damnosum s.l. georeferenced, riverine, 
larval habitat canopy, geo-classifed LULC vegetationwas thereafter 
undertaken employing ENVI technology. A standard unsupervised 
classification was performed using an ISODATA classification 
system and a maximum likelihood (ML) algorithm respectively. The 
ISODATA unsupervised classification calculated the class means in the 
georeferenced, riverine, larval habitat, Red Edge, NDVI, 5m,canopy, 
endmember variables evenly distributed in data space which were 
then subsequently iteratively clustered. The remaining endmembers 

were then regressively quantitated employing minimum distance 
techniques. Each iteration recalculated the means and reclassified 
the 5m, canopy, endmember, forecasted data with respect to the new 
calculated mean values. This process continued until the number of 
canopy endmembers in each designated vegetated, shade-oriented, 
operationizable, georefernced larval habitat, explanatorial, LULC class 
changed by less than the selected mixel change threshold in the object 
based classifier.

ENVI technology then automatically categorized individual 5m, 
endmember feature attributes of the Red Edge NDVI based on canopy, 
floating hanging and dead vegetation geospectral LULC classes. The 
object classifier converted the remotely-sensed raster layers to vector 
coverages which were then classified as shapefiles. ENVI provided 
interactive spatial/spectral mixel editing for the image components in 
the RedEdge, riverine, larval habitat, mapped NDVI. 

The ENVI Feature Extraction module automated the process of 
performing accurate segmentations. For example, the FLAASH model 
included a method for retrieving selected “dark” pixels (e.g., shaded, 
canopy, floating LULC, vegetation) in the scene. The spectral profile 
based on the image endmembers were then extracted using a spectral 
angle mapper (SAM) algorithm. The algorithm determined the spectral 
similarity between the geo-spectrally extracted, RedEdge, NDVI, S. 
damnosum s.l., larval habitat, remotely quantitated, radiance estimates, 
by calculating the angle between the canopy reflux emissivitives and 
by treating the reflectance spectra as vectors in eco-geographic space 
where the dimensionality was equal to the number of Rapid EyeTM 
bands. 

The FLAASH model output and the SAM algorithm compared 
the angle between the endmember spectrum vector and the 5m 
spectrum vector in n-D space. Spectral Angle Mapper calculated the 
spectral similarity between the RedEdge, NDVI, image spectrum 
and the reference reflective spectra which revealed that the RedEdge, 
NDVI, S. damnosum s.l., larval habitat, covariate, paramter estimator, 
coefficients was affected by solar illumination factors as the angle 
between the vectors was not independent of the vectors length. Smaller 
angles between the unmixed reference spectrum in the endmember 
spectral library. Shade canopied, larval habitat, endmembers that were 
further away than the specified maximum angle threshold in radians 
were not classified. 

We also employed the Spectral Information Divergence (SID) 
classification in ENVI to compare the similarity between the selected 
RedEdge, NDVI, S. damnosum s.l., georeferenced, riverine, larval 
habitat, shade-related, canopy-oriented, trailing vegetation–assocated 
LULC, endmember components by measuring the probabilistic 
discrepancy between their corresponding reflux emissivities. Initially, 
the ToolBox Classification in ENVI was selected to perform the 
classification chores. From the Enmember Collection dialogue menu 
bar, the SID algorithm was then selected. The Classification Input File 
dialog then appeared. An input file was selected which performed the 
spatial and geospectral subsettings and masking. 

From the Endmember Collection SID dialog we selected 
Import > spectra_source for collecting and archiving the NDVI 
geo-classified data.The SID, RedEdge, endmember, explanatorial, 
parameter estimator dialog appeared. Thresholding options were 
selected from the Set Maximum Divergence Threshold area. The Single 
Value parameterization was employed.A single threshold was choosen 
for the unmixed, canopied, S. damnosum s.l., larval habitat, shade-
oriented, canopied, floating, hanging and dead vegetation-related, 

  

Figure 13: A digital picture of a large S. damnosum s.l large habitat with ENVI 
window of raw biosignature mixel count.
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geo-classifed, LULC classes in the NDVI. A value was then entered 
in the Maximum Divergence Threshold field. This was the minimum 
allowable variation between the shade canopied, explanatorial, 
vegetation-related LULC endmember spectrum vector and the mixel 
vector. The default value was .05. Multiple values were then entered into 
a different divergence to test each LULC class against its corresponding 
maximum spectral divergence. A class was selected to assign threshold 
larval habitat, vegetation, endmember, probabilistic, radiance values 
which subsequently edited the value in the Edit Selected Value field 
employing the Maximum Divergence Threshold dialog.

Subsequently, classification output was selected to Memory. 
The Output Rule Images was selected to determine whether or not to 
create rule images. The rule images was employed to create intermediate 
classification image results before final assignment of the RedEdge, 
NDVI,S. damnosum s.l., georeferenced, riverine, larval habitat, LULC 
classes. The Rule Classifier was used to create a new classification image 
without having to recalculate the entire classification.

In Preview a 256m x 256m spatial subset was generated from the 
center of the output RedEdge, NDVI, S. damnosum s.l., georeferenced, 
riverine, larval habitat, classified image. The explantorial parameter 
estimators were changed as needed. In Preview the display was updated. 
ENVI added the resulting output to the Layer Manager. The output 
from SID was a classified 5m image and a set of classified sub-images 
(one per shade canopied, larval habitat endmember). The values of 
the rule images represented the SID value. The output of the equation 
that defined SID in ENVI for a pair of spectral vectors was identified. 
Lower spectral divergence measures represented better matches to the 
unmixed, endmember, canopied, larval habitat, derivative spectra. 
Areas that satisfied the Maximum Divergence Threshold criteria 
were carried over as classified areas into the classified larval habitat 
endmember spectrum vector image. The SID successfully calculated 
all the time series dependent, geospectral, error probabilities of the 
canopied, endmember, biosignature data in the library.

The spectral library accounted for all processes and factors 
influencing the explanatorial, geo-spatiotemporal, reflectance-related, 
endmember, spectral data collection as rendered from the decomposed, 
RedEdge, S. damnosum s.l., georeferenced, canopied, riverine,larval 
habitat, NDVI, which was subsequently converted to match the 
library-based data. Analogously, the reference endmembers spectra in 
the library were transformed into the canopy endmembers spectra of 
the habitat biosignature. We expressed these unmixed, endmember, 
shade, canopy, vegetated, linear combinations as image endmembers. 
A function incorporating the calibration and the alignment was 
repeatedly evaluated for different candidate groups of the unmixed, 
Red Edge, NDVI, canopied, biosignature endmembers until a suitable 
representation of the image endmembers was determined. 

Before applying the spectral index to the Rapid Eye imagery, 
raw mixel values [ i.e., digital numbers (DN)] were converted into 
physically meaningful units to differentiate endmember reflectance 
spectra and immature Similium productivity based on habitat size in 
ENVI. The digital numbers of the RapidEyeTM image mixels represented 
absolute calibrated radiance values in ecogeographic space where 
non-atmospheric corrected images reflectance values were generated. 
To convert the DN of the georeferenced, geosampled, S. damnosum 
s.l. riverine, larval habitat,extracted mixel to radiance values it was 
necessary to multiply the DN value by theradiometric scale factor, as 
follows: RAD(i) = DN(i) * radiometric ScaleFactor (i). The resulting 
value was the ToA radiance of the larval habitat mixel in W/m2sr μm. 
The formula used in this process were as follow: 

(( / ( ))*L LMAX LMIN QCALMAX QCALMINλ λ λ= − −

( )QCAL QCALMIN LMIN
λ

− +

where: Lλ was the quantitated Rapid EyeTM cell 
value and where radiance QCAL was equal to DN, 
while LMINλ was the 5m spectral radiance scales to QCALMIN, 
LMAXλQCALMIN which was the minimum quantized calibrated mixel 
value. QCALMAX was the maximum quantized calibrated mixel value 
(i.e., 255). The small habitat had a DN of 68 while the larger habitat had 
a DN of 117. The larger, georeferenced, riverine, larval habitat had a 
larger immature count than the smaller larval habitat (Figure 13).

A canopy, Red Edge, NDVI,S. damnosum s.l., larval habitat was then 
created employing the ENVI spectral library. A standard ENVI spectral 
library (.sli) was selected. By so doing, ENVI's Spectral Library Viewer 
was launched. The left side of the Spectral Library Viewer dialog listed 
the Red Edge, NDVI, larval habitat, endmember biosignature within 
the selected library. The right side of the viewer used tabs to display 
the metadata for selected canopied biosignature variables and queried 
selected endmember, covariate, parameter estimator, coefficient values. 
Metadata for the selected biosignature appeared in the Metadata tab.the 
area.We noted that the factor LAI/cosθs represented the riverine, larval 
habitat, canopy vegetative, optical thickness. Thus, the proportion of 
incident fPAR that was intercepted by the geosampled, georefernced, 
shade, canopied, habitat was dependent on the canopy structure (LAI). 
Asrar et al. (1984) demonstrated that NDVI and APAR are functions 
of LAI.

A successive projection algorithm (SPA) in Asrar et al. (1984) 
was built for decomposing the Red Edge, NDVI,S. damnosum s.l. 
habitat,canopy endmember, riverine LULC, biosignature employing 
convex geometry and orthogonal projection.The extraction Asrar et al. 
(1984) shade, canopied, sub-mixel, operationizable,image endmembers 
from the decomposed biosignature without having to reduce the 
sampled data dimensionality. SPA built on the convex geometry search 
algorithm by including a constraint on the spatial adjacency of the 
endmember candidate, Red Edge, S. damnosums.l., endmember, larval 

Figure 14: Red Edge S. damnosum s.l.larval habitat biosignature canopy 

energy flux as calculated by ( ) ( ) 2
4

ˆ ˆ, , , WJ r t SL r S t d
mπ

 = Ω 
 ∫

    .

http://www.exelisvis.com/docs/parallelepiped.html#previewing
https://en.wikipedia.org/wiki/Flux
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habitat, unmixed, NDVI-related, biosignature decomposed variables 
with its associated explanatorial, georeferncable sub-mixel, reflectance 
components. The SPA reduced the susceptibility for searching for 
outliers. The algorithm described how a vertex was identified based 
on its spectral uniqueness in the simplex. The algorithm measured 
the vector Euclidean norm and the distance of the RedEdge, NDVI, 
larval habitat, derivative spectra to the subspace which was defined by 
selected canopy endmembers. A meaningful canopy endmember for 
this vertex was the multiple candidate LULC endmembers that were 
spectrally distinct (e.g., those that were geolocated on the habitat 
canopy at or near one of the corners of the simplex). 

The convex geometry SPA provided information on the convergence 
of the algorithm.This property was employed in the SPA algorithm to 
determine the main step in thegeorferenced, riverine, larval habitat,end 
member, biosignature decomposition for quantitation of the RedEdge, 
NDVI,canopy, spectral heterogeneity at the vertices of the simplex. 
For the given geosampled, canopy endmember, riverine, larval habitat, 
unmixed, biosignature point in the simplex, a point with maximum 
distance was at the vertex of the simplex.

Based on the SPA residual algorithmic output, the affine 
transformation (i.e., orthogonal projection) of the simplex generated 
was also a simplex.This output revealed that the shade, canopied, 
decomposed, Red Edge, NDVI, canopy, LULC-oriented, vegetation-
related, biosignature endmembers were located in the vertices of the 
new simplex after the transformation. This transformation allowed the 
use of the orthogonal subspace projections as the core mechanism for 
parsimoniously conducting the decomposition endmember extraction 
exercise.

A vector with maximum Euclidean norm (i.e., magnitude) was 
generated at the vertices of the simplex. In linear algebra, functional 
analysis and related areas of mathematics, a norm is a function which 
assigns a positive length or size to all vectors in a vector space, other 
than the zero vector [27]. A semi-norm was then allowed to assign 
zero length to some non-zero vectors. We employed the 2-dimensional 
Euclidean space R2 equipped with the Euclidean norm for analyzing 
the initially decomposed, S. damnosum s.l., larval habitat, canopy, 
biosignature endmembers. Euclidean space is a particular metric 
space that enables the investigation of topological LULC geo-classified 
properties such as compactness [4]. An inner product space is a 
generalization of a Euclidean space [2]. Both inner product spaces 
and metric spaces of the riverine, larval habitat, canopied, endmember 
model was explored within a functional analysis. Elements in this 
vector space are usually drawn as arrows in a 2-dimensional cartesian 
coordinate system starting at the origin (0,0) [12]. The Euclidean norm 
assigns to each vector the length of its arrow [2]. 

By including a constraint on the geospatial, Euclidean, subspace 
adjacency of the shaded, explanatorily, geospectrally decomposed, 
vegetated, S. damnosum s.l riverine, larval habitat LULC dataset and 
their individual canopy-related, endmember reflectance, geospectral 
values, the SPA algorithm captured the contiguous 5m-mixel VI in 
red, IR and NIR bands, employing data pre-processing applications 
in the sensor data. The georeferenced, shade, canopied, immature 
data was able to describe the change of the simplex volume ratio 
between successive iterations during the endmember extraction 
process. Further, the algorithm reduced the susceptibility to outlier 
5m-mixel, geospectrally-oriented, erroneous, resdiualized covariate 
coefficients which allowed for optimizing the unmixed, camopied, 
canopy endmember, LULC, reflectance spectra and eco-geographically 
classifying them based on their actual reflection attributes. 

Although, the decomposed, Red Edge, NDVI, geospectral, 
canopied, biosignature, endmember, decomposed LULC, 
explanatorial were extracted, the final dataset did not include any 
treatment of diffuse irradiance, canopy multiple scattering or leaf 
specularity. This decomposition exercise required the selection of 
individual wavelength information for each unmixed, wavelenght-
oriented, canopy, vegetated, endmember, photosynthetic and NPV 
data, feature attribute which was calculated by a radiative transfer 
equation. An analytical was then derived for the inclination angle 

density function which was 
3

2 2 2

2( )
( )

Sing
Cos Sin

χ αα
λ α χ α

=
+

where 

α was the leaf inclination angle, X was the ratio of vertical to 
horizontal projections of canopy elements, and A was a normalized 
ellipse area, approximated by λ=χ+1.774(χ+1.182−0.733 

We employed a three-dimensional 3-D radiative transfer model in 
ArcGIS to decompose the Red Edge,S. damnosum s.l., larval habitat, 
canopied biosignature. FLAASH, was based on theoretical model 
atmospheres using radiative transfer codes derived from optical 
characteristics of the atmosphere in our Rapid Eye TM 5m image. The 
software categorized the atmosphere in our image (riverine humidity, 
dry, etc.) and provided sun elevation angle, Image-based methods (e.g. 
dark object subtraction) are far less computationally intensive, but 
radiative transfer codes (e.g. FLAASH) can sometimes provide more 
reliable results when comparing images across space and/or time.
(https://geonet.esri.com/).

The process of solar radiative transfer in ArcGIS at the land surface 
is important to energy, water, and carbon balance, especially for 
vegetated, geoclassifed, LULC areas [1]. We used a two-stream model 
to consider the riverine, habitat, canopy plant, functional types within 
a gridded matrix to determine independence of each other and their 
leaves (i.e., horizontal homogeneous tendencies). The model revealed 
an increase of canopy absorption within sparse vegetation LULC with 
multi layered canopied area with a large sun zenith angle θsun which 
may have been due to increases of the ground and sky shadows and 
of the optical pathlength .This phenomenon may have been also due 
to shadow overlapping between the georeferenced, shaded habitat, 
canopy layers.

The flow of radiation energy through a small area element 
in the radiation field was characterized by radiance employing

( ) 2
ˆ, , WL r S t

m Sr
 
 
 

 . Radiance is defined as energy flow per unit normal 

area per unit solid angle per unit time [4]. We mathematically modeled 
the transfer of energy based on assumed photon movement in the geo-
spatiotemporally, geosampled, shade canopied, prolific, S. damnosum 
s.l., riverine, larval habitat where r  denoted position, S denoted 
unit direction vector and t denoted time. Several other important 
physical habitat quantities were remotely quantized based on the 

canopy radiance including fluence [i.e.,
2( ) ( , ) ( )JF r r t dt

m
+∞

−∞
= Φ∫

   ] 

and fluence intensity [i.e.,
24

ˆ( , ) ( , , ) ( )Wr t L r s t d
mπ

Φ = Ω∫
  ]. The vector 

counterpart of fluence rate in the prevalent direction of energy was 
then calculated (Figure 14)

A differential equation describing radiance [i.e., ˆ( , , )L r s t
] was 

generated in ArcGIS. The model was based on conservation of energy. 
Briefly, this theory states that a beam of light loses energy through 
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divergence and extinction (including both absorption and scattering 
away from the beam) and gains energy from light sources in the 
medium and scattering directed towards the beam [2]. Coherence, 
polarization and non-linearity are neglected. Optical properties such 
as refractive indexη , absorption coefficient μa, scattering coefficient 
μs, and canopy scattering anisotropy g are taken as time-invariant 
but may vary spatially [12]. Scattering is assumed to be elastic [27]. 
A georeferenced, S. damnosum s.l., riverine, larval habitat, shaded, 
vegetation-related ,LULC, canopy-related, regression-related equation 
was then written from the NDVI data as: 

^
^ ^ ^( , , ) / . ( , , ) ( , , )t

L r s t c s L r s t L r s t
t

µ
→

→ →∂
= − ∇ −

∂

4

ˆ( , , ) / ˆ ˆ ˆ ˆ ˆ ˆ ˆ· ( , , ) ( , , ) ( , , ) ( · ) ( , , )t s
L r s t c s L r s t L r s t L r s t P s s d S r s t

t π
µ µ∂ ′ ′ ′= − ∇ − + Ω +

∂ ∫


     

where C was the relative refractive index, μt μa+μs was the extinction 

coefficient, ˆ ˆ( , )P s s′ was the phase function, representing the probability 

of habitat canopy light with propagation direction ŝ′ being scattered 
into solid angle dΩ around ŝ′. In most cases, the phase function 

depends only on the angle between the scattered ŝ′ and incident 

ŝ′ directions, i.e. ˆ ˆ ˆ ˆ( , ) ( · )P s s P s s′ ′=  [4,115] the scattering canopy 

anisotropy was then expressed as 
4

ˆ ˆ ˆ ˆ( · ) ( · )g s s P s s d
π

′ ′= Ω∫  and
ˆ( , , )S r s t .

Radiance was expanded on a basis set of spherical harmonics 
Yn, m. In diffusion theory, radiance is taken to be largely isotropic, 
so only the isotropic and first-order anisotropic terms are used 
[2]. Here we defined the riverine larval habitat canopy radiance 

using 
1

, ,
0

ˆ ˆ( , , ) ( , ) ( )
n

n m n m
n m n

L r s t L r t Y s
= =−

≈∑ ∑  where L n, m were the 

expansion coefficients. Radiance was expressed with 4 terms; one for 
n=0 (the isotropic term) and 3 terms for n=1 (the anisotropic terms). 

Using properties of spherical harmonics and the definitions of fluence 

rate ( , )r tΦ
 and tabulated canopy densities from ( , )J r t

  , the isotropic 

and anisotropic terms were respectively thereafter expressed as follows:
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  Hence, 

we approximated the riverinehabitat canopy radiance as

1 3ˆ ˆ( , , ) ( , ) ( , )·
4 4

L r s t r t J r t s
π π

= Φ +
   .

Substituting the above expression for radiance, the geo-
spatiotempoally, geosampled, prolific, S. damnosum s.l. georeferenced 
canopied, riverine larval habitat forecasting, eco-epidemiological, risk 
model estimators were respectively rewritten in scalar and vector forms. 
The scattering term integrated over the complete 4π solid angle. For 
the vector form, the photosynthetic and NPV covariate coefficients 
were multiplied by direction Sbefore evaluation. The forecasts rendered 

revealed two outcomes: ( , ) ( , ) · ( , ) ( , )a
r t r t J r t S r t

c t
µ∂Φ

+ Φ +∇ =
∂

     

and ( , ) 1( ) ( , ) ( , ) 0
3a s

J r t J r t r t
c t

µ µ ′
∂

+ + + ∇Φ =
∂

     . The diffusion 

approximation is limited to systems where reduced canopy scattering 
coefficients is much larger than their absorption coefficients and 
minimum layer thickness of the order of a few transport mean free 
path [4].

Using the second assumption of diffusion theory, we noted that the 
fractional change in canopy density ( , )J r t

  over one transport mean 
free path in the geosampled riverine, larval habitat was negligible. 

The vector representation of the diffusion theory reduces to Fick's law

( , )( , )
3( )a s

r tJ r t
µ µ ′

−∇Φ  [4] which we then employed to define canopy 

density in terms of the gradient of fluence rate. Substituting Fick's law 
into the scalar representation of the geosampled, S. damnosum s.l., 
larval habitat regressable residual estimates gave the diffusion equation

1 ( , ) ( , ) ·[ ( , )] ( , )a
r t r t D r t S r t

c t
µ∂Φ

+ Φ −∇ ∇Φ =
∂


  

 
The model revealed 

1
3( )a s

D
µ µ ′

=
+

 which was the diffusion coefficient and μ's = (1-g) μs 

which was the canopy scattering coefficient.
Notably, there was no explicit dependence on the scattering 

coefficient in the diffusion equation. Instead, only the reduced scattering 
coefficient appeared in the expression for D. This lead to an important 
relationship; diffusion in the geo-spatiotemporally-geosampled, shade 
canopied, prolific, S. damnosum s.l., georeferenced, riverine, larval 
habitat was unaffected if the canopy anisotropy was changed while 
the reduced scattering coefficient remained constant. For qualitatively 
quantitating various configurations of boundaries (e.g. layers of canopy 
and light sources), a diffusion equation was solved.

The source term in the diffusion equation became

( , , , ) ( ) ( )S r t r t r r t tδ δ′ ′ ′ ′= − −
   

, where r  was the 
position at which fluence rate was measured and  r′ was 
the position of the source. The pulse peaked at time .t′  The 
diffusion equation was solved for fluence rates which yielded

2

3/2( , ; , ) exp exp[ ( )]
[4 ( )] 4 ( )

µ
π

′ −′ ′Φ = − − − ′ ′− − 

 
 

a
cr t r t c t t

Dc t t Dc t t
r r∣ ∣

The term [ ]exp ( )ac t tµ ′− − represented the exponential 
decay in the geosampled, shade canopied, prolific, S. damnosum s.l., 
georeferenced, riverine, larval habitat, fluence rate due to absorption 
in accordance with Beer's law. The other terms represented broadening 
due to canopy scattering. Given the above solution, an arbitrary source 
was characterized as a superposition of short-pulsed point sources. 
Taking time variation out of the diffusion equation rendered the 
following for a time-independent,, canopied, eco-epidemiological, 

capture point source: ( ) ( )δ= S r r : eff
1( ) exp( )

4
r r

Dr
µ

π
Φ = −


We 

noted that eff
a

D
µµ =

 
was the effective attenuation coefficient and 

indicatedthe rate of spatial decay in fluence.

Consideration of the habitat, shaded, boundary conditions 
permitted use of the diffusion equation output to characterize light 
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propagation in the canopy. To begin to address a boundary, one can 
consider what happens when photons in the medium reach a boundary 
(i.e. a surface) [12]. The direction-integrated the riverine habitat 
canopy radiance at the boundary and directed it into the mediumwhich 
was equal toquantitating the direction-integrated radiance at the 
boundary and directed out of the medium multiplied by reflectance

FR :
ˆ ˆ ˆ ˆ· 0 · 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) · ( · ) ( , , ) ·Fs n s n
L r s t s nd R s n L r s t s nd

< >
Ω = Ω∫ ∫

  where ˆ n
was normal to and pointing away from the boundary. The diffusion 
approximation then rendered an expression fordetermine the riverine 

larval habitat canopy radiance L in terms of fluence rate Φ and current 
density J


. The steps in representing a beam incident on the semi-

infinite canopy habitat anisotropically scattering medium was based on 

two isotropic point sources: ˆ ˆ( , ) ( , )( , )· ( , )·
4 2 4 2J
r t n r t nJ r t R R J r tΦ

Φ Φ
+ = −

   

where 
/2

0
2sin cos (cos )FR R d

π
θ θ θ θΦ = ∫ . Therefater 

/2 2

0
3sin (cos ) (cos )J FR R d

π
θ θ θ θ= ∫  was tabulated. Substituting 

Fick's law ( ( , ) ( , )J r t D r t= − ∇Φ
   ) then rendered a distance 

from the riverine, ,immature, habitat, canopy boundary where 

z=0 ( , )( , ) z
r tr t A
z

∂Φ
Φ =

∂




 
and where eff

eff

12
1z

RA D
R

+
=

−
. 

Solutions to the equation of radiative transfer. equation included 

0

0

( , ) ( , )
0( ) ( ) ( )

ss s s s

s
I s I s e j s e dsν ντ τ
ν ν ν

′− −′ ′= + ∫  The differences 

were essentially due to the various forms of thehabitat emission and 
canopy absorption coefficients

A decrease of canopy absorption occured in densely vegetated, 
LULC ccanopy georeferenced, riverine, larval habitat areas with 
small θsun. in ArcGIS For a one-layer canopy, these decreases may 
have been due to crown shape effects that enhanced the transmission 
through the canopy edge [12]. For the multilayer canopy portion of 
the georeferenced, riverine, larval habitat, aside from the shape effects, 
transmission may have been increased by the decreased ground shadow 
due to the shadow overlapping between layers. Ground absorption 
usually changes with opposite sign as that of the canopy absorption 
[25]. Somewhat lower albedos are found over most vegetated areas 
throughout the year [7]. The 3D model quantitated the affects of the 
fraction of sunlit canopy leaves and their corresponding absorption 
values in the geosampled, productive, georefernced, S. damnosum s.l., 
riverine, larval habitat.

The Pareto frontier, P(Y), was formally described by considering a 

system with function : n mf R R→ , where X was a compact set of feasible 
decisions in the metric space Rn, and Y was the feasible set of criterion 

vectors in mR , such that { ( ) }: ,mY y R y f x x Xε ε= = .This 

equation was constructed employing all the empirical photosynthetic 
and NPV, S. damnosum s.l., riverine, larval habitat, geosampled, canopy 
covariates. Assumptions were determined of the preferred directions of 

known criteria values. A geosampled habitat point [i.e., '' my Rε ] was 
determined which was then written as '''y y< . The Pareto frontier for 
the empirical geosampled, geo-spatiotemporal S. damnosum s.l. larval 

habitat was then ( ) {{ } }' '' : '' : '' , ''P Y y Y y Y y y y yε ε θ= < ≠ = .

In the geometric optical model the shape of the hotspot function of 
the georefernced, geosampled, S. damnosum s.l., canopied, endmember 
biosignature was found to be based on the viewing and illumination 
positions in the model, which were diverged due to the shape and 
height of the spheroids. The equation was helpful to understand how 
the shape of the geosampled, georeferenced, riverine, larval habitat, 
and geospectally/geospatially associated floating, hanging and dead 
vegetation LULC, canopied components governed the shape of overlap 
functions. The exact overlap function on the principal cone was also 
captured employing the hybrid of the geometric optical model which 
revealed canopy bidirectional reflectance values over the decomposed 
explanatorial, endmember biosignature data featureattributes. 

In the model the viewing zenith was the viewing direction which 
had a different azimuth than the illumination position. Rather than 
computing the overlap of ellipses rendered from the decomposed, 
canopy, biosignature, endmember, NDVI components at arbitrary 
inclinations, a linear function was instead employed which robustly 
quantitated the diminution of the overlaps rendered from the model 
residuals using azimuth angles. The azimuthal cut off of the hotspot in 
the georeferenced, geosampled, S. damnosum s.l. riverine, larval habitat 
canopy was then geolocated.

The shape of the hotspot functions was found to be based on the 
viewing and illumination positions in the Red Edge, NDVI, larval 
habitat, canopy, reflectance model which diverged due to the shape and 

height of the spheroids. The equation ( )2 sec sec , ,i v i vR O
gK e λπ θ θ θ θ ϕ′ ′ − + − =  

was helpful to understand how the shape of the decomposed endmember 
canopy, biosignature’s shaded, riverine, larval, habitat components 
governed the shape of the overlap functions. Since it is important to 
have an exact solution for overlap function on the principal plane 

[2,3], the equation ( ) ( )( ), , sin cos sec seci v i vO t t tθ θ ϕ θ θ π′ ′= − +

was employed where 
( )

tan tan cos
cos

sec sec
i v

i v

h
t

b
θ θ ϕ
θ θ
′ ′−

=
′ ′+

. Exact overlap 

function on the principal cone was obtained for the model where 

v iθ θ′ ′=  and ϕ  varied from 0 to 2π . The hybrid of geometric 
opticality for the canopy biosignature model was then determined 
for qualitatively quantizing habitat canopy, unmixed, bidirectional 
reflectance over the decomposed, S. damnsoum s.l., larval habitat, Red 
Edge, NDVI, endmember values. 

In the Red Edge, NDVI, S. damnosum s.l., larval habitat, canopy 
endmember, biosignature model the viewing zenith was vθ , but the 
viewing direction had a different azimuth than the illumination 
position. Rather than computing the overlap of ellipses rendered from 
the georeferenced, riverine, larval habitat canopy floating, hanging 
and dead vegetation-related, explanatorily temporally dependent, 
endmember NDVI components at arbitrary inclinations and distances 
directly, a linear function was instead fit to the diminution of the 
overlaps generated employing azimuth angles.

( )
4

tan tanv i

R
h θ θ

Φ =
+

 

was then approximated by the azimuthal cut-

off of the hotspot as determined by the Red Edge, NDVI, S. damnosum 
s.l., larval habitat, canopy, endmember, biosignature model. Linearly 
interpolated, explanatorial, time series forecasts were employed for 
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definingϕ  between 0  and Φ  or . For the case πΦ < , we assigned 

( ) ( ), , , ,i v i vO Oθ θ ϕ θ θ ϕ π= =  for all ϕ  between Φ  andπ . 

Though this approximation we were able to quantify any small errors 
in canopy overlapping areas. The residual output from the equation 

[i.e. ( ) 1, , sec sec tan tan cos
2i v i v i v

hO
b

θ θ ϕ θ θ θ θ ϕ ′ ′ ′ ′= + − −  
] was 

then employed to determine if the model quantitated azimuthal width 
effectively for adequately determining the riverine, S. damnosum 
s.l., larval habitat, canopy,“hotspot” effect as determined by the R h  
ratio. The outward width of hotspot on the principal plane was then 
determined by b h  ratio; and, the inward width was determined by 
both [129-135].

Exact contribution of sunlit, georeferenced, geosampled, canopied, 
riverine, larval habitat, surface, predictor variables and their shading 
effects were then quantized. The effect of sunlit canopy on the 
bidirectional reflectance was explanatorily quantified employing the 

second term in equation ( ) , ,
,

cos cosc
g A

i v

i s v sCR i v K G ds
A θ θ

= + ∫ ∫  [3.1]. This 

variation depended on both the density and angular distribution of ds 
in the equation [3.1]. Strahler and Jupp [136] assumed that each object 
in a scene could be modeled as a sphere without mutual illumination 
shading between ds elements. As such, a second term for quantitating 
the decomposed, S. damnosum s.l., canopy, biosignature, sub-mixel 

data was approximated by ( )( )2 sec1 1 , 1
2

vR
cK C i v e Cλπ θ′′−= + − . In 

this expression, the first term was the illuminated proportion of the 
area of a single sphere viewed at position v which was also illuminated 
at position i . This was weighted by the second term which was the 
proportion of the area of spheres visible from zenith angle ,i v. Since 
both terms varied smoothly between zero and one, this contribution 
to the riverine larval habitat canopy hotspot was quite flat. In the 

case of a spheroid, we simply then replaced ,i v by ,i v′ ′ , where

, cos cos sin sin cosi v i vi v θ θ θ θ ϕ′ ′ ′ ′ ′ ′= + .

The first term in equation ( )( )2 sec1 1 , 1
2

vR
cK C i v e Cλπ θ′′−= + − in 

ArcGIS ignored the problem of mutual shading of the S. damnosum s.l., 
riverine, larval habitat, canopy floating, hanging and dead vegetation 
endmember, NDVI components in the model. We handled this 
problem by employing a multiple integration, in which the mutual 
shadowing of the riverine larval habitat canopy and other associated 
wihin-canopy habitat objects were treated in the same way as the 
mutual shading of the leaves. Our objective was to derive a simple 
approximation to describe the effect of the shaded, larval habitat, 
canopy cover based on collections of individual, discrete, endmember, 
reflectance, surface values (i.e., trailing vegetation components) as 
rendered from the model forecasts. To carry this out, we developed 
an approach that applied one-stage geometric optics to deal with the 
geospatial relationship between the endmember reflectance spectra of 
the riverine, habitat, canopied, surface components that was mutually 
shaded in the illumination direction and the georeferenced explanatorial 
parts mutually shaded in the view direction. Quantification of the 
mutual shadowing larval habitat proportions generated from the 
decomposed, geo-spatiotemporally, geosampled, S. damnosum s.l., 
larval habitat, riverine, canopy and its associated georeferenced, 
vegetation-related, LULC, endmember components revealed no 
collinearity. In Li and Strahler [113] simulation and mathematics 
simplified to the one-dimensional case which was proved so that for the 

nadir-viewed cone model, mutual shadowing of illumination would 
not change the ratio ( )1c gK K− . In the georefernced, riverine, larval 
habitat, canopy reflectance, forecasting, eco-epidemiological, risk 
model, this ratio was itself denoted Kc which we employed to generate 
u cA A  

for parsimoniouslyquantitating consistency with Kg where the 
mutual shadowing in illumination and viewing directionswas deemed 
independent (i.e., cA A ) for consistency with Kg.

We then considered the proportion of the riverine, georeferenced, 
S. damnosum s.l., larval habitat canopy which was mutually shadowed 
by the georefernced, vegetation -related LULC endmember components 
in the model regressors. In the direction of illumination, there was 
some photosynthetic and NPV geospectral, endmember, reflectance 
commponents which had an area (e.g., 2 sec iRπ θ ′ ) only in specific 
areas of the Red Edge, NDVI, endmember, canopied biosignature. For 
example, the total projected area of the immersed canopy endmember 
LULC vegetation components was 2 sec iRλπ θ ′ , if there was no mutual 
shadowing. 

If there was mutual shadowing inthe Red Edge NDVI, canopy, 
endmember biosignature, the net projected area in the larval habitat 

canopy was
2 sec1 iReλπ θ ′− . The difference indicated the total mutual 

shadowing of the entire canopy cover. The quantity Mi, was the mutual 

derived canopy shadowing proportion in the illumination direction 

which was calculated as 
2 sec

2

11
sec

iR

i
i

eM
R

λπ θ

λπ θ

′−−
= −

′ iM . The product 

revealed the degree of mutual canopy shadowing in the illumination 
direction. Next a spheroid, was determined, which on average, had 
a proportion Mi of the Red Edge, NDVI, S. damnsoum s.l., habitat, 
canopy biosignature, surface area that was not sunlit. This part of the 
habitat canopy was concentrated at the lower part of the spheroid. We 
then generated a boundary drawn on the habitat canopy surface of the 
spheroid with the area comprising Mi located below it. 

Similarly, we defined Mv as the mutual shadowing proportion of 
the floating, hanging and dead vegetation-related, LULC-oriented, 
sub-mixel, explanatorial, components in the view direction as 

2 sec

2

11
sec

vR

v
v

eM
R

λπ θ

λπ θ

′−−
= −

′
. The viewing shadows were concentrated at the 

lower part of the spheroid so the Mv boundary was definable. The 
proportion of sunlit in the Rapid Eye sensor captured corresponded 
to the area above both M1and Mv boundaries which was dependent on 
both zenith and azimuth differences between the illumination and view 
directions. At the hotspot, Mi and Mv t boundaries overlapped and the 
RapidEye TM data revealed no mutual shadowing of the geosampled, 
larval habitat, canopy, vegetation-related, LULC, endmember 
components. Interestingly, when the view zenith angle was larger than 
the illumination zenith angle, Mv was greater than Mi and little or no 
mutually-shaded canopy habitat area was visible, based on the azimuth 
differences between the imaged objects. Thus, the 5m, Red Edge, 
canopy biosignature was able to capture the essence of the mutual-
shading effects of the canopy, floating, hanging and dead vegetation, 
decomposed, endmember, unmixed, geospectral components.

We then quantified the f-Ratio of nonnadir-viewed, canopy-based 
habitat spheroids employing the decomposed, Rapid Eye™ data. First, we 
considered a single spheroid in the riverine, larval habitat, canopy sub-
mixel, unmixed, geospectral data. For the spheroidal case, it is necessary 
to show whether the f-Ratio is still independent of density, as in the 
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case of the nadir-viewing cones [58,105]. From the view direction, the 

spheroid had a projected area 2 secv vRπ θ ′Γ = ; however, onlythe portion 

( )1 1 ,
2

i v′ ′+  of the larval habitat canopy cover was sunlit. Similarly, the 

illumination shadow on the ground occupied the habitat canopy area 
(i.e., 2 sec iRπ θ ′ ). The compound area of viewed riverine, larval habitat, 
floating, hanging and dead vegetation, LULC-related, endmember, sub-mixel 
components plus illumination shadow projected onto the background 

was ( )2 sec sec , ,i v i vR Oπ θ θ θ θ ϕ′ ′ ′ ′Γ = + −   . We defined the f- ratio for 
the spheroidal and its eoc-geospectrally associated explanatorial, covariate, 

parameter estimator, coefficients as ( )
( )

1 1 , sec
2

sec sec , ,

v
c

i v i v

i v
F

O

θ

θ θ θ θ ϕ

′ ′ ′+Γ
= =

′ ′ ′ ′Γ + −
, 

where cΓ  was the sunlit area of the georeferenced riverine, larval habitat, 
shade, canopied, floating, hanging and dead vegetation, LULC-related, 

canopy, endmember components. The corresponding ratio 1
c

g

Kf
K

=
−

 

for 

the endmember selection was then defined for the Red Edge, decomposed 
canopy, biosignature, NDVI, endmember emissivities. 

In the unmixing model n represented the shadow parameters 
generated from the unmixed, Red Edge, canopied, endmember 
biosignature, NDVI, S damnsoum s.l., riverine, larval habitat 
decomposed mixel. If there was no mutual shadowing, the model 
rendered f = F. As n increased, however, mutual canopy shadowing 

occurred and, as such, ( )2 sec sec , ,i v i vR O
gK e λπ θ θ θ θ ϕ′ ′ − + − = . We then 

defined the mutual canopy shadowing proportion M as 
1

1 gK
M

λ
−

= −
Γ

, which was the fraction of total shadowing cast from the floating, 

hanging and dead vegetation-related, LULC, endmember relection 
components that fell onto the larval habitat canopy cover instead of 
the background. The sunlit and viewed shade, canopy-related, riverine, 
larval habitat, explanatorial, surface data feature attributes were then 
reduced by hiding either from viewing or from illumination. 

The f-Ratio with mutual habitat canopy shadowing was

( )
( )1

,
11

c cc A A c

g

n n
f F

MA K
Γ − ∆ − ∆ Γ

= =
−−

∑ ∑  where 
cA∆∑  was the total 

decrement from cnΓ  to cA  (i.e., the background-projected area of 
viewed, sunlit, larval habitat, canopied surface). 

cA∆∑  
was expressed 

employing three terms: a decrement due to mutual canopy shading 
in the view direction plus a decrement due to mutual canopy shading 
in the sun direction, minus those elements shaded in both directions 
using ( )

cA v v v i i on P M PM P∆ = Γ + −∑ , where Pv was the conditional 
probability that the geosampled, riverine, canopied, larval habitat 
faced the sun given that it was mutually shaded from view. Pi was the 
probability that the floating, hanging and dead vegetation -related 
LULC, canopy endmember surface elements faced the viewer given 
that it was mutually canopy shaded from illumination. Both Pi and Pv 
were average proportions of the larval habitat, canopy-related, gridded 
areas projected in the view direction. 

Po, the third term in the model was the overlapped part of the first 
two terms, expressed as a fraction of vΓ . We noted that the Po, contained 
three parts derived from the Rapid Eye™ imaged 5 m, explanatorial, geo-
spatiotemporally, geosampled, canopy-related, riverine larval habitat, 

surface elements(i.e., floating, hanging and dead vegetation-related 
LULCs). This collection contributed to the georeferenced, riverine, larval 
habitat, canopy hotspot due to the spatial correlation of the shadows. 
Since the probabilities of being hidden in multiple directions were not 

independent, we were able to substitute ( )
cA v v v i i on P M PM P∆ = Γ + −∑  

into ( )
( )1

,
11

c cc A A c

g

n n
f F

MA K
Γ − ∆ − ∆ Γ

= =
−−

∑ ∑  which yielded a single 

expression for ( )1
1

v v v i i o cP M PM P
f F

M
−Γ + − Γ

=
−

. We then modelled, 

Pv, Pi and Po. We employed all illumination or viewing canopy shadows 
incorporating Mior Mv where the Red Edge, NDVI, reflected, canopy 
boundaries respectively. In our model, Pv,, Pi and Po, were used to 
visualize the Mv and Mi boundaries. Since, viewing and illumination 
canopy-related shadows fell strictly below Mv and Mi boundaries, Pv,, 
the conditional probability that a geospatiotemporal, geosampled, 
seasonal, habitat canopy surface element facing the sun given the 
mutually shadowed areas, was the ratio of the illuminated portion of 
the projected surface below the Mv boundary. 

Correspondingly, Pi was the conditional probability that the 
explanatorial, operationizable, geo-spatiotemporally, geosampled, 
riverine, S. damnsoum s.l., larval habitat, riverine canopy directly 
faced the viewer and was mutually shaded from illumination. The ratio 
of the viewed portion of the projected, Red Edge, NDVI, delineated 
georefernced, riverine, larval habitat canopy area below the Mi boundary 
was subsequently quantitated. Note, that Mi was the proportion of 
mutually-shaded, Red Edge, NDVI, delineated, larval habitat, canopy 
surface projected to the direction of illumination, but i i vPM Γ  was the 
area of this fraction of the habitat canopy surface with floating hanging 
and dead vegetation-related, LULC endmember components projected 
to viewing direction. Proper calculation of this portion of the riverine, 
larval habitat, geosampled canopy and its associated attributes involved 
some projection change. We then used Po as the quantized variable 
representing all the overlapping areas (i.e., o), which was represented 
as a fraction of vΓ .

We then considered the case in the principal plane for further 
geospectrally decomposing the geosampled, riverine, S. damnsoum s.l., 
larval habitat biosignature. For simplicity, we assumed that all shadows 
from the Red Edge, canopied, S. damnosum s.l. larval habitat, floating, 
hanging and dead endmember vegetation, LULC components fell below 
the boundaries Mv and Mi, which were the traces of planes intersecting 
the spheroid at its center. The angle between the planes of the Mi and the 

illumination boundary was ( )1cos 1 2
iM iMθ −= − .We defined 

vMθ  
similarly. At the larval habitat hotspot, the Mi and Mv boundaries 
coincided when 1v iP P= = , o vP M M= = , and 1f F= = . We then 
assumed that the viewing zenith angle increased to v iθ θ> . In usual 
cases when mutual shadowing of an entomological-related, seasonal-
geosampled, larval habitat is to be considered, the Mv boundary is 
higher than the Mi boundary [73]. 

In the Rapid Eye™ sensor’s view, Pv was the ratio of the riverine habitat’s 
surface area between Mv boundary and the illumination boundary to the 

whole area under the Mv boundary. That is, ( )v v v c
v

v v

M
P

M
Γ − Γ −Γ

=
Γ

while 

Pi was one, and Po cancelled the Mi term. Then, the equation become 

( )
( ) ( )
11 1

1 1 1

v
v vv v v c

c g

MP M ef F F
M M K

λ− Γ− Γ− Γ Γ −
= = =

− − Γ −
. This result suggested 

that when the viewing direction in the principal plane deviated from 
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(θv >θi), the f -ratio changed in the riverine, S. damnsoum s.l., larval 
habitat, canopy reflectance model forecasts. When the coverage 
is very low, the increment of θm may be also so small that Mv will be 
under the Mi boundary [75]. As such, we simply ignored mutual 
shadowing in the riverine, larval habitat. We did however, realize that 

when θv moved inward on the principal plane but had not reached 

nadir, the Mi was higher than Mv: hence, 1vP = , o vP M= , and

( )1 cos cos

1 cos
i

i

M i v
i

M

P
θ θ θ ϕ

θ

′ ′− − +
=

−
After θv passed the nadir, the Mv boundary went to the opposite side 

of the spheroid from Mi. In this case, the Red Edge, NDVI, sub-mixel, 
geospectral data revealed the horizontal projection of the larval habitat 
canopy and its floating, hanging and dead vegetation, canopy LULC,  
explanatorial, endmember decomposed components at 2ϕ π= . We 
then used Pi just as in Strahler and Jupp [129], with ϕ  equal to π
where Pvwas the fraction of Mv over the illumination boundary, i.e., 

( ) ( )

( )

1 cos cos
, cos 0

1 cos

0, cos 0

v

v

v

v

M v v
M v v

Mv

M v v

P

θ θ θ θ
θ θ θ θ

θ

θ θ θ θ

 ′ ′− − +
 ′ ′− + ≥ −=  
 ′ ′− + < 

.

Note when vθ  was between the riverine, explanatorial, 
georeferenced, geosampled, larval habitat hotspot and nadir, Pv 
was always 1 and a discontinuity of Pv appeared at the nadir. This 
discontinuity arose from the assumption that all the riverine larval 
habitat shadow components fell under the Mv boundary. Additionally, 
the Mv at 0vθ =  was the physical intersection of the canopy 
boundaries between the larval habitat floating, dead and the hanging 
immersed, canopy endmember NDVI components, which did not 
change with viewing geometry: thus, PvMv was still continuous at 
nadir, and equal to Po. In other words, the S. damnsoum s.l. riverine 
larval habitat canopy formula had a very large viewing zenith, so that 

)cos 0
vM i vθ θ θ ϕ′ ′− + > .Our decomposed, Red Edge, NDVI, canopy, 

endmember biosignature model revealed that when Mi and Mv were 

independent in ( )
cA cn M∆ Γ =∑ , 

( )
( )1

,
11

c cc A A c

g

n n
f F

MA K
Γ − ∆ − ∆ Γ

= =
−−

∑ ∑ . If 

all the spatial objects are at the same height, the situation will be very 
close to the “uniform height case” – mutual, time series, canopy-related 
shadows will always fall on the lower part of the objects and the object 
top-viewing effect will be strong [115]. However, when canopy heights 
are distributed over a wide range, the top layer of the canopy will play a 
more important role in determining the BRDF of the canopy than the 
lower layer [112,113]. Therefore, when the S. damnsoum s.l. riverine 
larval habitat canopy structural height in the decomposed, Red Edge, 
NDVI biosignature was geospectrally quantified by their distribution 
estimates, the BRDF was apparent. 

The BRDF was determined by the size, shape, and height of the 
geo-spatiotemproally, geosampled, riverine, larval habitat canopy and 
the floating, hanging and dead vegetation, endmember components 
in the top layer. Restrictions were exercised when quantitation of a 
single top layer was conducted, employing the range of distribution 
of height of the unmixed, geosampled, explanatorial, geosampled, 
riverine, larval habitat, shade canopied, physical elements in the 
biosignature and its geosampled attributes when the regressors 
did not exceed twice the vertical axis of the spheroid. To share the 
weighting between the geospatiotemporal, geosampled, 5m resolution-

derived, covariate, parameter estimator coefficient estimates, the 

equation 
2

2 11
4

h h
b

β − = − 
 

 was employed, if ( )2 1h h b− > . When

( )2 1h h b− > , β   is forced to be zero there is a requirements to redefine 
the layers [106]. By so doing, both Pv and Pi were optimally calculated 
as a weighted sum of corresponding terms ( )1 21P P Pβ β= + − , 
where P1 and P2 were the spectral time series probabilities associated 
with the spatial dimensions of the geosampled habitat canopy. 

The space of canopy realization was generated by randomly drawing 
each radiative transfer model input, Red Edge, NDVI, explanatorial 
variables in ArcGIS within distribution laws. The radiative transfer 
equations and their boundary conditions were given by:
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Notice that the correction function is not used in the second 
equation in [3.2], since no hotspot effect was taken into account in the 
multiple scattering calculations. It was obvious that no closed solution 
could be derived.The input variables were assumed initially independent 
as no information was available about their possible covariance. The 
distribution law of each within a canopied, S. damnsoum s.l., larval 
habitat, decomposed variable was selected so that the density of 
probability was set to be proportional to the sensitivity of the shade 
reflectance to the variable considered. This customizaton allowed 
qualitatively quantitating sample canopied habitat domains where the 
reflectance was more sensitive to the spectrally-dependent, Red Edge, 
NDVI, reflectance, covariate, parameter estimator, coefficients. We 
achieved this by applying transformations for each decomposed, Red 
Edge,S. damnsoum s.l., larval habitat, NDVI, biosignature, canopy-
related, sub-mixel, explanatorial, predictor variable where the sensitivity 
of the reflectance was quantitated as constant transformed variable. 
The transformations were selected employing a trial and error process 
which was applied directly for quantitating the geo-spatiotemporal 
red and NIR nadir observations. Then, uniform random drawing was 
completed over the transformed,Red Edge,S. damnsoum s.l., larval 
habitat, NDVI, endmember ,unmixed, biosignature-related variables.

In the explanatorial, geometric-optical model, the bidirectional 
reflectance was modeled as a purely phenomenon that resulted 
as scenes of discrete, three-dimensional objects (i.e., hanging and 
floating vegetation, endmember, sub-mixel LULC components) of 
the geosampled, S. damnosum s.l., riverine, habitat canopy which was 
viewed from different positions in the hemisphere. The resulting scene 
was broken down into their canopy fractions specifically sunlit and 
shadowed background and scene brightness. Illumination direction 
was calculated by a linear combination of the canopy fractions and their 
respective radiance estimates. The shape of the 5m-derived, canopied 
hanging, dead and floating vegetation, endmember patterns of the 
diffuse ripple water components were among the driving regressors 
in the model. These S. damnosum s.l. riverine habitat canopy spectral, 
Red Edge, sub-mixel emissivities conditioned the mixture of sunlit and 
shaded objects and background data that was observed from multiple 
viewing directions thus quantitating all directions of illumination. This 
mixture, in turn, controlled the brightness in the image. Corrections 
of the effects from varying sun sensor target canopy geometries in the 
multitemporal decomposed datasets were described by the BRDF. 

Measuring the spread of the corrected results from the desired equal 
reflectance line provided a measure of the accuracy of our method. 
After correction, the root mean square (RMS) reflectance errors were 
approximately 0.01 in the visible and 0.02 in the NIR.

An expression for additional azimuthual variation was also derived 
from the geometric-optical model. This azimuthual variation differed 
fundamentally in canopy radiance for each layer of the Red Edge, S. 
damnsoum s.l., larval habitat, NDVI, riverine, endmember, unmixed, 
biosignature model. It was observed that all non-zero polar angles were 
most evident in the larval habitat canopy when vertical and nearly 
opaque components of the habitat canopy and its floating, dead and 
trailing vegetation components were illuminated and viewed along 
polar sun angles. For the variation of the directional reflectance of the 
canopy cover with azimuthual view angle, shade-related, explanatorial 
parameters were qualitatively quantified when the illuminated area 
of the Rapid EyeTM imaged canopied, riverine larval habitat (i.e., 
georeferenced areas that was affected by the sun at large angles from 
the zenith) was remotely identified. The 5m model characterized the 
geometric patterns of the first derivative reflectance spectra in the 
Red Edge region of the georeferenced, geosampled, S. damnosum s.l., 
riverine, larval habitat. The ratio of the Red Edge area was less than 731 
nm to the entire Red Edge area which was negatively correlated with 
canopy chorophyll count. This finding allowed the construction of a 
new Red Edge parameter, defined by Red Edge symmetry (RES). 

Compared to the commonly used Red Edge parameters (i.e., Red 
Edge position, Red Edge amplitude, and Red Edge area), RES was 
a better predictor of low chorophyll content in the riverine larval 
habitat canopy. RES was easily calculated using the reflectance of 
Red Edge boundary wavebands at 675 and 755 nm (R675 and R755) 
and reflectance of Red Edge center wavelength at 718 nm (R718), 
employing the equation RES = (R718-R675)/(R755- R675). Compared 
to the commonly used Red Edge parameters RES may be a better 
operationizable predictor of, shade, canopied, geo-spatiotemporal, 
prolific, S. damnosum s.l., riverine, larval habitats geosampled in 
African riverine environments. 

The Red Edge position was also used to exactly estimate the 
chlorophyll content of leaves and over the canopy RES of the 
geosampled, S. damnosum s.l. riverine, canopied, larval habitat which 
was easily calculated using the reflectance of Red Edge boundary 
wavebands at 675 and 755 nm (R675 and R755) and reflectance of Red 
Edge center wavelength at 731nm (R718), with the equation RES = 
(R718-R675)/(R755- R675). The close relationships between the simulated 
RES and riverine, larval habitat canopy chorophyll count indicated a 
high feasibility of forecasting the phosynthetic pigment with simulated 
RES from the Rapid EyeTM data. We summized that the Red Edge was a 
region in the red-NIR transition zone of the riverine, habitat, canopy, 
vegetation, LULC-related, reflectance, spectrum marked the boundary 
between absorption by chlorophyll in the red visible region, and 
scattering due to leaf internal structure in the NIR region (Figure 15 ).

The distance between two large sun angles A and B were then used 
as representive canopy explanatorily, decomposed, georeferenced, 
geosampled, geospectrally, shade, canopied, S. damnosum s.l., 
vegetated, larval habitat, reflectance points which were quantized 

by 

( ) ( )
( ) ( )
( ) ( )

2 2

2 2

2 2

0            d AB    d   1

d AB      0          d  1 det 0
d   d        0       1
     1             1              1       0  

AC

BC

AC BC

 
 
 

= 
 
 
  

. The first few spectrally 

Figure 15: The Red Edge position (REP) estimatation of the chlorophyll 
content of the geosampled, canopied S. damnosum s.l. larval habitat shaded 
leaves.



Citation: Jacob BG, Novak RJ, Toe LD, Sanfo MS, Lassane K, et al. (2016) Ecogeographically and Non-Ecogeographically Forecasting Discontinuous 
Canopied Simulium damnosum s.l. Habitats by Interpolating Metrizable Sub-Mixel Mean Solar Exoatmospheric Quantum Scalar Irradiance 
where θi is a Zenith Angle and Diatomically Etiolated Xanthophylls with Azimutually Isotropic Sources of Chloroplastic Carotenoid Zeaxanthins 
Spectrally Extracted from a Decomposed RapidEye™ Red Edge Normalized Difference Vegetation Index Reference Biosignature: A Case 
Study in Burkina Faso and Uganda. J Remote Sensing & GIS 5: 152. doi:10.4172/2469-4134.1000152

Page 73 of 103

Volume 5 • Issue 1 • 1000152
J Remote Sensing & GIS
ISSN: 2469-4134 JRSG, an open access journal 

decomposed S. damnosum s.l. canopy, endmember coefficients for 
j=0,..was then calculated as, 2, -16, 288, -9216, 460800,..For j=2, where 

the matrix became
2 2

2
2 2

2 2

0  1   1   1
1   0   c  b

16
1    c   0  a
1     b  a  0

− ∆ = which, then subsequently 

rendered areas for a plane triangle with side lengths a, b, and c, (i.e., a 
form of Heron's formula).

Given the lengths of the georeferenced, geosampled, S. damnsoum 

s.l. riverine larval habitat canopy reflected sides a, b, and c, and the semi 

perimeter ( )1
2

S a b c= + +
 
of a triangle, Heron's formula of the area 

∆ of a triangle was remotely quantited as ( )( )( )S S a S b S c∆ = − − −

The Heron's formula then employed a Cayley-Menger determinant 

as
2 2

2
2 2

2 2

0  1   1   10  a    b    c
1   0   c  ba   0    c    b

16
b   c    0    a 1    c   0  a
c    b    a   0 1     b  a  0

− ∆ = = . Another highly symmetrical 

form of the reflected larval habitat canopy points was then rendered by

( )
2

2 2 2 2 2

2

-1    1       1  
4  b  c  1     -1      1      

1      1     -1  

a
a b

c

 ∆ = =  .

For j=3, the content of the 3-simplex (i.e., volume of 
the general tetrahedron) was then given by the determinant

2 2 2
12 13 14

2 2 2 2
21 23 24
2 2 2
31 32 34
2 2 2
41 42 43

0      1       1       1         1 
1       0       d    d      d  

288 2 1      d       0      d      d

1      d      d     0        d

1       d      d     d      0

V = where the georefernced, 

geosampled S. damnosum s.l. canopy edge between vertices i and j had 
length dij. Setting the left side equal to 0 (corresponding to a tetrahedron 
of volume 0) rendered a relationship between Euclideanized distances 
of the highly reflected, prolific, canopied, riverine, habitat geosampled 
points in ArcGIS from the less reflective canopied points (i.e., vertices of 
a planar quadrilateral) [65]. This determinant used the Heron's formula 
which was equal to −16 times the square of the area of a triangle with 
side lengths d (AB), d (BC), and d (AC). If this determinant equaled 
zero our assumption was that the procedure was equivalent to checking 
whether the triangle with vertices A, B, and C had zero area. Thereafter, 
the vertices in the shade, canopied, explanatorial, S. damnosum 
s.l. riverine, larval habitat endmember, geospectrally, temporally 
dependent, forecasting, explanatorial, risk model was diagnosed as 
collinear.

We employed a residual autocorrelation matrix in ArcGIS to treat 
the S. damnosum s.l. riverine, larval habitat, endmember, spectral 
collinearity. It consisted of elements of the discrete autocorrelation 
function, ( )xxR j arranged in the following manner:

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

* * *
xx xx xx xx

* *
xx xx xx xx

*
H xx xx xx xx

x

R 0        R 1       R 2      ...R N-1   

R 1        R 0        R 1      ...R (N-2) 

R 2       R 1         R 0       ...R (N-3)R =E XX  
.                     .              .                 

  

xx xx

 .             
.                     .              .                  .       

( 1) R ( 1) R ( 3)  ... (0)xx xxR N N N R− − −

 

This was 

clearly a Hermitian matrix. In mathematics, a Hermitian matrix (or 
self-adjoint matrix) is a square matrix with complex entries that is 
equal to its own conjugate transpose—that is, the element in the i-th 
row and j-th column is equal to the complex conjugate of the element 
in the j-th row and i-th column, for all indices i and j: ij ija a=  or 

TA A= , in matrices that can be understood as the complex extension 
of real symmetric matrices [1].

In spherical coordinates, the scale factors are 1rh = ,

  ,  h r sin h rθ θφ= = , and the separation functions are 

( ) 2
1f r r= , ( )2 1f θ = , ( )3f sinφ φ= , giving a Stäckel 

determinant of S=1. The Laplacian we used in this model was 

2 2
2 2 2

1 1   +    r Sin
r r r r Sin

φ
φ φ
 ∂ ∂ ∂ ∂ ∇ =    ∂ ∂ ∂ ∂   

 To solve Laplace's 

equation in spherical coordinates, we attempt separation of the 
geosampled, georeferenced, S. damnosum s.l. –related, larval habitat, 

predictor variables by writing ( ) ( ) ( ) ( ), ,F r R rθ φ θ φ= = Θ Φ . Then 
the Helmholtz differential equation becames 

2 2 2

2 2 2 2 2 2 2 2

2  R 1 1 0
  r    

d R d d Cos d dR R R
d r r d r Sin d r Sin d r d

φ
φ θ φ φ φ

Θ Φ Φ
ΦΘ+ ΦΘ+ Φ + Θ + Θ =

We then divided the product be by RΘΦ , 

2 2 2 2 2 2 2 2

2 2 2 2

  R 2  R 1
  r  r  

r Sin d r Sin d r Sin d
R d r R d r Sin R d

φ φ φ
φ θ

Θ
ΦΘ+ + ΦΘ +

Φ Θ Φ Θ Φ Θ

2 2

2

cos sin sin 0d d
d d

φ φ Φ Φ Φ
+ + = Φ Φ Φ Φ 

The solution to the second part of the decomposition was sinusoidal 
for quantitating the S. damnosum s.l. larval habitat risk model 

predictors so we used differential equation 
2

2
2

1
 

d m
d θ
Θ

= −
Θ  

which then 

rendred solutions which were defined either as a complex function 

with, ( ),..., im
mm A e θθ= −∞ ∞Θ =

 
or as a sum of real sine and cosine 

functions with m = −∞ ,.., ( ) ( ) ( )sin cosT m mS m c mθ θ θ∞ Θ = +
By so doing, the equation created was delineated as 

2 2 2 2
2

2 2 2

 R 2  R 1 cos sin  0
 r  r  

r d r d d Sin d m
R d R d Sin d d

φ φ φ
φ φ φ
 Φ Φ

+ + − = Φ Φ 

The radial part must be equal to a constant 

http://en.wikipedia.org/wiki/Heron%27s_formula
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( ) ( )
2 2 2

2
2 2

 R 2  R  R1 2 1
 r  r  r

r d r d d dRl l r r l l r
R d R d d dr

+ = + + = +

But this is the Euler differential equation (see Appendix 2), 

so we tried a series solution of the form 
0

n c
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and there after
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The general nonhomogeneous differential equation was given 

by ( )
2

2
2

d y dyx x y S x
dx dx

α β+ + =  and the homogeneous equation 

is 2 ''
2'' ' 0 ' 0yx y xy y y y

x x
α βα β+ + = + + = 2'' ' 0y y y

x x
α β

+ + = We 

attempted to convert the equation from ( ) ( )'' ' 0y p x y q x y+ + =

to one with constant coefficients
2

2 0d y dyA By
dz dz

+ + =  by using 

the standard transformation for linear second-order ordinary 

differential equations. Comparing the equation functions p(x) and 

q(x) are ( ) ( )1 2
2p x x q x x

x x
α βα β− −= = = = We let B= β and define 

z= ( )
1
2B q x dx

−
∫ =

1
22   dxxβ β

− −∫ = 1x dx l xη
−

∫ = =Then A was given by A=

( ) ( ) ( )
( )

1/2
3/2

' 2

2

q x p x q x
B

q x

+

  
,= ( )( )

( )

3 1 2
1/2

3/22

2 2

2

x x x
B

x

β α β

β

− − −

−

− +

  

= 1α −  which 

was a constant. Therefore, the equation became a second-order ordinary 

differential equation with constant coefficients  ( )
2

2 1 0d y dy By
dz dz

α+ − + =
 

We then defined 
( ) ( )21/22 1 1 41/2 4

1  
A A B

r
α α β − + − −− + −   = = ,

( ) ( )21/22 1 1 41/2 4

2

A A B
r

α α β − + − −− − −   = =  
and a ( )1/2 1 α−  The solutions 

were and 
1 2 2

1 2
2

1 2
( ) 2

1 2

                                   ( 1) 4  

( )                                     ( 1) 4
  

[ ( ) ( )]              ( 1) 4
 

Z Zr r

az

az

c e c e
c c z e

y
e c cos bz c sin bz

α β

α β

α β

 + − >


+ − == 
+ − <




. In terms of 

the original variable x, the model revealed:

1 2 2
1 2

2
1 2

2
1 2

                                        ( 1) 4  

( )                                     ( 1) 4     
[ ( ln ) ( ln )]         

l

  

n

( 1) 4
 

a

a

r rc c

c cy
c cos

x x

x x

b c ix s nx xb

α β

α β

α β

 + − >

 + − == 
 + − <



Zwillinger (1997, p. 120) gives two other types of equations known 

as Euler differential equations, 
4 3 2

4 3 2    ay by cy dy ey
ax bx cx dx e

+ + + +
= ±

+ + + +
 

(Valiron 1950, p. 201) and 2' my y ax+ = .

The rc term (with n=0), c(c+1)=l(l+1), in the risk model was true 
only if c=l, l-1 and all other terms were not present. So 0na =  

for 
n≠l,−l−1. Therefore, the solution of the R component had to be be 

given by ( ) 1l l
l lRl r A r B r− += +  

Plugging the output back into 

(◇) rendered, ( )
2 2

2 2

1 11 0m Cos d dl l
Sin Sin d d

φ
φ φ φ φ φ

Φ
+ − + + =

Φ
 

and ( )
2

2'' ' 1 0Cos ml l
Sin Sin

φ
φ φ

 
Φ Φ + + − Φ = 

 
 

which is the 

associated Legendre differential equation for x Cosφ=
and m=0,.., l The general complex solution was therefore 

( 1) ( ) ( 1)

0 0 1
) ( ) ( ) ( , ),

i
l l m im l l m

l l l l l l
i m l i m

A r B r P cos e A r B r Yθφ θ φ
∞ ∞ ∞

− − − − −

= =− = =−

+ = +∑∑ ∑∑

where  ( , ) ( )m m im
l lY P cos e θθ φ φ −=  

were the 

spherical harmonics. The generalized real solution was 

( ) ( ) ( ) ( )1

0 0

l
l l m m m

l l l l l
i m

A r B r p Cos S m C Cos mφ θ θ
∞

− −

= =

 + + ∑∑
Some of the normalization constants of m

lp
 

were 

absorbed by Sm and Cm, so this equation appeared in the 

form where ( ) ( ) ( ) ( ),m o m
l lY P Cos Sin mθ φ φ θ=  

and 

( ) ( ) ( ) ( ),m e m
l lY P Cos Sin mθ φ φ θ=  were the even and odd (real) 

spherical harmonics. If azimuthal symmetry is present, then ( )θΘ
is constant and the solution of the Φ component is a Legendre 
polynomial ( )lP Cosφ . The general solution would then be then 

( ) ( ) ( )1

0
, l l

l l l
i

F r A r B r P Cosφ φ
∞

− +

=

= +∑
A Bayesian probabilistic estimation matrix was then employed 

in PROC MCMC consisting of n the dependent, shade canopied, 

Figure 16: The confidence interval symmetrically placed around the mean, so 
a 50% confidence interval for a symmetric probability density function would 

be the interval [-a, a] such that
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explanatorial, S. damnosums.l., riverine, larval habitat endmember, sub-
mixel, observations x1,.., xn and a p-dimensional random vectorX∈Rp×1 (i.e, 

a p×1 column-vector) and an unbiased stimator of the (p×p) covariance 
matrix ( )Tcov( ) E E[ ])( E[ ]X X X X X = − −  . The sample covariance 

matrix T

1

1 ( )( ) ,
1

n

i i
i

x x x x
n =

= − −
− ∑Q

 
was generated where Xi was the 

i-th endmember, explanatorial, riverine, larval habitat observation of 

the p-dimensional random vector, where 
1

1

1 n

i
i

p

x
x x

n
x =

 
 = = 
  

∑

 

was the 

sample mean. The reason for the factor n − 1 being employed in the S. 
damnsoum s.l., endmember, spectral, uncertainty model rather than n 
was because a factor appeared was biased in the estimates of sample 
variances and sample covariances, a maximum likelihood estimator. 
Thereafter a sample mean was generated.

Next a maximum likely hood estimator (MLE) of the S. damnsoum 
s.l. endmember uncertainty covariance matrix was constructed 
which rendered an unbiased estimate which was subsequently given 

by T

1

1 ( )( ) .
n

i i
i

x x x x
n =

= − −∑nQ  in SAS. The unbiased uncertainty 

estimate of the covariance matrix provides an acceptable estimate 
when the data vectors in the observed dataset are all complete: that is 
they contain no missing elements [12]. The approach for estimating 
the shade, canopied, explanatorial, S. damnosums.l., riverine, larval 
habitat, endmember, Bayesian, covariance matrix was to treat the 
estimation of each variance separately, and to use all the decomposed 
observations for which both variables had valid values. Assuming the 

missing data were missing at random resulted in an estimate for the 
covariance matrix bein biased. When estimating the cross-covariance 
of a pair of signals that are wide-sense stationary, missing samples do 
not need be random (e.g., sub-sampling by an arbitrary factor is valid) 
[69]. Confidence intervals were generated corresponding to a given S. 
damnsoum s.l. endmember uncertainty probability estimate T (Figure 
16).

For a normal distribution, the probability that a given S. 
damnsoum s.l. larval habitat canopy end member measurement 
falls within n standard deviations ( nσ ) of the mean u  

(i.e., within the interval [ ],u n u nσ σ− + ) was given by 

[ ]
( )

( )

( )

( )

2

2

2

2

2

2

1
2

2
2

x u

x u

u n dx

u n

u n dx

u

P u n x u n e

e

σ σ

σ

σ σ

σ σ
σ π

σ π

− −

− −

+

−

+

− < < + =

=

∫

∫

We then let ( ) / 2u x u σ= − , so / 2du dx σ= . Then=

[ ]
2 2

/ 2
/ 2

0
0

2 22   erf
2 2

n
nu u

P u n x u n

ne du e du

σ σ

σ
σ π π

− −

− < < + =

 
 
 ∫ ∫

 

where

 

Figure 17: The S. damnsoum s.l. larval habitat Erf expressed in terms of a hyper geometric function of the first kind M as ( ) 22 1 3, ,
2 2

Zerf Z M Z
π

 = = − 
 

2 22 31, ,
2

ZZ e M Z
π

−  =  
 

 with the derivative ( ) ( ) ( ) 21
1

21
n

n Z
nn

d erf Z H Z e
dz π

− −
−= −

http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html
http://mathworld.wolfram.com/Derivative.html
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erfr(x) was the so-called erf function. erf(z) is the "error function" 
encountered in integrating the normal distributionwhich is a 
normalized form of the Gaussian function. In the S. damnosum 
s.l., canopied endmember, forecasting, eco-epidemiological, 

risk model entire function defined by ( ) 2

0

2 Z rerf Z e dt
π

−= ∫  [4]. 

Erf is implemented in the Wolfram Language as erf [z]. A two-

argument form giving ( ) ( )1 0erf Z erf Z=
 

was also implemented 

as erf [z0, z1]. S. damnsoum s.l. larval habitat endmember erf 

satisfied the identities ( ) ( ) 2
1 1

2 1 31 1 ; ;
2 2

Zerf Z erf Z F Z
π

 = − − 
 

=
2

2
1

2 1 31 1; ; ;
2 2

Z
Z e F Z
π

−  − 
   

where erfc(z) was erfc, the complementary 

error function, and 1 1( ; ; )F a b z  was a confluent hypergeometric 

function of the first kind. For Z>0, ( ) 1/2 21 ,
2

erf Z Zπ γ−  =  
 

 
where γ

(a, x) was the incomplete gamma function. 

We also defined a S. damnsoum s.l. larval habitat endmember erf 

can as a Maclaurin series where ( ) ( ) 2
1 1

2 1 31 1 ; ;
2 2

Zerf Z erf Z F Z
π

 = − − 
 

=
2

2
1

2 1 31 1; ; ;
2 2

Z
Z e F Z
π

−  − 
 

 Similarly, we noted that

( )2 2 4 6 8 104 2 14 4 166 ...
3 45 35 4725

erf Z Z Z Z Z Z
π
 = − + − + + 
 

 For 

x<<1, erf(x) from ( ) ( )
( )

2
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n

x
erf x e

nπ
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=

=
+∑

 

was computed.

 

For 

x>>1, ( ) ( )2 2

0

2 t t

x
erf x e dt e dt

π

∞ ∞− −= −∫ ∫ -=
221 t

x
e dt

π

∞ −− ∫  was 

computed employing the integration the forecast derivatives rendered 
( )
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2 2
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− − so ( )
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xxπ
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 

and continuing the procedure gave the asymptotic series

( ) ( ) ( ) ( )
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π

− ∞
− +
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−
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− −
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 − − + − + + 
 

∑
 Erf had the 

values erf(0) and erf (∞ ) (Figure 17). The erf had an odd function 
[i.e., erf (-Z)=-erf(Z) and satisfied erf (Z)+erf(Z)=1.where Hnwas 
the prolific, shade , canopied, geo-spatiotemrpoally geosampled, S. 
damnsoum s.l. larval habitat Erf expressed in terms of a hypergeometric 
function of the first kind with a confluent Hermite polynomial. The 

first derivative was 
22( ) zd erf Z e

dZ π
−= , and the intergral was 

( )
2

( )  
zeerf Z dz z erf Z
π

−

= +∫
The multivariate normal distribution of a k-dimensional random 

vector x=[X1, X2, …, Xk] was written in the following notation using 
the S. damnosum s.l., larval habitat specified regressors ~ ( , ),µ Σx   

to make it explicitly known that X is k-dimensional, ~ ( , )k µ Σx   

with k-dimensional mean vector [ ] [ ] [ ]1 2, ,..., Ku E X E X E X =    

and K˟Kcovariance matrix , , 1, 2,..., ;1, 2,...,i jCov X X i K K  ∑ = =  
. The multivariate normal distribution was "non-degenerative" since the 
symmetric covariance matrix ∑  was positive definite. The distribution 
of the geosampled, canopied, riverine, larval habitat, shaded, covariate 

coefficients was T 1
1

1 1( , , ) exp ( ) ( ) ,
2(2 ) | |

µ µ
π

− … = − − − 
 

x x xk k
f x x Σ

Σ
where X was a real k-dimensional column vector and | Σ | was the 
determinant of Σ. Note the equation reduced the univariate normal 
distribution if Σ was a 1 × 1 matrix. A table was generated (Table 6).

Conversely, to find the probability P confidence interval centered 
about the mean for a normal distribution in units ofσ , we solved 

2/ 2

0

2 n ue du
π

−∫  n to obtain ( )12n erf P−= , where ( )1erf x−  

was the inverse erf function (Table 7). These values were returned 
by Normal CI [0, 1, Confidence Level ->P] in the Wolfram Language 
package HypothesisTesting`.

A random vector X∈Rp (i.e., a p×1 "column vector"), 
multivariate, normal distribution with a nonsingular covariance 
matrix Σ was then generated. We noted that Σ ∈Rp × p was a positive-
definite matrix and the probability density function of X was 

/2 1/2 T 11( ) (2 ) det( ) exp ( ) ( )
2

pf x x xπ µ µ− − − = Σ − − Σ − 
 

where μ∈Rp×1 

was the expected value of X. The shade, canopied, S. damnosum 

s.l. riverine, larval habitat, endmember, sub-mixel, decomposed, 

covariance matrix Σ was the multidimensional analog of what in one 

dimension was the variance, and /2 1/2(2 ) det( )pπ − −Σ which normalized 
the density ( )f x so that it was integrated to 1. We also noted that 
the dataset of the unmixed S. damnosums.l. riverine, larval habitat 
endmembers X1,.., Xnwere independent and identically distributed 
samples. Based on the observed valuesx1,.., xn of this sample, we 
estimated Σ.

xn p(µ-xn<x<µ+xn)
σ 0.6826895

2σ 0.9544997
3σ 0.9973002
4σ 0.9999366
5σ 0.9999994

Table 6:summarized probabilities p(µ-xn<x<µ+xn) ofS. damnsoums.l. larval habitat 
endmember measurements from a normal distribution fall within [µ -xn, µ +xn] for 
xn=nσ.

xn p(µ-xn<x<µ+xn)
σ 0.6826895

2σ 0.9544997
3σ 0.9973002
4σ 0.9999366
5σ 0.9999994

Table 7:summarized probabilities p(µ-xn<x<µ+xn) ofS. damnsoums.l. larval habitat 
endmember measurements from a normal distribution fall within [µ -xn, µ +xn] for 
xn=nσ.
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The likelihood function of the unmixed S. damnosum s.l. riverine,  larval 
habitat, eco-peidemiological, forecasting, risk model was then calculated 

as /2 1/2 T 1

1

1( , ) (2 ) det( ) exp ( ) ( )
2

n
np

i i
i

x xµ π µ µ− − −

=

 Σ = Σ − − Σ − 
 

∏ . It 

was then readily shown thereafter that the MLE of the mean vector 
μin the canopied, explanatorial, S. damnosums.l. riverine, larval 
habitat, endmember, covariance matrix was "sample mean" vector: 

1( ) / .nx x x n= + +  Since the estimate x  did not depend on 
Σ, we substituted it for μ in the likelihood function which rendered

/2 T 1

1

1( , ) det( ) exp ( ) ( ) ,
2

n
n

i i
i

x x x x x− −

=

 Σ ∝ Σ − − Σ − 
 

∑ . Thereafter, the 

value of Σ that maximized the likelihood of the autorgressive sub-mixel 
decomposed data was saught.

We regarded the scalar T 1( ) ( )i ix x x x−− Σ − as the 
trace of a 1×1 matrix. This made it possible to employ the 
identity tr(AB)=tr(BA) as A and B matrices. We then obtained

/2 T 1

1

1( , ) det( ) exp tr(( ) ( ))
2

n
n

i i
i

x x x x x− −

=

 Σ ∝ Σ − − Σ − 
 

∑

/2 T 1

1

1det( ) exp tr(( )( ) )
2

n
n

i i
i

x x x x− −

=

 = Σ − − − Σ 
 

∑

/2 T 1

1

1det( ) exp tr ( )( )
2

n
n

i i
i

x x x x− −

=

  = Σ − − − Σ  
  
∑

( )/2 11det( ) exp tr
2

n S− − = Σ − Σ 
 

where

T

1
( )( ) .

n
p p

i i
i

S x x x x ×

=

= − − ∈∑ R  was the scatter matrix. Since 

it follows from the spectral theorem of linear algebra that a positive-
definite symmetric matrix S has a unique positive-definite symmetric 
square root S1/2, we usedthe "cyclic property" of the trace to write

( )/2 1/2 1 1/21det( ) exp tr .
2

n S S− − Σ − Σ 
 

in the canopied, explanatorial, 

S. damnosums.l. riverine, larval habitat, endmember covariance 
matrix. We then let B=S1/2Σ−1S1/2. Then the expression became

/2 /2 1det( ) det( ) exp tr( ) .
2

n nS B B−  − 
   

The positive-definite matrix B 

can be diagonalized, and then the problem of finding the value of B that 

maximized /2 1det( ) exp tr( )
2

nB B − 
 

 [12]. Since the trace of a square 

matrix equaled the sum of S. damnosums.l., riverine, larval habitat, 
sub-mixel, eigenvalues ("trace and eigenvalues"), the equation reduced 
to the problem of finding the eigenvalues λ1,.., λp that maximized

/2 exp( / 2).n
i iλ λ−

 
When we solved the equation we obtained λi=n 

for all i.

Finally we obtained 1/2 1 1/2 1/2 1/21 ,p
SS B S S I S

n n
−  Σ = = = 

 
 

[i.e., the p×p "sample explanatorial, S. damnosums.l. riverine, larval 
habitat, canopy endmember, covariance uncertainty matrix"(i.e., 

T

1

1 ( )( )
n

i i
i

S X X X X
n n =

= − −∑ )] which was the MLE of the decomposed, 

population covariance matrix" Σ. The random matrix Swas shown 
to have a Wishart distribution with n-1 degrees of freedom. That 

is: T

1
( )( ) ~ ( , 1).

n

i i p
i

X X X X W n
=

− − Σ −∑  The Wishart distribution is 

a member of the family of probability distributions defined over 
symmetric, nonnegative-definitematrix-valued random variables 
(i.e.,“random matrices”) [12].

Our results indicated that the cause of the azimuthual variation 
could be traced to solar flux illumination of the vertically-oriented 
hanging floating and dead endmember LULC-related, larval habitat 
components. The variation of the Rapid Eye™ reflectance was moderated 
by azimutually isotropic sources of flux from sky light and the habitat 
canopy reflectance values unbiasedly. The geospectral unmixing yielded 
abundance estimates for each canopy endmember together summing-
up to the 100% reflectance measured in the image. A scattergram 
representing the canopy endmember reference biosignature of shade, 
canopied, riverine, S. damnosum s.l. habitat and its associated hanging 
and floating vegetation, sub- mixel, geospectral, reflectance values was 
then generated. The biosignature was found to be characteristic of the 
Red Edge S. damnosum s.l larval habitat was red 134.67, 145.24 blue 
and 114.101 greenThe images were analyzed to predict potential S. 
damnosum s.l. larval habitats.

We then used an Ordinary kriged-based algorithm in ArcGIS® 

for predicting S. damnosum s.l. riverine larval habitatsemploying the 
decomposed Red Edge NDVI reference signature from the Chutes-
Dienkoa study site for geolocating prolific habitat at the Achwa study 
site.A map was generated (Figure 18).

For determining optimal S. damnsoum s.l. habitat explanatorial 
canopied predictors, a semivariogram was constructed which expressed 
the variation in the spectral, Red Edge, NDVI, endmember, covariate 
coefficients. The semivariogram was nonnegative [i.e., ( , ) 0x yγ ≥ ,]. The 
semivariogram ( )2( , ) (0) ( ( ) ( )) 0ix x E Z x Z xγ γ= = − = at distance 0 

since at zero the residual forecast ( ) ( ) 0Z x Z x− = . A semivariogram 

if and only if it is a conditionally negative definite function, (i.e. for all 

weights 1, , Nw w… subject to 
1

0
N

i
i

w
=

=∑ and locations 1, , Nx x…

 

Figure 18: Unmixed Red Edge NDVI S. damnosum s.l. habitats signature 
interpolated over a Rapid Eye DEM of the Achwa study site.
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it holds: 
1 1

( , ) 0
N N

i i j j
i j

w x x wγ
= =

≤∑∑ ) [1]. The geospectrally explanatorial, 

interpolated, operationizable, decomposed, S. damnosum s.l., riverine, 
larval habitat, canopy, endmember, unmixed, biosignature variables 

corresponded to the variance ( )var X of 
1

( )
N

i i
i

X w Z x
=

=∑
 

which 

was given by the negative of this double sum. As a consequence the 
explanatorily, interpolated, geo-spatiotemporally dependent, riverine, 
larval habitat semivariogram was non-continuous only at the origin. 
The height of the jump at the origin is sometimes referred to as nugget 
or nugget effect [12,73]. The variogram [i.e., 2γ(x, y)] was a function 
describing the degree of dependence between the predicted, prolific, 
shade, canopied, S. damnosum s.l. riverine habitats [i.e., Z(x)]. This 
was defined as the expected squared increment of the forecasted values 
between the georeferenced habitat locations. 

The geospectrally interpolated, operationizable, explanatorial 
decomposed, S. damnosum s.l. riverine, larval habitat endmember 
model output was nonnegative since it was the expectation of a square. 
The covariance function was related to semiovariogram by 2γ(x, y) 
=C(x, x) + C(y, y) − 2C(x, y). Interestingly, γ(x, y)=E(| Z(x) − Z(y) | 
2)=γ(y, x) was a symmetric function, consequently, γs(h)=γs(− h) was an 
even function. Coincidentally the function was also a semivariogram as 
it was a conditionally negative definite function, for all weights in the, 
habitat, model, forecasted, prolific geolocations.

Since the covariance function of the stationary process 
existed in the model, we related it to a semiovariogram by
2 ( , ) ( , ) ( , ) 2 ( , )x y C x x C y y C x yγ = + − . But since our geosampled, 
stochastic, endmember, geospectrally interpolated, explanatorial, S. 
damnosum s.l., riverine, larval habitat, forecasting, eco-epidemiological, 
canopy risk model reflected a non-stationary process the square 
of the difference between the expected values was quantitated by

[ ] [ ] 22 ( , ) ( , ) ( , ) 2 ( , ) ( ( ) ( ) )x y C x x C y y C x y E Z x E Z yγ = + − + − .
For quantitating a random field [i.e., stochastic process] Z(x) on 
the domain D employing a covariance function C(x, y), we used 
the covariance of the interpolated endmember, S. damnosum s.l., 
RedEdge, NDVI, decomposed, biosignature values of the random 
field at two model forecasted prolific geolocation sites x and y as 

( , ) : cov( ( ), ( )).C x y Z x Z y=
The following parameters described the shade canopied, geospectrally 

interpolated, S. damnosum s.l., riverine, larval habitat variograms: The 
nugget represented the height of the jump of the semivariogram at 
the discontinuity at the origin.The sill was the limit of the variogram 
tending to infinity lag distances.We also computed the range which was 
the distance in which the difference of the semiovariogram from the sill 
becamenegligible. In geospectrally/geospatially, interpolated, shade, 
canopied, explanatorial, operationizable, S. damnosum s.l. riverine, 
larval habitat, eco-epidemiological, forecasting, risk models with a 
fixed sill, it is the distance at which this is first reached; for models 
with an asymptotic sill, it is conventionally taken to be the distance 
when the semivariance first reaches 95% of the sill [1,3].Theoretically, 
at zero separation distance (lag = 0), the semivariogram value is zero in 
a predictive, autoregressive,entomological-related, larval habitat,eco-
epidemiological, risk model, however, at an infinitesimally small 
geosampled habitat distances, the semivariogram often exhibits a 
nugget effect (i.e., measurement errors or spatial sources of variation 
at distances smaller than the sampling interval), which is some value 

greater than zero [12]. In addition to the constant E[z(s)] and the 
assumption of intrinsic stationarity, ergodicity was defined in the S. 
damnosum s.l., riverine, larval habitat, eco-epidemiological models to 
estimate the empirical semivariance.

Using the geosampled, georfernced decomposed Red Edge S. 
damnosum s.l. riverine larval habitat NDVIvalues of LAGDISTANCE=8 
and MAXLAGS=10 was run in PROC VARIOGRAM without 
the NOVARIOGRAM option in order to compute the empirical 
semivariogram. We specifed the CL option in the COMPUTE statement 
to calculate the 95% confidence limits for the classical semivariance. 
The section COMPUTE Statement described how to use the ALPHA= 
option to specify a different confidence level. 

We rquested a robust version of the semivariance with the ROBUST 
option in the COMPUTE statement. PROC VARIOGRAM produced 
a plot of the explanatorily interpolated, unmixed, S. damnosum s.l., 
riverine, larval habitat, unmixed, biosignature canopy endmembers 
and then revealed both the classical and the robust empirical 
semivariograms. In addition, the autocorrelation Moran’s I and Geary’s 

statistics was tabulated under the assumption of randomization 
using binary weights. The following statements implement all of the 
preceding requests: 

proc variogram data=blackfly outv=outv;compute lagd=7 
maxlag=10 cl robust; autocorr(assum=random);

coordinates xc=East yc=North;var blackfly; run;ods graphics off;

The VARIOGRAM procedure computed the empirical 
semivariogram from a set of point measurements. Semivariograms 
are used in the first steps of spatial prediction as tools that provide 
insight into the spatial continuity and structure of a random process 
[2]. Naturally occurring randomness is accounted for by describing 
a process in terms of the spatial random field (SRF) concept [130].
An SRF is a collection of random variables throughout your spatial 
domain of prediction [13]. Based on our sample, spatial prediction 
aimed to provide georferenced, highly, productive, habitat coordinate 
values of the SRF at unknown, unsampled habitat geolocations where 
no measurements were available. Prediction of the SRF values at 
unsampled locations by techniques such as ordinary kriging requires 

Lag 
Class

Pair 
Count

Average 
Distance

Semivariance

Robust Classical Standard 
Error

95% Confidence 
Limits

0 7 3.61 0.0414 0.0235 0.0119 0.000 0.06317
1 83 7.61 0.3569 0.3118 0.05702 0.573 0.4751
2 141 17.84 1.0674 1.1229 0.1962 0.889 1.3877
3 173 22.08 3.6398 2.3975 0.2879 2.312 3.5347
4 226 27.13 4.8580 4.5824 0.3896 3.759 5.4208
5 216 33.89 5.9904 5.7508 0.5378 4.865 7.1864
6 219 41.29 8.1376 7.5337 0.4896 6.189 8.9376
7 254 43.38 7.5478 7.2216 0.6449 5.952 8.4833
8 278 59.13 9.079  8.1337 0.6348 5.948 8.4268
9 281 64.81 8.2733 8.8447 0.5718 5.747 7.5323

10 293 72.93 8.1440 5.3577 0.8647 5.243 7.4722

Table 8: Geospectrally interpolatd decomposed, S. damnosum s.l. riverine, larval 
habitat endmember model output from the Variogram Procedure.

Coefficient Observed Expected Std Dev Z Pr>|Z|
Moran's I 1.0657 -0.0335 0.168 6.34 <0.0001
Geary's c 0.0159 1.0000 0.548 -5.37 <0.0001

Table 9: The autocorrelation statistics from the resdiual spectral endmember S. 
damsnosum s.l. larval habitat eco-epidemiological, forecasting, risk model.
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the use of a theoretical semivariogram or covariance model [115]. Due 
to the randomness involved in quanting the stochastic processes in the 
S. damnosum s.l., larval habitat, forecasting, eco-epidemiological, risk-
related model, the theoretical semivariance could not be computed. 
Instead, we generated an empirical semivariance which provided 
an estimate of the theoretical semivariance, which was then used to 
characterize the spatial structure of the riverine larval habitat processes 
(Table 8).

Table 4 shows the output from the requested autocorrelation 
analysis. This included the observed (computed) Moran’s I and 
Geary’s coefficients, the expected value and standard deviation for 
each decomposed, explantorily interpolated, S. damnosoum s.l., larval 
habitat, shade, canopied, georeferenced ,sub-mixel, bisoignature 
coefficients, the corresponding Z score, and the p-value in the Pr 

Z>    column. The low p-values suggested strong autocorrelation for 
both statistics types. Note that a two-sided p-value wasreported, which 
was the probability that the observed riverine, larval habitat, unmixed, 
kriged coefficient lay farther away from Z   on either side of the 
coefficient’s expected value—that is, lower than –Z or higher than Z. 
The sign of Z for both Moran’s i coefficient and Geary’s coefficients 
indicated positive autocorrelation in the endmemberS. damnosoum s.l. 
larval habitat data values (Table 9).

An Ordinary kriged-based algorithm for predicting the shade, 
canopied, S. damnosum s.l., larval habitats in ArcGIS was used to 
identify the reference, canopy, biosignature variables generated from 
the extraction algorithms overlaid onto the DEM. Semivariogram 
plot of the logit scale model residuals confirmed a short-range spatial 
pattern up to a distance of approximately 5 km from the predicted, 
productive, shade, canopied, riverine, larval, S. damnosum s.l. habitat 
sites. To carry out this process, residuals for all observed points were 
calculated on the logit (ln (p/1 - p)) scale of the model.

A kriged map of deviance residuals was then calculated, which was 
added to the predicted values on the logit scale. Spatial dependence 

displayed by these plots was analyzed using the semivariogram. 
The addition of kriged residuals allowed the map to deviate from 
the model and move closer to the original sampled, georeferenced, 
covariate, parameter estimator, coefficient, indicator measurement 
values of possible georeferenced, prolific, canopy, shaded habitats. 
These smoothed values improved the final maps of the forecasted, S. 
damnosum s.l., habitats and its associated hanging, floating and dead 
vegetation-related LULC components.

An exponential model was fitted to the semivariogram employing a 
range of 71.9 m, a nugget of 0.14 (variance), a lag size of 12.7 m with 12 
lags and a partial sill of 0.21 (variance). The coordinates of the putative 
breeding sites were recorded and the sites visited to ground truth the 
model predictions. Of the 25 sites predicted to be larval habitats by 
the model, (72%) were found to contain S. damnosum s.l. larvae when 
visited. We geosampled an additional 50 habitats not predicted by the 
model. Based on the number of prolific habitats predicted by the black 
fly model and the randomly sampled habitats, the sensitivity of the 
model was 78.26 and the specificity was 1.00.In addition, surveys of 
the habitat located 200 m upstream and downstream of the predicted 
breeding sites revealed no evidence of S. damnosum s.l. larvae. In 
a second validation of the model, we generated a dataset of Voroni 
tessellations

Figure 19 reveals both the classical and robust empirical S. 
damnosoum s.l. larval habitat semivariograms. In addition, the plot 
features the approximate 95% confidence limits for the classical 
semivariance. The figure exhibited a typical behavior of the computed 
semivariance uncertainty, where in general the variance increased with 
distance from the origin at Distance=0. The needle plot in the lower 
part of the figure provides the number of pairs that were used in the 
computation of the empirical semivariance for each lag class shown. We 
noted that the number of pairs shown in the needle plot depended on 
the particular criteria specified in the COMPUTE statement of PROC 
VARIOGRAM. Importantly the habitat distances shown for each lag 
on the Distance axis were not the midpoints of the lag classes as in the 

Figure 19: Empirical canopied S. damnosum s.l larval habitat semiovariogram with 95% Wald confidence limits.
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pairwise distances plot, but rather the average distance from the origin 
Distance=0 of all predicted, prolific, shade, canopied, S. damnosoum s.l. 
larval habitats in a given lag class.

We assumed that for the spatial random field (SRF) Z(S) had 

measurements Zi whose sample mean was estimatable by Z . The 
hypothesis of ergodicity dictated that ( )Z E Z S=    . In general, an 
SRF Z(S) is characterized as ergodic if the statistical moments of its 
realizations coincide with the corresponding ones of the SRF [12]. 
In spatial analysis you are often interested in the first two statistical 
moments, and consequently a more relaxed ergodicity assumption is 
made only for them. [65] 

An Ordinary kriged-based algorithm for predicting the shade, 
canopied, S. damnosum s.l., larval habitats in ArcGIS was used to 
identify the reference caopy biosignature variables generated from the 
extraction algorithms overlaid onto the DEM. Semivariogram plot of 
the logit scale model residuals confirmed a short-range spatial pattern 
up to a distance of approximately 5 km from the predicted, productive, 
shade, canopied, riverine, larval, canopied, S. damnosum s.l. habitat 
sites. To carry out this process, residuals for all observed points were 
calculated on the logit (ln (p/1 - p)) scale of the model. 

A kriged map of deviance residuals was then calculated, which was 
added to the predicted values on the logit scale. Spatial dependence 
displayed by these plots was analyzed using the semivariogram. 
The addition of kriged residuals allowed the map to deviate from 
the model and move closer to the original sampled, georeferenced, 
covariate, paramter estimator coefficient indicator measurement 
values of possible georeferenced, prolific, canopy, shaded habitats. 
These smoothed values improved the final maps of the forecasted S. 
damnosum s.l. habitats and its associated hanging, floating and dead 
vegetation components.

 An exponential model was fitted to the semivariogram employing a 
range of 71.9 m, a nugget of 0.14 (variance), a lag size of 12.7 m with 12 
lags and a partial sill of 0.21 (variance). The coordinates of the putative 
breeding sites were recorded and the sites visited to ground truth the 
model predictions. Of the 25 sites predicted to be larval habitats by 
the model, (72%) were found to contain S. damnosum s.l. larvae when 
visited. We geosampled an additional 50 habitats not predicted by the 
model. Based on the number of prolific habitats predicted by the black 
fly model and the randomly geosampled habitats, the sensitivity of the 
model was 78.26 and the specificity was 1.00. In addition, surveys of 
the habitat located 200 m upstream and downstream of the predicted 
breeding sites revealed no evidence of S. damnosum s.l. larvae. In 
a second validation of the model, we generated a dataset of Voroni 
tessellations.

We then generated a dataset of Voroni tessellations in ArcGIS 
for the kriged, decomposed, Red Eye, NDVI, stochastic interpolator. 
The Voronoi decomposition produced a set of polygons Vi with area 
f i (i=1,...,n). An approximation, based on the midpoints of the legs 
and center of the triangle were used to evaluate the area covered by 
each Voroni geospectral, endmember, S. damsnosum s.l., larval habitat, 
eco-epidemiological,polygon. A new canopied geosample point was 
calculated using the importance metric (i.e., Gamma) in all Voronoi 
polygons which was generated according to were the emissivity estimates 
of the decomposed, Red Edge, canopy, biosignature data in the polygon 
were geolocated. Gamma (u, v) was the importance metric of that sub-
mixel, geospectrally, interpolated, canopy spectra, and C (p) was the 
coordinates of the new polygon center (i.e., the predicted S. damnosum 

s.l. riverine larval habitat ). To do this calculation on each polygon 
we used a scan conversion. We ran a scan conversion and examined 
the frame buffer for each polygon. The unknown global mean zD was 
estimated by a weighted mean of the predicted, S. damnosum s.l., larval 

habitat, canopy spectral, geometrical values using: 
1 1
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The extension error of each polygon was calculated by then employing 
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 where the summation is 

over all polygonsVi [101].

By convention we assumed a normal probability distribution for 
the global error zD - mg and achieved a 90% confidence limits for zD

1.65* 1.65*R R D R Rm Z mσ σ− ≤ ≤ + . The global estimation error 
decreased with an increasing number of predictive geosamples but some 
local deviation from this tendency did occur due to large polygons(i.e., 
the predicted productive, shade canopied, S. damnosum s.l. larval 
habitats). We noted that as the number of predictive geosamples 
increased the global estimation error converged to zero. The Voronoi 
diagram provided a spatial trend analyses of the error in the geospectral, 
canopy endmember, decomposed, explanatorily interpolated, Red 
Edge, NDVI, canopied, unmixed, biosignature reflectance model which 
revealed that all geo-spatiotemporally, geosampled photosynthetic and 
NPV explanatorial, covariate coefficients were within normal statistical 
limitations (Figure 20).

Discussion
Initially,a RapidEye™ Red edge, NDVI model was generated in ENIV 

of a prolific, canopied,georeferenced, S. damnosum s.l. riverine,larval 
habitat geosampled at the Chutes-Dienkoa,eco-epidemiological, 
study site. We noticed that the VI capitalized on the sensitivity of 
the 5m-imaged, vegetation, LULC-related data synthesized within 
the Red Edge band. VIs differs from other NDVIs by using bands 
along the RedEdge, instead of the main absorption and reflectance 
peaks [2,4]. Because the red and NIR regions were adjacent (red was 
approximately between 600 and 700 nm and NIR began at around 700 

 

Figure 20: Voroni tessellations of the interpolated Red Edge NDVI S. 
damnosum s.l. habitats signature at the Achwa study site.
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and stretched to about 1200 nm), the low vegetation reflectance in the 
canopy red regions was immediately followed by a sharp increase to 
the high reflectance in the NIR. The sharp reflectance contrast between 
transition zone in the RedEdge, S. damnosum s.l., riverine, canopied, 
larval habitat, mapped NDVI was probably due to the normalized 
difference values between the reflectance in the red visible (0.6µm) and 
the NIR (0.8µm) reflectance in the visible and NIR wavelength regions. 
The steep increase in reflectance in the 690-710 nm regions wasthe 
optimal peak reflective Red Edge NDVI larval habitat model region.

The red-NIR transition zone in the RapidEye™ Red edge NDVI 
marked the boundary between the red visible region, and scattering 
which may have been due to the 5 m, imaged, geosampled, larval habitat, 
shaded, canopy, leaf structures. Most NIR canopy radiation is scattered 
by leaf mesophyll resulting in high reflectance and transmittance values 
(approximately 40-50% each) [115]. Leaf chlorosis can cause an increase 
in visible reflectance and transmission [4]. The NIR plateau (700 nm 
- 1100 nm), is a region where biochemical absorptions are limited to 
the compounds typically found in dry leaves, primarily cellulose, lignin 
and other structural carbohydrates [27]. However, foliar reflection 
in this region may be also affected by multiple scattering of photons 
within a geosampled, georefernced, shaded, riverine, larval habitat 
canopy leaf, related to the internal structure, fraction of air spaces, 
and air-water interfaces that refract light within the leaves. Multiple 
scattering of radiation between air and cell wall in leaf tissue leads to 
high reflectance values in NIR [31].

Based on the canopied, Red Edge biosignature, the leaf reflectance 
was greatest in the 5 m spectral bands centered at between 1940 nm, 
and 2500 nm, with indirect or secondary effects at between 400 nm 
and 700 nm. The visible bands (400-700 nm), light absorption by leaf 
pigments dominates the reflectance spectrum of the leaf and lead 
to generally lower reflectances (15% maximum). The primary and 
secondary absorptions of water in the leaf reflectance were greatest 
was centered at 1450, nm, with important secondary absorptions 
at 980 nm, and 1210 nm. By assuming that the RedEdge, 5m, NDVI 
described the steeply sloped shade, canopied, S. damnosum s.l. larval 
habitat geosampled region of the vegetation-related, LULC reflectance 
curve between 690 nm and 710 nm ,the transition from chlorophyll 
absorption and NIR leaf scattering was then highly probable based on 
low/high chorophyll content geolocations in the productive flooded 
riverine larval habitat canopy. 

The quantized chlorophyll NDVI values emitted from the shade, 
vegetated, georeferencable, canopied, productive, S. damnosum 
s.l. larval habitat, strongly absorbed radiation in the red and blue 
wavelengths an also reflected green wavelength which acted as diffuse 
reflector of NIR wavelengths. Reflected red irradiance (IRED) Rapid 
Eye™ was strongly diminished probably through chlorophyll absorption, 
with peak chlorophyll absorption occurring at 697 nm. Chlorophyll 
contained in vegetation absorbs most of the light in the visible part of 
the spectrum but becomes almost transparent at wavelengths greater 
than 700 nm [4]. Both red and NIR irradiance are strongly influenced 
by plant cover [2,27,115]. Red irradiance (IRED) decreased with plant 
cover, as NIR irradiance (INIR) increased. The chorophyll irradiance 
within a given Rapid Eye™ waveband was integral of the spectral 
irradiance with respect to the 5 m wavelengths associated to the shade 
canopied, S. damnosum s.l., riverine, larval habitat, NDVI biosignature.

Chlorophyll distribution in the canopy vegetation of the shaded, 
georeferenced, S. damnosum s.l. larval habitat NDVI bisignature was 
scattered with the lower cover reflecting lesser spectral internsity. In 

the S. damnosum s.l. NDVI biosignature, eco-epidemiological, risk 
model these changes were reflected in the green peak reflectance (~550 
nm) and along the Red Edge (590 to 650 nm). Chlorophyll content may 
decline more rapidly than carotenoid content towards the lower part of 
the riverine larval habitat canopy cover [4,115]. Lower habitat canopy 
cover may be also where the canopy plants experience more seasonal 
stress due to leaf senescence. 

Eco-physiologically, the variation in the tabulated leaf chlorophyll 
between the within,S. damnosum s.l., larval habitat, canopy, leaf 
species and how it responds to changing biotic and abiotic, seasonal 
factors (e.g., trailing vegetation, solar radiation etc) may be of seasonal 
entomological importance. Most indices sensitive to chlorophyll 
content were strongly affected by the differences in canopy, shaded, 
vegetation-related, LULC-oriented, georeferenced, eco-hydrological 
covariates. The main factors governing canopy, vegetated, prolific, 
georefernced, shade canopied, S. damnosum s.l. riverine, habitats 
geo-spatiotemporally- geosampled in African riverine ecosystems 
are adequate water velocity (.70-1.5 m/sec) which is linked with 
oxygenation and food supply and the presence of suitable supports, 
which may be rocks, stones, sills, sidewalks of structures, spillways 
and gates [5]. Whilst the riverine, habitat, canopy indices revealed 
strong relationships with chlorophyll content in the RedEdge, NDVI, 
biosignature, additional seasonal validation metrics may be required 
to understand how immature Similium productivity is associated to 
5m measured proxy canopy changes at the leaf scale. When scaling 
up from a leaf to a branch or canopy, and in flooded field conditions, 
shaded, canopy, vegetation-related, LULC, explanatorial, predictor 
variables, (e.g., hanging canopy density) may affect a measured Rapid 
Eye TMreflectance signal.

Chlorophyll content is also linked to carbon cycles and its role 
in photosynthesis and net primary productivity is important within 
regional and global carbon models [8]. Plants convert the carbon in 
atmospheric CO2  into carbon-containing organic compounds, such as 
sugars, fats, and proteins then stores it in carbohydrates like cellulose 
during photosynthesis [2].Carbon dioxide is converted into sugars in 
a process called carbon fixation. Carbon fixation is an endothermic, 
reaction, so photosynthesis needs to supply both a source of energy to 
drive this process, and the electrons needed to convert carbon dioxide 
into a carbohydrate. This addition of the electrons is a reduction 
reaction. In general outline and in effect, photosynthesis is the opposite 
of cellular respiration, in which glucose and other compounds 
are oxidized to produce carbon dioxide and water, and to release 
exothermic chemical energy to drive the organism's metabolism. 
However, the two processes take place through a different sequence of 
chemical reactions and in different cellular compartments.

The general equation for photosynthesis as CO2 + 2H2A + 
photons → [CH2O] + 2A + H2O (i.e, carbon dioxide + electron 
donor + light energy → carbohydrate + oxidized electron donor + 
water) [4]. Since water is used as the electron donor in oxygenic 
photosynthesis, the equation for remotely qualitatively quantitating 
a geo-spatiotemporally, geosampled, S. damnosum s.l., riverine, larval 
habitat would be then:n CO2 + 2n H2O + photons → (CH2O)n + n O2 
+ n H2O( i.e., carbon dioxide + water + light energy → carbohydrate + 
oxygen + water). This equation emphasizes that water is both a reactant 
in the light-dependent reaction in the riverine, larval, habitat canopy 
and a product in light-independent reactions in the within-canopy, 
LULC explanatorial, geospectral covariate, parameter estimator 
,coefficients but canceling n water molecules from each side will render 
the net equation: n CO2 + n H2O + photons → (CH2O)n + n O2 (i.e., 
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carbon dioxide + water + light energy → carbohydrate + oxygen). 
Photosynthesis occurs in two stages. In the first stage, canopy light-
dependent reactions capture the energy of light and use it to make the 
energy-storage molecules (e.g., ATP and NADPH). During the second 
stage, the light-independent reactions use these products to capture 
and reduce carbon dioxide [4,115]. The accurate monitoring of canopy 
chlorophyll in georefernced, geosampled, productive, canopied, larval 
habitat content across a range of temporal and spatial scales is therefore 
paramount for monitoring and understanding a number of riverine 
ecosystem responses to seasonal variation in immature productivity.
Most organisms that utilize photosynthesis to produce oxygen use 
visible light to do so, although at least three use shortwave infrared or, 
more specifically, far-red radiation [2].

Analyzing the relationship between chlorophyll and nitrogen 
content in the 5m proxy vegetation index allowed remotely 
correlating relations between wavelength of the Red Edge biosignature 
reflectance estimates in the red region of the canopy spectrum. 
Indeed, chlorophyll measurement provides information on the plant 
ecophysiological status as leaf chlorophyll concentration is linked 
to nitrogen content and therefore to photosynthesis [13]. Studies 
have been surprisingly successful at estimating leaf and canopy from 
reflectance measurements despite challenges associated with radiosity 
modeling of leaf nitrogen [4,115]. At the leaf level, spectral reflectance 
is a function of the chlorophyll and nitrogen absorption rates, internal 
structure, leaf thickness, air-water interface, distribution of pigments 
and chemical constituents [27], as well as leaf surface properties, such 
as waxy cuticle, and pigment concentrations and distribution [115]. 
At the canopy level, S. damnosum s.l. riverine, larval habitat, spectral 
reflectance,however, may be a function of LAI, leaf clumping, leaf 
angle distribution, vegetation-related, LULC cover, and source-target 
illumination geometry. As a consequence, interpolation exercises for 
satisfactorily estimating nitrogen employing a decomposed, Rapid 
EyeTM, VI content at the leaf level of a riverine resampled, georefernced, 
S. damnosum s.l., larval habitat, eco-epidemiological, forecasting, 
risk model might perform poorly, as the factors that affect habitat 
reflectance vary according to seasonal scale. Later in the season, LAI 
values may lose sensitivity for measuring canopy nutritional content. 
For example, Inada [19] found a high correlation between leaf 
nitrogen and leaf optical properties (r2 = 0.90). At the canopy level, 
the correlation between canopy nitrogen concentration and canopy 
reflectance decreased as a function of the canopied S. damnosum s.l., 
riverine, larval, habitat LAI. Overall, regression results suggest that bare 
ground cover also had an influence on the ability to remotely estimate 
the S. damnosum s.l., larval habitat canopy nitrogen concentration.

The eco-epidemiological model, residual forecasts indicated 
that the greener region of the larval habitat absorbed light from the 
blue-violet and the red regions of the visible spectrum and reflected 
green light. This was confirmed in the continuum removal analysis 
of the 5m, red, wavelength region which revealed that the increase 
in the wavelength in the riverine, larval, habitat canopy compared 
with only minor differences in the blue absorption band depths 
between the 5m imaged relocations. Therefore, the use of Rapid EyeTM 
geospectral measurements and indicators for the determination of 
seasonal chlorophyll, content, for example may be based on the fact 
that chlorophyll, as well as a number of other pigments is strong 
absorbers of light in certain well-defined 5m wavelengths, specifically 
in the blue and the red spectral region. Since the red portion of the 
georefernced, resampled, riverine, larval, habitat canopy was one of the 
areas where chlorophyll strongly absorbed light in our experiment, and 
since the NDVI-NIR was where the canopy leaf cell structure produced 

strong reflection variations in both the chlorophyll content and the 
leaf structure in the S. damnosum s.l., riverine, larval habitat, eco-
epidemiological, forecasting geospectral, risk model, these geospectral 
zones may be linked to seasonal immature productivity to study 
seasonal clustering tendencies in prolific, shade, canopied, immature 
habitats. 

The RapidEyeTM RedEdge domain of the proxy graphical indicator 
was sensitive to chlorophyll content and nitrogen status. We analyzed 
the relationship between leaf nitrogen content and the eddy covariance 
CO2 flux measurements obtained at a range of diverse, canopied, leaf, 
area sites of the prolific, shade, canopied, S. damnosum s.l., riverine, 
larval habitat geosampled at the Chutes Dienkoa study site. We 
concluded that leaf nitrogen content is a strong factor influencing both 
optimum canopy light use efficiency and thus canopy photosynthesis 
rate. Based on our RedEdge reflectance model output the canopy 
chorophyll content was a physically sound quantity that represented 
the optical path in the canopy where absorption by chorophyll 
dominated the Rapid Eye 5m radiometric signal. Thus, absorption by 
chorophyll may provide the necessary link between Rapid EyeTM 5m 
remote sensing observations and geo-spatiotemporally, geosampled, 
S. damnosum s.l., riverine, larval habitats, canopy-state, empirical, 
predictor variables which may be subsequently employed as indicators 
of nitrogen status and photosynthetic capacity.

An entomologist or experimenter may estimate the chlorophyll 
Rapid EyeTM RedEdge using a the green chlorophyll index, and a 
terrestrial chlorophyll index which may provide accurate, spectral, 
biophysical, explanatorial estimators of prolific shaded, S. damnosum 
s.l., riverine, larval habitat, canopy chlorophyll and nitrogen contents. 
Bands of Rapid EyeTM in the green and RedEdge are well positioned 
for deriving these indices. Results may confirm the particular 
importance of the 5m data for seasonal, canopy, vegetation-related 
LULC covariate coefficient quantification as it would provide access 
to green and RedEdge waveband data information. Importantly, by 
so doing, non-destructive nitrogen and chlorophyll content retrieval 
from a seasonally productive, georeferenced, Rapid EyeTM imaged, 
riverine, larval habitat, 5m scene may geo-spectrally geolocalize red 
absorption bands delineating where canopy absorption saturates at 
low to-moderate chorophyll values in the larval habitat canopy. Thus, 
geo-spatiotemporal relationships between nitrogen and chorophyll 
contents at the leaf and canopy levels may be remotely qualitatively 
regressively tabulated. Optimal spectral ranges in the green and the 
RedEdge regions may allow accurate estimation of nitrogen and 
chlorophyll contents in a georefernced, prolific, S. damnosum s.l. 
canopied, riverine, larval habitat over a wide range of leaf area index 
values. Performances of chlorophyll-related, vegetation –related LULC 
indices to retrieve nitrogen and chlorophyll contents in both leaf and 
canopy of a prolific, riverine geosampled S. damnosum s.l. larval habitat 
may be also tested.

It may be demonstrated that partitioning of nitrogen between 
protein fractions of soluble and thylakoid proteins remain unaltered with 
increasing seasonal nitrogen content in a geosampled, georeferenced, 
prolific, canopied, S. damnosum s.l., riverine, larval habitat. Changes 
in leaf nitrogen content may result in similar changes to the thylakoid 
pigment protein complex, that consists primarily of chloropyll, and the 
carbon fixing soluble protein enzyme activity of RuBP in 5m, Rapid Eye 
TM imaged, riverine, larval habitat canopies. Ribulose-1,5-bisphosphate 
is an organic substance that is involved in photosynthesis [13]. It may 
be concluded that canopy chorophyll absorption content is a physically 
sound quantity that represents the optical path in the riverine larval 
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habitat canopy where absorption by chlorophyll dominates the Rapid 
EyeTM radiometric signal. The RedEdge inflection point wavelength (λi) 
may be used as an indicator for this shift in a canopied, riverine, S. 
damnosum s.l., larval habitat normalized differencial vegetation, eco-
epidemiological, forecasting, risk-related, regression model.

Besides nitrogen and chrophyll other absorption-related, 
explanatorial, photosynthetic and NPV parameter estimators were 
confirmed in the first derivative canopied, S. damnosum s.l., riverine, 
larval habitat, reflectance curve in the RedEdge region. Since RedEdge 
position in our Rapid EyeTM forecasting eco-epidemiological, risk 
model was the tabulated point of maximum slope on the reflectance 
spectrum of vegetation-related, LULC, regression-related, 5m, 
covariate, paramter estimators, coefficient, integer values between red 
and NIR wavelengths amongst all the reflectance geomarkers. Analyses 
with the RapidEyeTM proxy, eco-epidemiological, risk-related, remotely 
synthesized, explanatorial, residual, geo-spatiotemporal forecasts 
along with the ground truth data revealed relatively high accuracy 
(i.e., RMSE, < 1μg/l) between the eco-geographically predicted and 
observed, canopied, georeferenced, larval habitat, NDVI-related, 
biosignature, data feature attribute values which were obtained for 
riverine geolocations associated with ecohydrologically low vegatation 
( i.e., < 10 μg/l) content as well. By choosing the RedEdge band, instead 
of the red band for the NDVI calculation, a lower saturation over highly 
vegetated areas in the S. damnosum s.l. georferenced, larval habitat 
geosampled at the Chutes-Dienkoa, riverine, eco-epidemiological, 
study site was achieved.For retrieval of explanatorial, vegetation-
related LULC, canopy, spectral, biophysical, time series dependent 
properties, the relationship between NDVI and fractional, vegetation, 
LULC, radiance cover based on a empirically regressed dataset of a 
spectrally, unmixed, risk, model, probabilistic coefficients must be 
examined [115]. Our results revealed strong spatial scale dependencies 
of the RedEdge NDVI over the riverine eco-epidemiological study 
site heterogeneous LULC surfaces, indicating that 5m values may 
be optimal for remotely robustly discerning canopied geosampled, 
georferenced prolific, shade canopied, S. damnosum s.l., riverine, larval 
habitats.	

Our RedEdge NDVI calculated using simulated PAR and NIR 
albedo compared well to the vegetated-related, LULC, explanatorial, 
geospectral values extracted from the georeferenced, geosampled, 
S. damnosum s.l., riverine, larval, habitat canopy biosignature which 
coincidentally revealed similar forecasts as those reported by Asrar 
et al.[131] who suggested that vegetated LULC values of canopies 
dominated by horizontally oriented leaves were not dependent on θs. 
On the contrary he suggested that values of canopies were dominated 
by vertically oriented leaves which are dependent on θs. In horizontally 
oriented leaves, there are usually more stomata on the protected lower 
side than on the exposed upper side. Vertical leaves usually have 
similar numbers of stomata on both sides [46]. Although stomata 
occupy 1% of the leaf surface, they lose huge amounts of water in to 
the atmosphere [13].

Perturbing effects of the background albedo within the visible 
spectrum corresponded to PAR observed changes in the visible albedo 
which estimated FAPAR directly from the NDVI values. The linear 
relationship between changes in visible and NIR albedo defined a weak 
‘soil-line’ to account for changes in background NIR albedo. Departures 
from the correlated variation in NIR background represented by the 
5m soil-line and a lack of consistency in observation/ illumination 
geometries between the 5m remotely sensed, riverine, larval habitat 
observables (e.g. direct and/or diffuse canopy radiation emitted from 

the geosampled, larval habitat) and in-situ field measurements helped 
quantitate the FAPAR of the geosampled S. damnosum s.l., canopy 
cover .

The nonlinearity of the riverine, larval habitat, RedEdge, NDVI 
variables over partially vegetated canopied, LULC surfaces became 
prominent with darker canopy backgrounds and with the presence 
of shadows. The relationship between NDVI and vegetation fraction 
was nonlinear as the NDVI yielded distinct curves with the vegetation-
related explanatorial, LULC cover changes corresponding to different 
canopied type geospatial objects ( e.g., hanging vegetation). Using 
a linear mixture reflectance model we found that the 5m NDVI S. 
damnosum s.l. larval habitat biosignature to be dependent not only on 
the NDVI of the mixel components and their proportions, but also on 
the brightness of the components. We independently obtained identical 
square root relationships between the scaled RedEdge, S. damnosum 
s.l., riverine, larval habitat, NDVI values and shade, fractional, radiance, 
vegetation cover canopied, LULC coefficients values. However, in the 
the S. damnosum s.l. habitat model, the reflectances of bare soil were 
fixed for all simulations. So, the variations of soil background were 
not taken into account between the NDVI and the canopy vegetation 
LULC cover. The RedEdge NDVI may be suitable to infer canopy 
LULC vegetation fraction of a georeferenced, seasonal, geosampled, S. 
damnosum s.l, riverine, larval habitat using within-canopy geospatial 
objects (e.g., immersed vegetation), because of its nonlinearity and 
non-soil scale effects. 

The reduced 5m NIR reflectance at the georefernced, canopied 
riverine, larval habitat eco-epidemiological study site may have resulted 
from the increased surface soil moisture content. Mesic and dry sites 
(e.g., high, canopy, shaded layers) had nearly similar reflectance spectra 
at the shorter wavelengths of the NIR, but at the wet site (e.g., within 
canopy leaves) there was higher nadir-coverage of moss and lower 
contribution from taller vegetation layers (e.g shaded canopy), which 
reduced the 5m NIR reflectance below 900nm. For medium resolution 
remote sensing applications, the contribution from riverine ecosystems 
will have an influence on the reflectance of highly heterogenous 
landscapes and on the NDVI [83].The spectral behavior in the NIR 
region in the Rapid EyeTM data may have been mainly influenced by 
the soil moisture and mean canopy, LULC, vegetation height. For 
example, the very low RedEdge NDVI-NIR reflectance at the bottom of 
the georeferenced, habitat, canopy layer may have been due to the high 
surface moisture conditions (e.g., up to 60 Vol% canopy soil moisture). 
Interestingly, the quantitated, contrasting, geosampled, canopy LULC, 
sites enabled differentiating the dry fallow LULC, sites (e.g., 32 Vol% 
soil moisture) and wet site (e.g., 74 Vol %) of the habitat. 

The scaled difference vegetation index (SDVI), a scale-invariant 
index based on linear spectral mixing of red and NIR reflectances, 
may be a robust approach for parsimonious retrieval of Rapid EyeTM 
5m, vegetation-related, LULC, canopied, fractional, radiance estimates 
from a geosampled, prolific, S. damnosum s.l., riverine, shade, canopied, 
larval habitat particularly over highly heterogeneous riverine, in-
canopy, soil surfaces. The scaled difference vegetation index may be 
applied to calculate the riverine, larval habitat, canopy, gap fractions. 
Also, LAI may be inverted from these SDVI derived gap fractions 
employing the Beer Lambert Law of light extinction. The Beer law is 
commonly applied to mathematical physics and chemical analysis 
measurements used in understanding attenuation in physical optics, 
for photons, neutrons or rarefied gases[121].

The robustness of the SDVI may be evaluated when employing 
ground/riverine-based LAI 5m measurments when qualitatively 
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quantitating probabilstically regressable geo-spatiotemporally-
geosampled, prolific, georeferencable, shade, canopied, S. damnosum 
s.l. seasonally prolific, geosampled, riverine larval habitat predictors. 
This method may be also performed by independently qualitatively 
quantitating simulated Rapid EyeTM data within a PROPECT and SAIL 
coupled radiative transfer model. The effects of atmospheric corrections 
and scales may be then investigated for all geo-spatiotemporally, 
geosampled, shade, canopied, explanatorial, operationizable, riverine, 
S. damnosum s.l., larval habitat LAI retervial methods. The SDVI may 
be found suitable for large scale LAI inversion due to the sensitivity to 
scale and atmospheric effects in prolific, immature, habitat geolocations 
(e.g., flooded meandering African riverine tributaries). The SDVI is 
virtually and atmospherically invariant [13]. The proposed method 
may be validated with experimental, field geo-spatiotemporally, geo-
spectrally interpolated, geosampled, 5m, Rapid Eye TM, count data. 
Interestingly, the main RedEdge NDVI reflectance spectral difference 
along the canopy gradient in the geosampled, riverine, larval habitat 
geolocations was the percentage cover of sedge and standing dead 
vegetation.Canopy, riverine, larval habitat, reflectance spectra within 
the shaded sedges were up to 30 cm long and revealed NIR reflectance 
plateaus with stronger slopes between the beginning and end of the 
Rapid Eye TM NIR reflectance plateau. The standing dead material 
within the larval habitat canopy led to an increase in the reflectance 
in the Rapid EyeTM,5m, red wavelength, sensor region probably due to 
reduced chlorophyll absorption at these sites.

Remotely, qualitatively, regressively, quantitating homogenous, 
individualized, shaded, canopy cover reflectance-related, explanatorial, 
covariate,wavelenght, parameter estimators of standing dead material 
(e.g., sedges), ®over a region of multiple, geosampled, georefernced, 
riverine, productive, S. damnosum s.l., geo-spatiotemporal, larval 
habitats with clustering tendencies may reveal an increase in the 
reflectance in 5m red and blue wavelength regions with no development 
of a green reflectance peak due to reduced seasonal, canopy, leaf, 
pigment absorption. The high percentage cover of standing dead 
material at the georeferenced, riverine, larval, habitat site increased the 
reflectance in the RapidEyeTM5m red, wavelengths bands, whereas the 
moist and dry sites were greener which may have been related to deeper 
canopy chlorophyll absorption at these sites.

Leaf orientation distributions in the geosampled, riverine, S. 
damnosum s.l., larval habitat canopy were classified by the predominant 
angle class, for example, as erectophile (vertical) or planophile 
(horizontal). Lower reflectance was noted from the erectophile portion 
of the canopy in the riverine, S. damnosum s.l., larval habitat, RedEdge 
NDVI which may have been attributable to scattering of radiation 
into the lower, canopy, leaf layers by vertical leaves. In contrast higher 
reflectance was recorded for the planophile portion of the larval habitat 
canopy which may have been due to greater reflection from horizontal 
leaves in the upper part of the canopy. 

Interestingly, nadir-viewed values were approximately 20% higher 
from a planophile than from an erectophile, riverine, larval habitat 
canopy, although LAI and leaf optical properties were similar. The 
structural dependence on planophil and erectophile canopy vegetation 
LULC structures on the NIR reflectance allowed us to conduct a 
robust, geo-spatiotemporal, canopy, risk-based, geospectral analyses of 
the prolific, georeferenced, riverine, S. damnosum s.l. , larval habitat 
geosampled at the Chutes-Dienkoa, eco-epidemiological study site.

Leaf angle distribution [LAD] and leaf area determined the exact 
gap fraction of the riverine, larval, habitat canopy and penetration of 
radiation to the underlying reflection of the within canopied surfaces 

(e.g., sedge,).Leaf angle distribution is a key parameter to characterize 
canopy structure and plays a crucial role in controlling energy and 
mass balance in soil-vegetation-atmosphere-transfer systems [2].
The relative angles between the riverine, geosampled, S. damnosum 
s.l.,larval habitat,canopy leaves and light source and viewing directions 
may need to be calculated seasonally due to shifting patterns of reflected 
and transmitted LULC radiation.

Quantitating configuration complexeties in external and within 
canopy geometries of geosampled, georeferenced, S. damnosum s.l., 
productive, canopied, larval habitats® may help detect canopy gaps. 
The geometrical structure of plant canopies has many implications 
for plant functioning, microclimatic conditions, and plant-pathogen/
herbivore interactions [115]. Plant geometry can be described at 
several scales [4]. At moderate resolution scale, riverine, geosampled, 
S. damnosum s.l., larval habitat, canopy structure includes the shape, 
size, location, and orientation of each geospatial object in the canopy. 
By so doing, an empirical georeferencable dataset of 5m Rapid EyeTM 
variables can report the 3-D geometry of a set of shade, canopied, 
prolific, riverine, larval habitat at the leaf scale. A 3-D magnetic 
digitizer may be employed to measure the spatial coordinates and 
the orientation angles of each canopy leaf, namely, the azimuth and 
inclination angles. In addition, for most moderate resolution canopied 
NDVIs of vegetated LULCs, branching or flush order may be given as 
well as the ranking of leaves along branches and the leaf identity of 
leaflets employing compound-leaved predictors. Leaf length may be 
then robustly measured for the riverine habitats. Leaf width also can be 
measured or estimated based on allometric relationships. The prolific, 
georferenced, riverine, geosampled, S. damnosum s.l., larval habitat 
leaf area may be then derived from qualitatively quantized allometric 
relationships with leaf length and width of canopy. Most of the 
temporally dependent regressors may be therefater used to show how 
seasonal geosampled canopy geometry determines light interception 
and subsequently plant primary production in a productive, seasonal, 
georeferenced, geosampled, riverine, larval habitat. A empiricial, 
geosampled dataset may be employed to test the quality of innovative 
methods for the riverine, larval habitat, canopy, geo-spatiotemporal, 
structure description. Overall, a regressed georeferenced dataset of 
geo-spatiotemporally, empirical, geosampled, S. damnosum s.l., larval 
habitat photosynthetic and NPV covariate parameter estimators, LULC 
coefficients may provide explicit plant canopy architectures suitable 
for spatial regressive modeling plant physiological interactions. By 
so doing, an experimenter /ecologist may determine the mechanisms 
through which climate impacts ecobiological explanatorial, processes 
involved in the shaded, riverine habitat, canopy functions.

The probability of canopy gaps generally decreases as the off-
nadir increases [12]. Directional gap probability, Pgap (θ), is defined as 
the probability of a light beam of infinitesimal width at zenith angle 
θ to the local normal, being directly transmitted through a vegetation 
geoclassifed, LULC canopy [4]. Pgap(θ), along with canopy height and 
LAI, are some of the most important structural parameters used to 
directly interpret the transfer of radiation, carbon, and related processes 
in canopied systems [4,115]. Pgap (θ) is a structural parameter estimator 
that may be near-directly retrieved from airborne measurements [115]. 
The importance of Pgap (θ) is its relationship to radiation interception 
within the canopy and hence other canopy structure parameters, like 
LAI and above-ground biomass [2]. These latter properties may be 
modeled for a geo-spatiotemporally, geosampled, prolific, S. damnosum 
s.l., larval habitat using different expressions, combinations or spatial 
variance of canopy height and Pgap(θ), since the Pgap(θ) represents 
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the integrated effect of several scale-dependent canopy structural 
properties (in particular LAI and LAD).

 In practice, Pgap (θ) is often calculated over a narrow range of angles 
e.g. close to nadir (θ = 0°) and is then referred to simply as Pgap. Many 
studies have estimated Pgap or fractional cover (1- Pgap) using small 
footprint discrete lidar datasets. Quantifying the proportion of pulses 
intercepted by the canopy is the most common method to estimate the 
Pgap [7]. However, remote estimations based on discrete lidar returns, 
tend to rely on site-, sensor- and lidar survey-specific calibrations, 
which limit the application of such methods for rigoriously modeling 
prolific, riverine shade canopied, S. damnosum s.l. larval habitat areas. 
In particular, topography and scan angle (as well as other things such 
as sensor flying height and even canopy structure and crown shape) 
combine in practice to modify the lidar return by changing the size 
and shape of the footprint and the path length through the canopy and 
hence the returned energy[2]. These factors can introduce significant 
bias into estimates of properties derived from the footprint, even in 
‘simple’ metrics such as seasonally specified, geosampled ,riverine, S. 
damnsoum s.l, habitat canopy height. 

The geomorphological, and ecohydrological DEM explanatorial, 
predictor variables of the geo-spatiotemporally-geosampled, 
explanatorial, shade, canopied, prolific, explanatorial, S. damnosum s.l. 
riverine larval habitat site influenced the LAD resulting in differences 
in leaf area and pigment composition, vegetation biomass and height, 
cover of the canopy plant functional types and total, vegetation-
related, LULC cover.The leaf inclination angle density function is 
a fundamental property of plant canopy structure and is needed for 
computing distributions of leaf irradiance [4]. These catchement shed 
computations may be important for predicting canopy photosynthesis 
and energy balance, and for estimating bidirectional reflectances of 
prolific, S. damnosum s.l., riverine, larval habitat, plant canopies in 
5m,remote sensing applications.

Interestingly, several LAD functions found in literature have 
been proposed to account for the non-random distribution of leaf 
inclination angle with one or two parameters functions (e.g., Beta 
distribution function, ellipsoidal function, rotated-ellipsoidal function, 
Verhoef's algorithm and de Wit's functions). We employed the Beta 
distribution function to determine the riverine, larval habitat, leaf-
oriented, inclination angles. G-statistics and χ2 tests were applied to 
the estimates of the LAD. We employed the predictions of LAD by 
the function to calculate an extinction coefficient and to separate the 
larval habitat canopy foliage into sunlit and shaded parts. The results 
suggested that, ellipsoidal function may be suitable to be retrieved with 
the Rapid Eye™ RedEdge NDVI data as the fraction of sunlit foliage of 
the geosampled, riverine, larval habitat employing the beta distribution 
function which would require only a single parameter, namely the ratio 
of the horizontal semi-axis length to the vertical semi-axis length of the 
ellipsoid.

The ENVI approach related recognition of prolific, riverine, S. 
damnosums.l., larval habitat georefernced patterns by distinguishing 
noise, from the abstraction of structure in the medium resolution, 
remotely sensed, data attributes. In the object-based classifier all 
the geosampled, S. damnsoum s.l. habitat data points based on the 5 
m-sub-mixel, data encompassing the shaded, canopy, vegetation LULC 
explanatorial, photosynthetic and NPV components were examined 
in n-dimensional space. Canopy endmembers present in the scene 
were found at the vertices of the simplex. The interior space of the 
simplex represented feasible mixtures. ENVI algorithms identified the 

fractional presence of each derivative spectra in the unmixed, Rapid 
Eye™ RedEdge, S. damnosum s.l. habitat, NDVI mixel.

The FLASSH™ model generated in ENVI generated extinction 
coefficient values. The extinction coefficient represented the area 
of shadow cast onto a horizontal surface by the riverine habitat 
canopy divided by the area of leaves in the canopy. We calculated the 
geosampled, georefernced, prolific, shade, canopied, S. damnosum s.l. 
riverine, larval habitat employing the distribution of leaf area in the 
canopy which we approximated by the distribution of surface on spheres, 
cylinders and cones. Values for K were then determined by finding the 
ratio of shadowed, riverine, larval habitat, canopy area to surface area 
for these shapes. The model provided a K value and also very crude 
approximations of actual foliage inclination angle densities. Only the 
spherical distribution provided a range of leaf angles. Measurements 
indicated that certain portions of the canopy (e.g., shaded sedges) were 
discontinuous in the larval habitat model. Fortunately, K values are 
not extremely sensitive to variation in leaf angle distribution functions 
[13], so the riverine larval habitat extinction coefficients calculated 
from our Rapid Eye™ model provided adequate leaf angle densities.

ENVI Endmember visualization approaches can play a vital role 
in geo-spatiotemporally, remotely, qualitatively, quantitating canopy 
light, subtle patterns within complex, shade, canopied, Rapid EyeTM 
,RedEdge, NDVI-related, geospectral, S. damnosum s.l., riverine, 
larval habitat, canopied endmembers that may not be immediately 
apparent in strictly unmixing analysis methods. The critical step in 
our object-based classification, for example, was the determination 
of the canopied LULC, endmembers employed as the references for 
the unmixing ENVI decomposition analysis of the the RedEdge, 
NDVI, riverine, geospectral, larval habitat, Rapid EyeTM image. These 
included applications in target detection and unsupervised image 
segmentation. Segmentation is a fundamental process in digital image 
processing which has found extensive applications in areas such as 
content-based image retrieval, medical image processing, and remote 
sensing image processing[12,115]. The remote purpose of our model 
application was to extract labelled regions or boundaries for targeted 
objects for subsequent processing such as surface description and 
object recognition. Importantly, canopy endmember geo-visualization 
and decomposition of a RedEdge NDVI biosignature may serve to 
stimulate hypothesis generation.

A simple Markov Random Field model (MRF) in ArcGIS with a 
new implementation scheme was employed for image segmentation 
based on the unmixed shade, canopied, S. damnosum s.l., riverine, larval 
habitat,georeferncable, image features. The traditional two-component 
MRF model for segmentation requires training data to estimate 
necessary model parameter estimators [132]. The new implementation 
scheme introduced a function-based weighting parameter between 
components in the eco-epidemiological, forecasting, risk model. The 
simple MRF model was able to automatically estimate the model 
phostsynthetic and NPC canopy-related predictors and produce 
accurate unsupervised segmentation results. 

Improved estimates of the canopied larval habitat extinction 
coefficients were obtained by stratifying a geo-spatiotemporally, 
geosampled, 5m, imaged canopy into several leaf angle classes 
employing the conical distribution. A simple formula, similar to the 
spherical distribution formula, but with more flexibility realistically, 
described the density function of individual canopied leaf areas in the 
geosampled, georeferenced, prolific, shaded, riverine, S. damnosum 
s.l., riverine, larval habitat, Rapid EyeTM scene which was very useful 
in the canopy radiation model. An existing riverine, S. damnosum s.l. 
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riverine larval habitat canopy radiation, eco-epidemiological, model 
may be modified, in future contributions, to incorporate ellipsoidal 
distributionof seasonal canopy foliage elements, which then may be 
found to be continuous over a wide range of leaf angles in a functional 
analyses. Subsequently horizontal or vertical tendencies of the canopy 
may be formly geo-spatiotemporally qualitatively quantitated. 

In the modern view, functional analysis is seen as the study of 
complete normed vector spaces over a dataset of real or complex 
numbers [27]. Such spaces are called Banach spaces. Banach space 
is a vector spaceX over the field R of real numbers, or over the field 
C of complex numbers, which is equipped with a norm and which is 
complete with respect to that norm, that is to say, for every Cauchy 
sequence {xn} in X, there exists an element x in X such that lim ,nn

x x
→∞

=
or equivalently: 1 2 3, , ,x x x …  [65]. A sequence 1 2 3, , ,x x x …of real 
numbers is called a Cauchy sequence, if for every positive real number 
ε, there is a positive integer N such that for all natural numbers m, n>N 
| | ,m nx x ε− < where the vertical bars denote the absolute value [12]. 
To define Cauchy sequences in any metric space X in a geosampled, 
georeferncable, prolific, shade canopied, 5m imaged, Rapid Eye™ S. 
damnosum s.l., riverine, larval habitat, eco-epidemiological, forecasting, 
geospectral, time series, risk model the absolute value | |m nx x−  
must be replaced by the distance ( , )m nd x x  (where d : X × X → R with 
some specific properties,(e.g., meteric mathematics) between mx and

nx .Formally, given a metric space (X, d), a sequence 1 2 3, , ,x x x …
is Cauchy, if for every positive real number (geo-spatiotemporally-
geosampled, prolific, georeferenced, shade canopied, S. damnosum s.l. 
larval habitat decomposed photosynthetic covariate coefficient value) 
ε> 0 there is a positive integerN such that for all positive integers m, 
n>N, the distance ( , ) .m nd x x ε<

More generally, an empricial geo-spatiotemporal, geosampled, 
riverine, larval habitat, eco-epidemiological, regression-related, 
geospectrally dependent, functional analysis can include the study of 
Fréchet spaces and other topological vector spaces not endowed with 
a norm. Topological vector space X is a Fréchet space if and only if it 
satisfies the following three properties:it is locally convex, its topology 
can be induced by a translation invariant metric, (i.e. a metric d: X × X → 
R such that d(x, y)=d(x+a, y+a) for all a, x, y in X) [65]. This means that 
a subset U of X is open in a parameter estimator, time series dependent, 
S. damnosum s.l., riverine, larval habitat, empirical, geosampled, Rapid 
Eye™ 5m imaged dataset if and only if for every u in U there exists an 
ε > 0 such that {v : d(v, u) < ε} is a subset of U. An important object of 
study in remotely based functional analysis are the continuous linear 
operators defined on Banach and Hilbert spaces [115]. These lead 
naturally to the definition of C*-algebras and other operator algebras. 

An important example of acomplete normed, vector, shade, 
canopied, explanatorial, S. damnosum s.l, larval habitat, canopy 
endmember, biosignature-related, decomposition spaces would 
be Hilbert space, where the norm arises from an inner product. 
These spaces are of fundamental importance in the mathematical 
formulation of quantum mechanics. Hilbert spaces can be completely 
classified: there is a unique Hilbert space up to isomorphism for every 
cardinality of the base [27]. Since finite-dimensional Hilbert spaces 
are fully understood in linear algebra, and since morphisms of Hilbert 
spaces can always be divided into morphisms of spaces with Aleph-
null (ℵ0) dimensionality [65], functional analysis of Hilbert spaces 
for a spectrally dependent, geosampled, geo-spatiotemporal, prolific, 
geosampled, S. damnosum s.l. Rapid Eye™ 5m, sseasonal imaged, 
riverine, larval habitat eco-epidemiological, forecasting, canopy, risk 

modelcan deal with the unique Hilbert space of dimensionality Aleph-
null, and its morphisms. In future functional analysis research it may be 
interesting to prove that every operator on a Hilbert space in a seasonal, 
shade canopied, S. damnosum s.l. prolific, georferenced, larval habitat 
has a proper subspace which is invariant. 

Consider a linear, geospectrally dependent, geo-spatiotemporal, 
geosampled, S. damnosum s.l. prolific, riverine, canopied, larval 
habitat eco-epidemiological, forecasting, Rapid Eye™, 5m, imaged, 
decomposed, sub-mixel, risk map T in ArcGIS that transforms: 

: n nT R R→ .An invariant subspace W of T may then have the 
property that all vectors Wυε  which may be transformed by T into 
vectors also contained in W. In mathematics, an invariant subspace 
of a linear mappingT: V → V from some vector spaceV to itself 
is a subspaceW of V that is preserved by T; that is, T(W) ⊆W [12]. 

This can be alternatively stated as ( )W T Wυε υ ε⇒ in the model 
residual forecasts. Since could map every prolific, shade, canopied, 
S. damnosum s.l. riverine, larval habitat, predictive, risk vector in Rn 
into Rn  and since the linear map could be adjusted so 0 0→ , a 
uni-dimensional invariant subspace may be the basis of resolving the 
canopy model in uni-dimensional space. Consequently, any vector 
x Uε in the canopied, time series, geospectrally dependent, larval 

habitat, eco-epidemiological, forecasting, risk model can be represented 
as λυ where λ is a real scalar. If a ecologist or experimenter 
represents T by an uncertainty-orinted probabilistic matrix A then, 
for U to be an invariant subspace the model residual forecasts must 
satisfy: :x U R Axε αε αυ∀ ∃ = .We know that x U xε βυ⇒ =
with Aυ λυ= [27]. Therefore, the condition for existence of a uni-

dimensional invariant subspace in the forecasts may be expressed as: 
Aυ λυ=  Note that this is the typical formulation of an eigenvalue 

problem, which means that any eigenvector of A can also form a uni-
dimensional invariant subspace in T in a robust, explanatorial, geo-
spatiotemporal, shade, canopied, S. damnosum s.l., riverine, larval 
habitat, eco-epidemiological, forecasting, endmember, Rapid Eye™ 
specified, sub-mixel, risk model.

An invariant subspace of a linear mappingT : V → V in ArcGIS from 
some vector spaceV to itself may be a subspaceW of V such that T(W) is 
contained in Win a georfernced, prolific, shade canopied, S. damnosum 
s.l., riverine, larval habitat, predictive, 5 m, Rapid Eye™, canopy, 
imaged endmember, decomposed, eco-epidemiological, sub-mixel, 
forecasting, time series dependent, risk model. An invariant subspace 
of Tmay be also T invariant [132]. If W is T-invariant, an ecologist or 
expeimenter can restrict T to W to arrive at a new linear mappingT | W: 
W → Wemploying multiple geo-spatiotemporal, geosampled, riverine 
canopied, larval habitat model parameter estimators. By so doing, an 
ecologist or expeimenter may generate a few immediate examples of 
invariant subspaces. Certainly V itself, and the subspace {0}, would 
be trivially invariant subspaces for every linear operator T: V → V 
in the resdiual model output. For certain linear operators in an eco-
epidemiological, canopied, S. damnosum s.l. riverine, larval habitat, 
geospectrally dependent, eco-epidemiological, risk model there may be 
only a non-trivial invariant subspace; thus, considering a rotation of a 
two-dimensional real vector space may not be far-fetched.

Let v be an eigenvector of T,(i.e. Tv = λv) in the geospectrally 
dependent, georefernced, geosampled, S. damnosum s.l., geo-
spatiotemporal, forecasting, eco-epidemiological, risk-related, Rapid 
EyeTM,5m, imaged canopy, endmember, decomposed, model. Then W 

http://en.wikipedia.org/wiki/Eigenvector
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= span {v} would beT invariant. As a consequence of the fundamental 
theorem of algebra, every linear operator on a complex finite-
dimensional vector space with dimension at least 2 would have an sub-
mixeleigen vector. Thereafter, every such linear operator in the riverine, 
larval habitat, canopied, eco-epidemiological, risk model output would 
have a non-trivial invariant subspace. The fact that the complex, 
geosampled, empirically geosampled, S. damnosum s.l., riverine, larval 
habitat, endmember, photosynthetic and NPV covariate coefficient, 
unmixed values may be algebraically closed. As such, the invariant 
subspaces of a linear transformation would be dependent upon the 
underlying scalar field of V in the model. An invariant vectorfixed 
point of T in the model, other than 0, would span an invariant subspace 
of dimension 1. An invariant subspace of dimension 1 would be acted 
on by T by a scalar therefater, and would consist of invariant vectors 
if and only if the scalar is 1 in the eco-epidemiological, geo-spectrally 
dependent, riverine larval, habitat forecasting, eco-epidemiological, 
risk model regression estimators.

As the above examples indicate, the invariant subspaces of a given 
linear transformation Tin a geosampled, georeferenced, prolific, 
canopied, S. damnosum s.l.,-related, eco-epidemiological, forecasting, 
diagnostic, risk model constructed in ArcGIS may shed light on the 
structure of T. When V is a finite dimensional vector space over an 
algebraically closed field, linear transformations acting on V may be 
characterized by the Jordan canonical form, which decomposes V into 
invariant subspaces of T. In linear algebra, a Jordan normal of a linear 
operator on a finite-dimensional vector space is an upper triangular 
matrix of a particular form called a Jordan matrix, representing the 
operator with respect to some basis [27]. Many fundamental questions 
regarding T may then be translated to questions about invariant 
subspaces of T in an eco-epidemiological, prolific, georfernced, 
geosampled, canopied, riverine, larval habitat, risk model. More 
generally, invariant subspaces may bedefined for sets of operators as 
subspaces invariant for each operator in the set in the model residual 
forecasts.

Let L (V) denote the algebra of linear transformations on V, and 
let (T) be the family of subspaces invariant under T∈L (V). The "Lat" 
notation refers to the fact that Lat (T) forms a lattice [27]. Given a 
nonempty set Σ ⊂L(V), an ecologist or expeimenter may consider 
the invariant subspaces invariant in an explanatorial, shade canopied, 
Rapid Eye™ 5m, imaged,, seasonally productive, S. damnosum s.l., 
georeferenced, riverine, larval habitat, forecasting, eco-epidemiological, 
geospectrally dependent, eco-epidemiological risk model under each 
T∈ Σ using symbols, ( ) ( )

T
Lat Lat T

ε
Σ =  . For example, it is clear that 

if Σ=L (V), then Lat (Σ)={{0}, V}[65]. Given a representation of a 
group G on a vector space V, an ecologist or expeimenter may also 
achieve a linear transformation T(g) : V → V for every element g of 
G in the canopied, riverine, larval habitat model. If a subspace W of 
V is invariant with respect to all these transformations, then it would 
be a sub-representation and the group G would act on W in a natural 
way. As another example, let T∈L(V) and Σ be the algebra generated by 
{1, T} in the eco-epidemiological, geo-spatiotemporally, geosampled, 
eco-epidemiological risk model where 1 is the identity operator. Then 
Lat (T) = Lat (Σ). Because T lies in Σ trivially, Lat (Σ) ⊂ Lat (T) would 
occur in the resdiual forecasts. On the other hand, Σ may consist of 
polynomials in 1 and T, therefore the reverse inclusion would hold as 
well in the forecasts. 

Over a finite dimensional vector space every linear transformation 
T : V → V can be represented by a matrix once a basis of V has been 
chosen in ArcGIS. Suppose now W is a T invariant subspace in a 

geospectrally dependent, robust, S. damnosum s.l. georeferenced, 
shade, canopied, prolific, riverine, larval habitat, forecasting, eco-
epidemiological, risk model. A basis C={v1,.., vk} of W may be selected 
and completed to a basis B of V. Thereafter, with respect to this basis, 
the matrix representation of Tin the model would take the form: 

11 12

22

  T
0     T
T

T
 

=  
 

 where the upper-left block T11 would be the restriction 

of T to W. In other words, given an invariant subspace W of T, V in 
aRapid Eye™, imaged, eco-epidemiological, decomposed, endmember,, 
shade canopied, productive, S. damnosum s.l. riverine larval habitat, 
geo-spatial, risk model, the sub-mixel, forecasts can be decomposed 
into the direct sum .V W W ′= ⊕ Viewing T as an operator matrix

11 12

21 22

: ,
W W

T T
T

T T
W W

 
= ⊕ → ⊕ 
  ′ ′

would then validate that T21: W → W' must 

be zero. Determining whether a given subspace W is invariant 
under T would be ostensibly a problem of geometric nature. Matrix 
representation allows one to phrase this problem algebraically to be 
resolved [12]. The projection operator P onto W may be then optimally 
be defined by P (w + w')=w, where w∈W and w' ∈W' in the riverine, 
canopied, larval habitat, eco-epidemiological model. The projection P 

would then have a matrix representation of 
1 0

: .
0 0

W W
P

W W

 
= ⊕ → ⊕ 
  ′ ′

A straightforward calculation may show that W = R and P 
where the range of P, is invariant under T if and only of PTP = TP 
in a eco-epidemiological, georeferenced, shade canopied, prolific, S. 
damnosum s.l. forecasting, endmember, Rapid EyeTM imaged sub-
mixel, decomposed, 5m, eco-epidemiological risk model In other 
words, a subspace W being an element of Lat(T) would be equivalent to 
the corresponding projection satisfying the relation PTP = TP. If P is a 
projection (i.e. P2 = P), so would be 1 − P, where 1 is the identity operator. 
It follows from the above logic that TP = PT in the S. damnosum s.l. 
related, canopy, endmember forecasting, eco-epidemioloigical risk 
model, if and only if both Ran P and Ran (1 − P) are invariant under 
Tin the model resdiual output. In that case, T would have a matrix 
representation

11

22

Ran Ran
0

: .
0

Ran(1 ) Ran(1 )

P P
T

T
T

P P

 
= ⊕ → ⊕ 
  − −

Colloquially, a projection 

that commutes with T "diagonalizes" T [65].

Interestingly, a Rapid EyeTM 5m, imaged, riverine, larval, habitat 
canopy may be divided into thin layers, and the foliage elements 
within each layer which may be then classified into leaf inclination 
and azimuth angle classes. Simplications of the model can include 
options for varying the thickness of the canopy layers and the number 
of angle classes, for accurate, forecast, eco-epidemiological, sub-
mixel, risk modeling, georeferenced, riverine, larval habitat, higher 
canopy geolocations as a single layer, and for partitioning the foliage 
elements in each layer into sunlit and shaded fractions, with disregard 
of leaf angle classes. This canopy radiation model and its simplications 
may be implemented in a computer simulation module thereafter 
for estimating canopy photosynthesis and transpiration in the 
georeferenced larval habitat canopy. Simulation runs may be performed 
for seasonal conditions with low and high lai and irradiance. It may be 
found that canopy photosynthesis and transpiration estimates, may be 
optimally regressively seasonally qualitatively quantitated in a riverine, 
S. damnosum s.l., larval habitat, geo-spectrally dependent, decomposed 
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endmember, sub-mixel, eco-epidemiological, Rapid EyeTM, risk model 
employing canopy layer thickness of 0.5 lai, for example,with three 
inclination and azimuth angle classes which may, in turn,be found to 
render only negligible error in the eco-epidemiological explanatorial, 
residual forecasts.These spectral uncertainties may be determined to be 
small if only average irradiance over sunlit and shaded leaf fractions 
by layer are constantly quantized by calculating fluctuations from 0% 
to 10% for the entire empirical dataset of decomposed photosynthesis 
covariate coefficient estimators, for example, and/or from 0% to 5% for 
transpiration estimates.

Simplified canopy radiation models result in a dramatic decrease 
of computation time, up to 1/60of that required by the standard [116].
The distribution of the predicted, prolific, geo-spatiotemporally-
geosampled, Rapid EyeTM 5m, imaged,riverine, larval habitats can thus 
be generalized by considering the distribution of area on prolate or 
oblate spheroids, rather than just spheres in decomposed,canopied, 
endmember, ArcGIS datasets. By adjusting the ratio of horizontal to 
vertical axis of the spheroid, LAD of any geosampled, georeferenced, 
5m imaged S. damnosum s.l. canopy from erectophile to planophile 
may be be simulated.

Geovisually detectable Rapid EyeTM, 5m, imaged, georeferenced, 
S. damnosum s.l. larval habitat, explanatorial, leaf optical properties 
geosampled in African riverine environments may be controlled by 
internal leaf structure and attenuated by seasonal leaf water content. 
Mild water stress decreases relative water content (RWC) 10 to 20% 
and decreases turgor slightly [91]. Relative water content is probably 
the most appropriate measure of canopy plant water status in terms of 
the ecophysiological consequence of cellular water deficit [13]. Water 
potential as an estimate of the energy status of canopy plant water is 
useful in dealing with water transport in the soil-plant-atmosphere 
continuum [26].

Mild water stress decreases relative water content (RWC) 10 to 20% 
and decreases turgor slightly [91]. Relative water content is probably 
the most appropriate measure of canopy plant water status in terms of 
the ecophysiological consequence of cellular water deficit [13]. Water 
potential as an estimate of the energy status of canopy plant water is 
useful in dealing with water transport in the soil-plant-atmosphere 
continuum [26].

However, in georeferenced, geospectrally decomposed, Rapid 
EyeTM specified, S. damnosum s.l., larval habitat, canopied, vegetation 
materials geosampled in a African riverine environment, RWC may 
not not account for seasonal osmotic adjustment (OA). The OA is a 
powerful mechanism of conserving cellular hydration under drought 
stress [13]. Regardless, the same geosampled, riverine, larval habitat, 
canopy, leaf water potential can have two different cultivars which 
in turn can have different leaf RWCs, indicating a corresponding 
difference in leaf hydration, leaf water deficit and physiological water 
status. Hence, RWC may be an appropriate 5m, remotely-sensed, 
heuristically optimizable, regressive estimate of a geosampled, Rapid 
EyeTM 5m imaged, georefernced, S. damnosum s.l., riverine, larval 
habitat, canopy plant, water status which may be quantitated in 
terms of cellular hydration under the possible effect of both leaf water 
potential and OA. Normal values of RWC range between 98% in fully 
turgid transpiring leaves to about 30-40% in severely desiccated and 
dying leaves, depending on canopy plant species [13,33]. In most crop 
species the typical leaf RWC wilting is about 60% to 70% [26]. Seasonal 
decreases in RWC in S. damnosum s.l., habitat, riverine canopies may 
be accompanied by cell wall relaxation, decreases in cell dimension, 
cell surface, cell volume, and lengthening of intercellular space of 

photosynthetic materials which also may be geospectrally qualitatively 
regressively quantized by analyzing decomposed,Rapid EyeTM,5m, 
geospectrally dependent, vegetation indices. 

Rapid EyeTM 5m, derived Leaf Water Content Index (LWCI) in 
ArcGIS may also determine RWC of a geosampled, georefernced, S. 
damnosoum s.l., prolific, shade, canopied, riverine, larval habitats 
with different seasonal leaf morphologies. Thereafter, the Moisture 
Stress Index (MSI) may be regressively quantitated along with the 
Equivalent Water Thickness (EWT). Reflectance factors at 0.82 μm and 
1.6 μm were measured on leaves of Quercus agrifolia (sclerophyllous 
leaves), Liquidambar styraciflua (hardwood deciduous tree leaves), 
Picea rubens and Picea pungens (conifer needles), and Glycine max 
(herbaceous dicot leaves) employing RWC and EWT which were 
then measured concurrently with moderate resolution reflectance 
measurements [126]. The results showed that LWCI was equal to 
RWC for the species tested.Thus, the results of a sensitivity analysis 
for an explanatorial, georefernced, geosampled, seasonally productive, 
decomposed empirical, geosampled, riverine, S. damsnoum s.l., larval 
habitat, endmember analyses may indicate canopy reflectances at 1.5 
μm, for example, for two different geo-spatiotemporally extracted 
RWCs. By so doing, MSI and LWCI may be found to be seasonally 
correlated to the quantized, georferenced, riverine, larval habitat, 
Rapid EyeTM 5m specified, canopy RWCs with each having a different 
regression equation and log10 EWT values on the same regression line. 

Because EWT is correlated with LAI [127-130,133] MSI may also be 
correlated with Rapid EyeTM 5m specified, geospectrally decomposed, 
S. damsnoum s.l., georeferencable, riverine, larval habitat, endmember, 
empirical phostosynthetic and NPV explanatorial, time series 
dependent, geosampled, parameter estimators. Assuming that the 
regression equation of MSI to EWT can be applied to the decomposed, 
larval habitat, endmember canopy values, then the minimum 
significant change of RWC may also be detected. Even though for most 
canopy plants, the natural variation in RWC from water stress is only 
about 20%[2],Rapid EyeTMproxy indices derived from decomposed 
NIR reflectances may be employed to remotely-sensed water stress in 
the shaded canopy cover in a georeferenced, S. damnosum s.l., larval 
habitat, 5m scene, geosampled in an African riverine environment.

In future it may be advisable when decomposing Rapid EyeTM, 
endmember, shade, canopied, S. damnosum s.l., riverine, larval 
habitat geosampled biosignature to remotely extrapolate more geo-
spatiotemporal, water-related, LULC classes from the RedEdge NDVI 
data in ArcGIS. Many band ratios have been proposed to estimate water 
content, including the normalized difference water index [134] and the 
plant water index [135]. Gao and Goetz [136] calculated an equivalent 
water thickness (i.e., the depth of water across a SPOT mixel) by fitting 
a water spectrum across the feature centered at 980 nm. Zhang et al. 
[137] and Sanderson et al. [138] used endmember medium resolution 
data (+ETM) to map canopy water absorption and content in salt 
marshes. Thus, robustness of an explanatorily, qualitatively, regressed 
endmember, Rapid EyeTM , 5m forecast may be improved when 
geospectrally, explanatorily interpolating a decomposed, 5m, RedEdge, 
NDWI biosignature reterived from a georeferenced shade vegetated, 
canopied, S. damnosum s.l, riverine, larval habitat by including more 
flooded, riverine, LULC classes, for example, for remotely targeting 
unknown, unsampled, seasonally geospectrally, productive habitats 
based on field geosampled immature count data.

Light in a canopy is attenuated exponentially with increasing leaf 
area and biomass [4,13].We simulated spectral reflectances which 
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were analyzed by the Rapid EyeTM,5m data in the geosampled, S. 
damnosum s.l. larval habitat geo-spatiotemporal, endmember model 
to regressively quantify reflectance differences between different and 
equivalent, canopy-related, riverine water thicknesses level. Simulated 
results coupled with consideration of atmospheric transmission 
properties and the incident solar quantized the 5m spectral irradiance 
which subsequently resulted in identifying plant canopy water status 
between the 0.7–2.5 μm region of the spectrum. Since,in the RedEdge 
visible spectrum, underlying substrate is generally more reflective 
than the vegetative component (www.satellite imaging corporation), 
so regressively quantitating BDRF values derived, from unmixed, 
RapidEyeTM, S. damnosum s.l., larval habitat, endmember data may 
decrease with increasing LAI. 

As LAI increases seasonally, leaf optical properties may dominate 
in georeferenced, geosampled, S. damnosum s.l., riverine, larval habitat 
canopies owing to multiple scattering, resulting in an increase in NIR, 
RedEdge, NDVI decomposable, qualitatively regressively quantizable 
values. An ArcGIS, stochastic, leaf radiation model constructed using 
decomposed Rapid EyeTM 5m data may predict leaf spectral reflectance 
as a function of leaf water content for mapping unknown, unsampled, 
geospectrally/geospatially explanatorily interpolated prolific, shade, 
canopied, geosampled, georeferencable, S. damnosum s.l., riverine, 
larval habitats. A stochastic leaf radiation model based upon physical 
and eco-geophysiological explanatorial properties of an empirically 
geosampled, eco-epidemiological, time series dependent, geospectral 
dataset of river larval habitat, canopied dicot leaves may be then 
developed. The model may accurately predict the absorbed, reflected, 
and transmitted radiation of normal incidence as a function of Rapid 
Eye TM wavelengths resulting from the leaf–irradiance interaction over 
the spectral interval of 0.40-2.50 μm, for example.

In our ArcGIS S. damnosum s.l. related remote model, the leaf 
optical system was represented as Markov process with a unique 
transition matrix at each 0.01-μm increment between 0.40 μm and 
2.50 μm, therefater. Probabilities were calculated at every Rapid 
Eye™ wavelength interval from leaf thickness, structure, pigment 
composition, and water content. Simulation results indicated that the 
stochastic, canopied, georeferenced, geosampled, S. damnosum s.l., 
riverine, larval habitat, time series dependent, explanatorial, radiation, 
model approach rendered accurate regressive estimators of actual 
measured values for dicot leaf absorption which was subsequently 
tested to determine if a 5 m RapidEye™ derived wavelength reflection 
function could robustly remotely target prolific unknown, unsampled, 
canopy, shaded, habitats in an African riverine environment.

Although the radiative transfer equation was developed for a 3-D 
media, the propagation of light one direction must considered [2]. Let 
I(x, µ) be the intensity of monochromatic radiation at a position x in 
the interior of the leaf, traveling in a small volume element dx.dy, in the 
direction θ [120]. We defined µ=cosθ and µ'=cosθ'in the geosampled, 
S. damnosum s.l,-related, forecasting, eco-epidemiological, risk model 
as the axial cosines of the angle of light propagation before and after 
scattering, respectively. We used the probabilistic etsimates where σ
e(x) was the extinction coefficient of the medium defined as σ e(x)=
σ k(x) + σ s(x). In the Rapid Eye™ model I(x) was intensified by 
coherent single scattering emerging from multiple canopy directions 
and thermal emission of the medium, at the local thermodynamic 
equilibrium. The medium includes inhomogeneities in the form of 
small particles that scatter the radiation beam in all direction [13]. The 
scattering is called coherent because the scattered radiation has the 
same wavelength as the incident radiation [4]. 

The distribution of scattered radiation over all the directions 
in the Rapid Eye™, 5 m, riverine, larval habitat, sub-mixel, eco-
epidemiological, time series, risk model was characterized by a phase 

function P(µ, µ') that was normalized to 1: ( )'
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where P(µ, µ') wasthe probability that the endmember, radiation 
falling in the direction µ was based on incidence scattered in the 
direction µ' of the geosampled, canopied, larval habitat, explanatorial 
observations. As a consequence, the multiple scattering source 
function that corresponded to the canopy habitat radiation falling 
on a volume element of the medium from all directions wasequal to:  
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the Planck function for the intensity of radiation of an ideal 
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in future research. Then the 
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the Rapid Eye™, 5 m-related, radiative transfer equation may express 
the infinitesimal variation of flux dI in the slab at position x is an integro-
differential geo-spatiotemrporal, S. damnosum s.l. forecasting equation [e.g., 
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400 nm to 2500 nm in the RedEdge signal there be no thermal emission 
but intense scattering may occur which may be then subsequently 
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A SPA algorithm in ArcGIS was then employed to further 

unmix the RedEdge NDVI biosignature. By employing the average 
of multiple, shade, canopied, Rapid EyeTM 5m imaged S. damnosum 
s.l., riverine, larval habitat,geospectrally decomposed, georeferenced, 
canopy endmembers from the extracted RedEdge, NDVI mixel as 
one canopy endmember, we noticed that the SPA-derived spectra 
appeared noise-less (e.g. smooth). Given that geospatially adjacent, 
explanatorial, canopied, S. damnosum s.l., riverine, larval habitat data 
extracted from a 5m mixel was not likely to be simultaneously spurious, 
the use of adjacency–related endmember tabulations may have made 
the SPA more sensitive to isolated, noisy, Rapid EyeTM mixels,thus 
avoiding inherent problems such as uncertainty probability estimation 
and propagation of autocovariate decomposition erroneous variabes 
commonly seen in other convex–based, endmember-search, unmixing 
algorithms.

Metropolis-within-Gibbs sampler for piecewise convex 
hyperspectral unmixing and canopy endmember extraction may 
be presented for unmixing a seasonally prolific, shade canopied, S 
.damnosum s.l., riverine, larval habitat The standard linear mixing 
model used for hyperspectral unmixing assumes that hyperspectral 
data reside in a single convex region[4]. However, hyperspectral 
data are often nonconvex. Further, in standard, canopy, endmember 
extraction and unmixing methods, the endmembers are generally 
represented as a single pointin the high-dimensional geospace. 
However, the geospectral, canopied, bioisignature for an explanatorialy 
decomposed, Rapid EyeTM,5m, imaged, geosampled, georefernced S. 
damnosum s.l., riverine, larval habitat, unmixed sub-mixel material 
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may vary as a function of the inherent variability of the unmixed 
material and riverine ecosystem conditions. Therefore, it is would be 
appropriate to represent each decomposed, riverine, larval habitat, 
canopyend member with a full distribution of the variable radiance 
capability and use this information during LULC classification. The 
proposed method would search for several sets of canopy endmember 
distributions. By employing several sets of endmember distributions, 
a piecewise convex mixing model may be applied. By so doing, each S. 
damnosum s.l., riverine, larval habitat, unmixed canopied endmember, 
in a decomposed empirical dataset would then represent a random 
simplex. The vertices of the random simplex could thereafter be 
modeled by the endmember distributions. Optimally, the data would be 
partitioned into sets associated with each of the extracted endmember 
distributions using a Dirichlet process prior. 

In probability theory, Dirichlet processes are a family of stochastic 
processes whose realizations are probability distributions[12]. 
In other words, a Dirichlet process in a geo-spatiotemporally, 
geosampled, productive, georeferenced, S. damnosum s.l. riverine, eco-
epidemiological, forecasting, risk-related, larval habitat model would 
be a probability distribution whose domain is itself a set of probability 
distributions. The Dirichlet process prior would estimate the number 
of sets in the Rapid EyeTM 5m, imaged, riverine, larval habitat, ,risk-
related eco-epidemiological, decomposition exercise. Thereafter, the 
Metropolis-within-Gibbs sampler could partition the data into convex 
regions, estimate the required number of convex regions, and estimate 
the canopy endmember abundance values for all convex regions, if 
so desired. Results may be presented on real hyperspectral and/ or 
simulated riverine, larval habitat, geosampled data that indicate the 
ability of the method to effectively explanatorily geo-spatiotemporally 
tabulate distributions and the number of sets of canopy endmember 
distributions.

One of the major extracting tools for generating the the 
georeferencable, SPA-based, spectral explanatorial, forecasted residuals 
from the Rapid EyeTM, RedEdge, S. damnosum s.l. habitat, explanatorial, 
NDVI, decomposed biosignature was the sensitivity of two parameters 
namely, the k (the number of so-called skewer [i.e., random initial 
canopied endmembers]) and t (cut-off threshold value) which became 
evident during the final selection of the canopy, shaded, endmembers 
from the unmixed reference biosignature-related predictor variables. 
These parameters were implemented using a Minimum Noise 
Fraction(MNF) transform, which performed dimensionality reduction 
on the geospectrally decomposed, RedEdge, canopied, S. damnosum 
s.l. riverine, larval habitat, 5m, Rapid EyeTM biosignature-related sub-
mixel covariate coefficients. Due to the fact the MNF was associated to 
second order statistics, it may be possible to capture additional higher 
order statistical information when decomposing a Rapid EyeTM, Red 
Edge, NDVI canopied biosignature. Endmembers are traditionally 
characterized by higher order statistics (127,131,139-141). 

The SPA-based algorithms utilized the high order statistical-based 
transformation to perform dimensionality reduction of the Rapid 
EyeTM5m imaged, S. damnosum s.l., larval habitat individualized 
RedEdge, NDVI, decomposed biosignature, radiance estimates. The 
canopy endmember determination quantified the unmixed dataset of 
distinct visible and NIR decomposed spectra that comprised the 5m 
mixel. The inversion stage produced abundance planes that provided 
estimates of the fractional abundances of the endmember spectrum.

An additional 5m byproduct measurement rendered by the 
SPA was generated while unmixing the RedEge NDVI, shade-
related, explanatorial, S. damnosum s.l. riverine, larval habitat, Rapid 

EyeTMcanopy, endmember biosignature which was quantaited as the 
change of the simplex volume ratio between successive iterations 
during the endmember extraction process.For example, we noted 
that the SPA illustrated the influence of a new riverine larval habitat 
canopied endmembers on the decomposed RedEdge, NDVI image 
data structure, and provided information on the convergence of the 
algorithm. Though the rate of convergence speed varied with the 
complexity of the decomposed, 5m,biosignature, eco-geographiocally 
representing the seasonally prolific, shaded, S. damnosum s.l., riverine, 
larval habitat, canopied endmember, explanatorial, geospatial 
covariates, the merging revealed large changes in volume ratio, 
followed by progressively smaller changes and convergence towards a 
plateau. The spectral, decomposed, canopy, endmember biosignature 
search terminated before the convergence point (i.e., when the volume 
ratio was close to 1.0).

Although, in Jacob et al.[1] the SPA was specific for sub-meter 
resolution,field, operationizable, decomposition-related, canopy 
endmember, sub-mixel georeferencable applications (e.g. spatial 
continuity of a, riverine, georeferenced, geospectrally explanatorily 
interpolatble, productive, S. damnosum s.l. geospatiotemporally 
geosampled, riverine, larval habitat) ArcGIS,SPA offers potential 
for a variety of Rapid EyeTM 5m applications especially where the 
premise of spatial adjacency applies to canopy plant communities 
associated to riverine-related, unknown, unsampled, prolific, larval 
habitat endmembers. There may be some specifications required 
to accomodate the SPA decomposition process for future research 
for remotely qualitatively regressively quantitating mitigating 
georeferenced, decomposable, RedEdge, NDVI, riverine, larval habitat, 
canopy endmember variability as opposed to a sub-meter resolution 
biosignature, which may include: (i) the use of multiple, shaded, sub-
mixel covariates for each interpolated decomposed component in the 
iterative mixture analysis cycle, (ii) the selection and quantitation of a 
subset of explanatorial stable, geospectral, within-canopy, (e.g., hanging 
immersed vegetation), LULC data, feature, endmember attributes, (iii) 
the spectral weighting of the RedEdge bands; and, (iv) quantization of 
logarithmic, 5m, geospectral, signal transformations.

We noted that variations in LAI, chlorophyll, dry matter, and 
water content interacted to cause nonlinear changes in the geosampled, 
georeferenced, 5m, S. damnosum s.l., larval habitat, SPA decomposed, 
canopy endmembers. Because changes in LAI had the greatest effect 
in the 5m visible and NIR regions between 400 and 1300 nm, and dry 
plant residues in the riverine habitat canopy has the greatest effect in the 
IR region between 2000 and 2400 nm, remotely regressively quantized 
endmember observations of the full 400- to 2500-nm spectrum for a 
decomposed, Rapid EyeTM 5mRed Edge ,NDVI,S. damnosum s.l., larval 
habitat, sub-mixel biosignature may provide the best basis for analyzing 
and geospectrally interpolating fractional quantitative photosynthetic 
and NPV estimates.

The explanatorily, geo-spatiotemporally decomposed, Red 
Edge,Rapid EyeTM, 5m imaged ,NDVI, georeferenced, shaded, S. 
damnosum s.l. riverine, larval habitat, canopied,endmember emissitives 
rendered from the SPA were then imput into a 3-D radiative transfer 
model in ArcGIS. The medium resolution, NDVI, canopy invariants 
expressed canopy spectral transmittance and reflectance by independent 
5m wavelengths. The model forecasts determined a small, explanatorial, 
unmixed dataset of canopy structural, radiatively transferable, 
geospectrally operationizable, predictor variables. This dataset 
included the canopy interceptance based on the recollision and the 
escape probabilities. These variables specified an accurate relationship 
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between the spectral response of the georeferenced, riverine, larval 
habitat, vegetation canopy to the incident solar radiation at the leaf and 
the canopy scale which was robustly remotely tabulated employing the 
decomposed, georeferenced, S. damnosum s.l., riverine, larval habitat, 
RedEdge, NDVI time series regressors. The estimates rendered from 
the model allowed for a simple and accurate parameterization for 
partioning the incoming radiation canopy transmission, reflection and 
absorption at any 5m Rapid EyeTM wavelength spectrum.

We then conducted a retrieval of the canopy endmember-related, 
sub-mixel, riverine, larval habitat, photosynthetic and NPV feature 
data attributes employing a geometric-optical model. The scene 
reflectance of each decomposed, explanatorial, operational, shade 
canopied, geospectral component was classified. We retrieved the 
larval habitat, structural parameter estimators employing the canopy 
endmember data using a linear spectrum decomposition embedded 
in the geometeric optical algorithm in ArcGIS to determine the 5m 
reflectances of the RedEdge NDVI, endmember, geospectral scene 
components, which were regarded as prior knowledge in the retrieval 
of the riverine, larval habitat, canopy cover. 

The geometric optics scene included four components: sunlit 
canopy, shadowed canopy, sunlit background, and shadowed 
background. The radiance or reflectance of the Rapid EyeTM scene as a 
whole was modeled based on the canopied reflectances of the individual 
endmember components as weighted by their areal proportions. The 
areal proportions of the components were determined by principles 
of geometric optics as applied to the shapes of the habitat canopy 
envelopes. These partions yielded the expected proportions of the 
components as a function of angles of irradiance and exitance. 

The empirical geospatiotemporal, geosampled, BRDF model 
was derived using the apparent trends quantitated between TOA 
reflectance versus solar zenith angle and viewing zenith angle of the 
decomposed canopied habitat. While the obvious disadvantage of 
using the empirical model is the need for the large number of data 
samples to build the statistical model, it may be shown that the model 
works reasonably well for Rapid EyeTM sensors if the sensor viewing 
angles are restricted to within ±20 degrees of nadir.

Various models from the literature have classified BRDF as physical 
semi-empirical or empirical models [2]. A physics-based BRDF model—
taking, for instance, sand—is based on the complete characterization of 
physical characteristics of the sand such as its composition, irregular 
particle shape, refractive index, surface roughness, spectral reflectance, 
etc [27]. Widely used semi-empirical models such as the Ross-Li model, 
Roujean model, and Snyder model are kernel driven, whereas BRDF is 
modeled as a weighted sum of volume scattering, geometric scattering 
and isotropic terms A geometric-optic radiative transfer (GORT) 
model may model BRDF in ArcGIS which may be able to explore the 
impact of topography, crown shape and scan angle on large seasonal 
footprint 5m S. damnosum s.l., larval habitat Rapid EyeTM data. It may 
be shown that the impact of riverine LULC topography and scan angle 
on waveform properties quantitated from a geo-spatiotemporally, 
geosampled, shade, canopied, productive S. damnosum s.l., larval 
habitat are similar and the returned waveform shape thus reducing 
the energy returned with height through the canopy, potentially 
resulting in trailing vegetation, habitat, height quantification. A Rapid 
EyeTMArcGIS model also may show that the impact of within-crown 
distribution of leaf and woody LULC material on simulated, shade 
canopied, geosampled, georeferencable, S. damnosum s.l. larval habitat 
where returns may vary with footprint and scan angles. All of these 
effects can impact estimates of Pgap on the riverine habitat typically by 

acting to reduce it if the path length through the canopy which may be 
increased by scan angle or topography (and vice versa).

For future contributions, at the leaf level, the canopy envelope of 
a eco-epidemiological,geosampled, georefernced, Rapid EyeTM,5m, 
imaged,S. damnosum s.l., riverine, larval habitat, forecasting, canopied, 
endmember, unmixing, eco-epidemiological, forecasting, wavelenght, 
risk model can be treated as containing an assemblage of leaves in 
ArcGIS. By so doing, the radiance or larval habitat canopied reflectance 
would beconsidered a function of the areal proportions of sunlit leaf, 
shadowed leaf, sunlit background, and shadowed background. Because 
the proportions of unmixed, LULC, scene components would be 
dependent upon the directions of irradiance and exitance, the larval 
habitat endmember model may account for the “hotspot”in a Rapid 
EyeTM 5m S. damnosum s.l., riverine, larval habitat scene.

The directional radiance of the georeferenced, geo-spatiotemorally, 
geosampled, shade, canopied, decomposed S. damnosum s.l. riverine 
larval habitat at the Chutes Dienkoa eco-epidemioloigcal riverine 
study site was dependent on the mixture of four components-sunlit 
and shaded canopy crown, and sunlit and shaded background-that was 
seen from a given viewing illumination angle. The areal proportions of 
these four components, for given illumination and viewing directions 
was a function of the sizes, shapes, orientations, and placements of 
the canopied objects (i. e., individual tree crowns)within the scene. 
Moreover, the size, shape, and orientation of the shade canopied, 
Rapid EyeTM, riverine, larval habitat was characterized by distributions 
with known parameters, and object centers which were distributed 
randomly. This model accounted for the changes in proportions that 
occurred with random overlapping of objects as the density of objects 
increased.

The principles of Boolean models was easily extended for 
qualitatively, remotely qualitatively, regressively quantizing the larval 
habitat canopy leaves in ArcGIS as objects in successive layers above the 
background canopy trailing vegetation. By so doing, the bidirectional 
reflectance or radiance of leaf canopies of the geo-spatiotemporally, 
geosampled, Rapid EyeTM 5m-imaged georefernced, shade canopied, 
prolific, S. damnosum s.l., riverine, larval habitat was efficiently 
cartographically, ecogeographically delineated. The 5m scene was 
modeled as consisting of four components: sunlit leaf, shaded leaf, 
sunlit background, and shaded background. As in the case of canopy 
envelopes, the objects, shape, size, orientation and spacing of the canopy 
leaves was the covariate, parameter estimators that drove the estimation 
of bidirectional radiance or reflectance in the, S. damnosum s.l. shade, 
canopied, georefernced, larval habitat, forecasting, eco-epidemiological, 
Rapid Eye 5mTM risk model. This extension lead to the formulation of 
two-stage models, in which leaves were geospatial endmember objects 
inside the canopy envelopes of the Booleanized, S. damnosum s.l., larval 
habitat, risk-related, eco-epidemiological, wavelenght model. A 3-D 
geospatial resdiualized output thereafter provided the mathematical 
basis for parsimoniously regressively quantitating the bidirectional 
radiance which were dependent upon the directions of irradiance and 
exitance, for accounting and validating the georeferencable “hotspot” 
.Because both whole-canopy and individual canopied, forecasting, 
geo-spectral, eco-epidemiological, probabilistically regressable, risk 
models may be driven by the same principles of geometric optics and 
Booleanization, they may easily be combined together in a single or 
a two-staged, geosampled, georefernced, S. damnosum s.l. riverine, 
larval habitat, forecasting, canopy, risk model. Moreover, through 
further application of the mathematics of random sets, the averaging 
and variance quantification that occurs when a 5m scene may be 
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optimally imaged by the Rapid EyeTM sensor with a finite field of view. 
In addition Boolean and geometeric-optical, explanatorily geosampled, 
S. damnosum s.l., riverine, larval habitat, geo-spatiotemporally-
dependent, eco-epidemiological, time series dependent, canopied, 
risk models may be capable of inversion, yielding estimates of size, 
shape, and spacing of crowns and/or leaves from directional and 
spatial statistical, sequential, probabilistic,explanatorily interpolatable, 
algorithmic residuals representing 5m remotely sensed radiances.

Employing the unmixing algorithm, two main absorption bands, in 
blue (450 nm) and in red (670 nm), where found due to the absorption 
of the two main leaf pigments: the chlorophyll a and b which accounted 
for 75% of the total leaf pigments of the habitat canopy plants.We also 
found that, the yellow to orange-red pigment, the carotene, had a strong 
absorption in the 350-500 nm range and was responsible for the color 
of some habitat leaves without chlorophyll. The red and blue pigment, 
the xantophyll, had a strong absorption in the 350-500nm range and 
may have been responsible for the leaf color also. In the Rapid EyeTM 

NIR geospectral domain (700-1300 nm), geosampled, leaf structure 
explained the canopy optical properties. Leaf pigments and cellulose are 
transparent to NIR wavelengths and therfore leaf absorptance was very 
small (5% maximum), but not the leaf reflectance and transmittance, 
which can reach 50% [2] In this region, there was a reflectance 
plateau in the S. damnosum s.l., riverine, larval habitat, canopied, leaf 
spectrum. The level of this plateau was dependant on the internal leaf 
structure as well as on the space amount in probably the mesophyll 
which probably could herewith employed to remotely quantitate 
interfaces with different refraction indices (air or watercells). Leaf 
reflectance increases for more heteregeneous cell shapes and contents 
as well as with increasing number of cell layers, number of intercell 
spaces and cell size [2]. This reflectance is therefore dependent on the 
relative thickness of the mesophyll in the riverine habitat canopy. Near-
infrared spectral region has two main spectral regions: (1) between 700 
and 1100 nm, where the reflectance is high, except in two minor water-
related absorption bands (960 and 1100 nm) and (2) between 1100 and 
1300 nm, which corresponds to the transition between the high NIR 
reflectances and the water-related absorption bands of the shortwave 
IR [4,120]. The last optical domain is the shortwave IR (1300 -2500 nm) 
characterized by the light absorption by the canopy leaf water. Because 
water strongly absorbs radiation in 1450, 1950 and 2500 nm, these 
wavelengths may not be used for reflectance measurements [27]. For 
all the three mainspectral domains, factors affecting canopy leaf optical 
properties are: internal or external structure, age, water status, mineral 
stresses and, healthness

Extracting the individual, fractionalized, canopy leaf,radiance 
values from Rapid EyeTM 5m,RedEdge, NDVI, spectrometer 
endmember, sub-mixel data employing explanatorial, geo-
spectral,linear, spectral unmixing and convex, geometrical, optical 
algorithms can generate powerful, robust, eco-epidemiological, 
risk forecasts from geospectrally decomposable, georeferencable, S. 
damnosum s.l., riverine, larval habitat, endmember, canopy maps. 
For example, in our Rapid EyeTM RedEdge, NDVI, geo-spectrometric, 
eco-epidemiological, dataset, levels of major plant pigment classes, 
including chlorophylls, carotenoids and anthocyanins were detected. 
The spectral characteristics of the vegetation spectrum we assumed 
were related with the leaf pigments, leaves internal structure and 
water content within the riverine, larval habitat, canopy leaves. A close 
analysis of the canopy vegetation, geospectral LULC-related, sub-mixel, 
unmixed, biosignature reflectance provided information on the phase 
of vegetation life cycle, health, and even the identification of individual, 
vegetation-related, types. Pigment levels can indicate conditions of 

canopy stress and assess photosynthetic activity [2]. Spectral bands 
sensitive to the pigment concentration have been identified, and 
linear models for non-destructive assessment of anthocyanins, and 
carotenoids, via chlorophyll fluorescence measurements have been put 
forward [115,127].

The riverine, larval habitat, canopy pigments primarily absorbed 
carotenoids in the Rapid Eye TM 5m blue wavelengths while remotely 
allowing longer wavelengths to be scattered producing a yellow color. 
The geosampled carotenoids absorbed wavelengths ranging from 400-
550 nm (violet to green light). Cartenoids serve two key roles in plants 
and algae: they absorb light energy for use in photosynthesis, and they 
protect chlorophyll from photodamage [2]. Carotenoids are very long-
chain water-repelling pigments that are synthesized in the plastids 
of plant cells.(http://harvardforest.fas.harvard.edu/leaves/pigment). 
Anthocyanins in the riverine, larval habitat, unmixed canopy were 
absorbed in the blue-green wavelengths, allowing the red wavelengths 
to be scattered by the canopy plant tissue. Anthocyanins in the larval 
habitat canopy were absorbed around 540-550 nm.

Since anthocyanin and chlorophyll contents in georeferened, geo-
spatiotemporally-geosampled, S. damnosum s.l. riverine, larval habitat 
shaded, canopied, decomposed leaves can provide valuable information 
about the ecophysiological status of the habitat canopy there is a need 
for more accurate, endmember, unmixing decomposition algorithms 
to estimate optimizable, biochemical parameter estimators of seasonal 
geosampled, canopy vegetation, LULC-related, covariate, parameter 
estimator cofficients. For example, the performance and accuracy 
of several non-destructive, reflectance-based techniques employing 
RapidEyeTM data may be employed for estimating anthocyanin and 
chlorophyll contents in geosampled, S. damnosum s.l., riverine, larval 
habitat, canopy leaves to remotely probabilistically, regressively 
quantitate varying pigment content and compositions which seasonally 
occur which may then be subsequently linked to immature seasonal 
productivity. 

Conversely, an anthocyanin reflectance index, reflectances in 
the green and RedEdge spectral bands, and a modified anthocyanin 
reflectance index, may be employed, in addition, to the NIR band to 
accurately estimate leaf anthocyanin with no reparameterization of the 
unmixing algorithms. By so doing, total chlorophyll content may be 
accurately estimated by a RedEdge chlorophyll index, for example, that 
employs 5m spectral bands in the NIR. These approaches may be also 
employed to estimate anthocyanin and chlorophyll non-destructively 
and allow the development of simple handheld field instrumentation 
with built-in gridded Rapid EyeTM data. For the non-linear model, 
a supervised procedure based on the training of a multi-layer 
perceptron neural network using intelligently selected prolific, geo-
spatiotemporally, geosampled, S. damnosum s.l. riverine, larval habitat, 
shade, canopied, training samples may also be parsimoniously derived 
in a parallel fashion.

Subtle changes in pigment ratios-anthocyanin and chlorophyll-
carotenoid ratios in particular —from the decomposed dataset of 
georeferenced, Rapid EyeTM,5m, RedEdge, explanatorial, shade, 
vegetated, geosampled, S. damnosum s.l., riverine, larval habitat, 
canopied endmembers revealed altered photosynthetic activity in 
the time series dependent, geospectrally decomposed, sub-mixel, 
biosignature-related, forecasting, risk model derivatives. eco-
epidemiological, riskmodel. For example, the photochemical reflectance 
index was formulated in ArcGIS to indicate diurnal interconversion 
of xanthophyll cycle pigments that were closely tied to photosynthetic 
activities of the unmixed, seasonal, georeferenced, riverine, larval 
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habitat, shade, canopied, categorical, explanatorial, predictor variables. 
Over seasonal periods, photochemical reflectance index measures have 
demonstrated relative levels of chlorophylls and carotenoids which 
have revealed geo-spatiotemporal, explanatorial LULC patterns of 
photosynthetic activity for entire canopied ecosystems [130]. Newer 
approaches that involve the inversion of unmixed, shade, canopied, 
riverine-based, vegetated, larval habitat spectra in 3-D radiative 
transfer models and other associated unmixing algorithms may yield 
improvements over traditional index approaches for correlating 
canopy photosynthetic pigments with seasonal, immature, Similium 
productivity. By so doing, an ecologist or experimenter may carefully 
consider the ecophysiological and hydrostructural, explanatorial, 
time series unmixed, geospectral component contributions of each 
extracted, stochastically/deterministically interpolatable, riverine, 
larval habitat, sub-mixel, geoerferenced, data, feature attribute with 
with a field geosampled black-fly larval count.

The presence of other canopy pigments did significantly affect 
estimation of chlorophyll from the 5m, Rapid EyeTM decomposed 
spectral reflectance. The carotenoid and anthocyanin indices performed 
well across the whole canopy endmemeber dataset. We found that the 
estimation of xanthophyll pigment changes was related to carotenoid/
chlorophyll ratios in the riverine, larval habitat, shade, canopied, green 
leaves. Our results demonstrate that geospectrally interpolating Red 
Edge, NDVI, decomposed vegetation LULC, wavelengh transmittance 
can seasonally capture varying, canopied, shaded and non-shaded, 
geosampled, georeferenced, prolific, S. damnosum s.l., riverine, larval 
habitat, leaf structures without the necessity for extensive calibration. 

Rapid EyeTM RedEye estimates of above seasonall ground carbon 
storage, including woody stems and plant litter could improve 
predictions of prolific, geosampled, shade, vegetated, S. damnosum 
s.l., canopied, larval habitat, Rapid EyeTM imaged, riverine, ecosystem 
processes. For example, increases in the dry litter fraction have been 
used in tropical forests and grasslands to estimate environmental 
stresses [131]. The nutrient limitations of NPP and carbon storage in 
humid tropical riverine ecosystems may be exploited by combining 
dry residue indices [139]. Carbon absorption features such as NPV 
in an explanatorial, shade, vegetated, georeferenced S. damnosum 
s.l, prolific, canopied, geosampled, riverine, larval habitat may be 
remotely interpretable between 2000 and 2200 nm, for example, which 
may be algorithmically further remotely validated in a spectroscopic, 
decomposed, 5m resolution, canopied endmember, dataset. In sparse, 
semiarid, riverine environments, the low canopy cover permits 
direct detection of plant litter, making it easier to estimate stand 
characteristics, canopy disturbance conditions, eco-physiological 
state and biogeochemical processes [14]. The spatial patterns of dry 
plant residues in shriver shrub and grassland LULC specified may be 
employed to provide 5m, Rapid EyeTM, geo-spectrally interpolatable, 
explanatorial, robust, graphical indicators of desertification of a 
shade, canopied, seasonally prolific, S. damnosum s.l larval habitat, 
canopy vegetated, larval habitats, geosampled in an African riverine 
environment.

Measures of structural carbon (cellulose, lignin, and other carbon 
compounds) provide a chlorophyll-independent estimate canopy of 
biomass [4,115,127]. Mapping concentrations of canopy lignin may be 
vital for parsimonious 5m, Red Edge, NDVI, sub-mixel, decomposition 
and subsequent geo-spectral explanatory interpolation of a Rapid 
EyeTM reference endmember, biosignature for identifying unknown, 
unsampled, prolific, S. damnosum s.l., shade, canopied, riverine, larval 
habitats. However, the ability to obtain an independent measure of 

canopy lignin in spectroscopic5m data may be limited because of 
lignin's spectral similarity to cellulose and other cell wall materials [13]. 
Using samples of ground dry leaves, Kokaly and Clark [140] found 
smaller errors in time series, explanatorily, regressed reflectance, 
emissivity transmittance estimates of lignin than in regressed estimates 
of cellulose, although cellulose comprised a substantially larger fraction 
of dry weight. Ecologists or experimenters have had difficulty studying 
fresh and dry leaves specifically retrieving separate lignin and cellulose 
concentrations [141], but better results have been claimed for lumped 
estimates of dry plant canopy matter. Retrievals of dry plant canopy 
residues in the Rapid EyeTM5m spectrum may be measurable from 
high-fidelity, full-range imaging spectrometric VIs.

The quantity of dry plant material is a direct indicator of carbon 
production, turnover, and decomposition (heterotrophic respiration) 
[142]. Asner et al. [131] found that aboveground stocks of dry and 
live biomass were tightly coupled to soil, organic, carbon pools across 
a wide range of heterogenous riverine ecosystems. Because sub-
mixel decomposition of surface litter is at least partially geospatially 
and temporally correlated with soil decomposition and respiration, 
measures of non-green (i.e.,NPV ) plant material, soil carbon efflux in a 
canopied, endmember georeferencable, shade, vegetated, S. damnosum 
s.l. riverine-based, 5m, Rapid EyeTM geosampled, larval habitat, 
RedEdge NDVI eco-epidemiological, forecasting, risk model may be 
easily constrained.

We then generated a kriged smoothed map which displayed the 
geospatial patterns of all productive S. damnosum s.l. larval habitats at 
the eco-epidemiological riverine study site in northern Uganda based 
on the explanatorily interpolated, decomposed, canopy endmember, 
reference, 5m, Rapid EyeTM, explanatorily interpolatable, biosignature-
related, explanatorial predictor variables generated from the inverted 
model and the unmixing algorithms. We found that the interpolated, 
sub-mixel index reflectance in the RedEdge region was sensitive to 
LULC variation at the study site.Specifically, the interpolation of the 
unmixed endmember,interpolated leaf pigment content was relatively 
sensitive to the riverine, larval, habitat canopied, leaf structure LULC 
variations (e.g twigs in hanging immersed vegetation). We also 
quantified the degree of geospectral interference between the larval 
habitat canopy pigments which occured within the leaf tissue. Leaf 
surface reflectance appeared to be the most important factor in the 
interpolated decomposed, endmembers. By developing a new spectral 
index the effect of differences in leaf surface reflectance and the 
correlations with chlorophyll content may be significantly improved 
for identifying unsampled, unknown, prolific, georeferencable, 
S. damnosum s.l., riverine, larval habitats at 5m resolution. The 
residualized, canopy endmember, explanatorily, geospectrally 
interpolated, eco-epidemiological, risk forecasts from a stochastic 
interpolator could be applied in larger scale remote-sensing studies 
without extensive calibration. 

The semivariogram georeferencable, S. damnosum s.l., riverine, 
larval habitat, eco-epidemiological, time series, risk analysis made 
implicit use of the ergodicity hypothesis. The ergodicity hypothesis is 
one of the foundations of current stochastic theories of groundwater 
flow and contaminant transport [4]. The ergodic hypothesis is often 
assumed in the statistical analysis of computational physics [2]. The 
ecologist or expeimenter could thus assume that the average of a 
process photosynthetic and NPV covariate, parameter estimator, 
coefficient, reflectance, emissivity transmittance parameter estimator 
over time and the average over the statistical ensemble are similar. 
Unfortunately ,this assumption that the ergodicity hypotheses is 
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as good to simulate a system over a long time as it is to make many 
independent realizations of the same system may not always be correct 
in a seasoanlly, decomposed, medium resolution, interpolated, NDVI, 
endmember, biosignature-related, S. damnosum s.l., riverine, larval 
habitat due to intense seasonal canopy changes. 

An updated discussion on physical and mathematical aspects of 
the ergodic hypothesis in classical equilibrium statistical mechanics 
may be alternatively presented in a seasonal, S. damnosum s.l. larval 
habitat regression-related paridym. Then a practical attitude for the 
justification of the microcanonical ensemble may be indicated in the 
foreasted residuals representing, explanatorily interpolated, unknown, 
unsampled prolific habitats. It may be remarked however that the 
diffculty in proving the ergodic hypothesis should be expected, since in 
the foreacasts the central concern of ergodic theory would the behavior 
of a dynamical system when it is allowed to run for a long time. The 
first result in this direction is the Poincaré recurrence theorem, which 
claims that almost all points in any subset of the phase space eventually 
revisit the set. As mentioned this may not be true for robustly 
interpolating, decomposed, Red Edge, NDVI, unmixed, endmember 
georeferencable, shade, vegetated, S. damnosum s.l. riverine-based, 5m, 
Rapid Eye™ geosampled, larval habitat, biosignature components due 
to geo-spatiotemporal canopy radiance variations.

More precise information is provided by various ergodic theorems 
which assert that, under certain conditions, the time average of a 
function along the trajectories exists almost everywhere and is related 
to the space average. One of the most important theorems is that of 
Birkhoff (1931) who assert the existence of a time average along each 
trajectory (exiting canopy radiance from a geo-spatiotemporally, 
geosampled productive, riverine, S. damnosum s.l. georefernced, larval 
habitat). For the special class of ergodic systems, this time average is the 
same for almost all initial points: statistically speaking, the system that 
evolves for a long time "forgets" its initial state [27]. Stronger properties, 
such as mixing and equidistribution, have also been extensively studied. 
The problem of metric classification of systems is another important 
part of the abstract ergodic theory which may be applicable for robustly 
parsimonioulsy, explanatorily interpolating, decomposed Rapid Eye 
TM 5m, canopied, seasonally productive, riverine, larval habitats. An 
outstanding role in ergodic theory and its applications to stochastic 
processes such an an explanatorily interpolated, S. damnosum s.l. 
riverine larval habitat , eco-epidemiological, forecasting, canopy 
biosignature, endmember risk analyses modes may be played by the 
various notions of entropy for dynamical African riverine eosystems.

The concepts of ergodicity and the ergodic hypothesis are central 
to applications of ergodic theory. The underlying idea is that for certain 
systems (prolific, geosampled, S. damnosum s.l., shade, canopied, 
georeferencable, larval habitat) the time average of their geospectral 
decomposition properties may be equal to the average over the entire 
eco-epidemiological, interventional study site in ecogeographic, 
probabilistic, regression space. Thus geometry, methods of ergodic 
theory may be used to study the geodesic flow on Riemannian 
manifolds, starting with the results of Eberhard Hopf for Riemann 
surfaces of negative curvature in an empirical datset of geospectral, 
geo-spatial, explanatorial, S. damnosum s.l.-related seasonally prolific 
larval habitat Markov chains. Ergodic theory has fruitful connections 
with harmonic analysis, Lie theory (representation theory, lattices 
in algebraic groups), and number theory (the theory of diophantine 
approximations, L-functions) [115,130] may be applicable to geo-
spatiotemporally, cartographically delineating regression estimates 
rendered from a wavelenght transmittance, eco-epidemiological, 

emissivity vulnerbility-oriented,unmixed, risk model.

In addition to the constant ( )E Z S    
and the assumption of intrinsic 

stationarity, ergodicity is a necessary third hypothesis to estimate the 
empirical semivariance [27]. We generated a spatial random field (SRF) 
Z(S) so as to have have an emprical dataset of time series, geosampled, 
robust, S. damnosum s.l. larval habitat geospatial forecasted measurements 

 
whose sample mean was estimated by Z . The hypothesis of ergodicity 

then dictated that ( )Z E Z S=    . In general, an SRF Z(S) is characterized 
as ergodic if the statistical moments of its realizations coincide with the 
corresponding ones of the SRF [27]. In geospatial eco-epidemiological 
risk analysis you are often interested in the first two statistical moments, 
and consequently a more relaxed ergodicity assumption is made only for 
them [130]. See Christakos (1992, section 2.12) for the use of the ergodicity 
hypothesis in SRF, and Cressie (1993, p. 57) for a more detailed discussion 
of ergodicity. 

The semivariogram analysis made implicit use of the 
ergodicity hypothesis in the riverine larval habitat model. The 
VARIOGRAM procedure worked with the residual centered 
values ( )i i iV S v z Z= = − , 1,..., ,i n=  where it is assumed that 

the sample mean Z was the constant expected value ( )E Z S  
of ( )Z S . This was equivalent to using the original values, since 

( ) ( ) ( ) ( )i j i jV S V S Z S Z S− = − , which revealed that the optimal 
property of the semivariance could be parsimonioulsy tabulated 
by filtering out the mean. PROC VARIOGRAM uses to compute 
the empirical classical ( )ˆ hγ = and robust ( )ˆ hγ =  

semivariances 
(www.sas.edu).

The VARIOGRAM procedure worked with the residually 
centered, shade canopied, geospectral, interpolated, productive, 
S. damnosum s.l. riverine larval habitat geosampled values (i.e., 

( )i i iV S v z Z= = − , 1,...,i n= ) where it was assumed that the 
sample mean Z  was the constant expected value ( )E Z S   of ( )Z S . 
This was equivalent to employing the original geo-spatiotemporally, 
geosampled, values, since ( ) ( ) ( ) ( )i j i jV S V S Z S Z S− = −  showed the 
property of the semivariance to filter out the mean. Additionally, 
since the random field was ergodic, the time series regressors 
corresponded to the variance in the canopy reflectance model. 

We defined a practical range and defined the distance at which 
95% of the sill was reached for a asymptotic variogram. A Voroni 
decomposition error matrix then assessed the accuracy of the unmixing 
systematics as well as the proper selection of the explanatorial, shade, 
canopied, endmember, eco-epidemiological,covariate parameter 
estimator,reflectance, emissivity, transmittance coefficients of the 
decomposed,S. damnosum s.l.,autoregressive, riverine, larval habitat, 
explanatorial, operationial eco-epidemiological, biosignature-related, 
risk model. The model output revealed that the kriged sub-mixel, 
riverine, larval habitat, biosignature, derivative spectra revealed the 
estimates were within normal statistical thresholds. A field verification 
exercise revealed an accuracy of 72%.

Spectral models and indices are being developed to improve 
vegetation canopied LULC, sensitivity by accounting for atmosphere 
and soil effects. Soil properties have spectral features that can be 
detected using spectroscopy [143]. Baumgardner et al. [144] identified 
five basic spectral shapes related to organic matter content, iron oxide 
content, and soil texture. Using factor analysis, Price [145] and Huete 
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and Escadafal [146] found four basic combinations of soil properties. 
In general, soils, like plants, have only a few recognizable narrow 
absorption features. Soils typically have broad, shallow absorption 
features related to iron oxides and organic matter at wavelengths 
between 400 and 2500nm [2,115].Reflectance decreases as organic 
matter increases [17]. 

In soils with low levels of organic matter, the curve between 400 
and 1000nm is convex; in soils with high levels of organic matter, it is 
concave [144]. Ferric or ferrous iron causes absorptions in the visible 
and NIR spectra, particularly around 860nm in moderate resolution 
data [4,143]. In contrast to organic matter and iron oxides, various clay 
minerals like those found around prolific, canopy, shaded, S. damnosum 
s.l., larval habitats, geosampled in African riverine landscapes (e.g., 
montmorillonite, kaolinite, illite, smectite) and carbonates may have 
distinctive, narrow-band, absorption levels. Nonetheless, it may 
be not simple to quantitatively remotely qualitatively regress these 
interpolated, canopied, soil properties. Understanding alteration 
mineral assemblages may reveal specific geomorphological, geo-
spatiotemporal, terrain-related, patterns at 5m associated with low 
canopied, shade, vegetated productive geosampled, riverine larval 
habitats.

Typically, a first step to detecting soil properties is to mask vegetated 
mixels. Palacios-Orueta and Ustin [147], Palacios-Orueta and 
colleagues [148], Hill and Schutt [149], and Leone and Sommer [150] 
have used vegetation masks, landform classes, and other hierarchical 
segregation methods to distinguish soil from vegetation. Palacios-
Orueta et al. [148] employed a hierarchical analysis to seasonally 
quantify soil organic matter and iron oxide concentrations from two 
valleys, performing a two-step singular value decomposition that 
classified the soils, first by their valley of origin and second by their 
concentrations of organic matter and iron oxides. The combined data 
may be employed to produce a robust, endmember, prolific, shade, 
canopied, S. damnosum s.l. riverine, larval habitat, RedEdge, 5m, 
resolution, canopy, endmember maps. Despite complex topography 
and riverine landscape heterogeneity, the results of a RapidEyeTM 
soil survey map reveal a range of distinct measurements for robust, 
geospectral interpolation of explanatorily decomposed 5m, Rapid 
EyeTM imaged, prolific, S. damnosum s.l. larval habitat endmembers for 
targeting, prolific, unknown, unsampled, shade, canopied habitats in 
African riverine environments.

When vegetative LULC cover is sparse, soil is prominent and canopy 
visible reflectances will contain a strong backscatter component. This 
component may be nonexistent toward maturity as the canopy cover 
may mask the bare soil of an 5m,Rapid EyeTM imaged, georeferenced, 
geosampled, prolific, shade, canopied, S. damnosum s.l., riverine, 
larval habitats. The soil effect also may disappear whenthe canopy is 
viewed at an oblique angle, since the sides of the canopy dominate the 
observed spot and obscure the underlying surface. As well, the soil 
backscatter effect may be less pronounced in georeferenced, productive, 
explanatorial, riverine, larval habitat’s, NIR, canopy reflectance. 
Variations in the distribution of visible and NIR BRF values decrease 
as canopy biomass increases [115].

RapidEyeTM nadir reflectance values of non-shaded and shaded, 
georeferncable, geosampled, riverine S. damnosum s.l., riverine, larval 
habitat vegetative LULC canopies in ArcGIS may be a function of solar 
zenith angle (0s) and may vary with wavelength and soil substrate. 
Both factors must be considered when qualitatively, remotely, 
regressively quantitating, geosampled, prolific, riverine, larval 
habitat geo-spatiotemporal, canopy trends as shown by the results 

reported by Jacob [1]. We determined that the surface reflectance in 
the decomposed, georeferenced, geosampled, riverine, larval habitat, 
shaded, vegetated LULC canopy was classified as non-Lambertian. 
Functions of wavelength, illumination and viewing directions, soil 
moisture content, particle size, organic matter content, soil mineralogy, 
and surface roughness determine if Lambertian assumptions are 
violated [115]. 

Solutions for general non-Lambertian scenes have only been 
pursued recently. For example, the rank constraint of radiance tensor 
as a discrepancy indicator may measure canopied correspondences 
in georeferenced, prolific, shade canopied, immature, Similum, larval 
habitats geosampled in African riverine environments. This reflectance 
sensitive method may handle highly seasonally heterogeneous canopy 
leaf specularity radiance reflected from a prolific, georeferenced, 
riverine, larval habitat. Shapes from shading and photometric stereo 
methods make use of such information to recover 3D shapes. These 
methods usually assume that surface reflectance properties are known. 
Much work on shape from shading is based on the non-lambertian and 
Lambertain model which both use a single view, or assumes simple 
lighting conditions [150-153]. 

The solutions to specular, ArcGIS, reflection models object 
solution relies on strong regularization. However, remote endmember, 
explanatorial, geospectral quantization exercises performed on an 
empirical dataset of geosampled, S. damnosum s.l., georeferenced, 
productive canopied, riverine, larval habitat, topographic, reflectance, 
emissivity, transmittance regressors may be perturbed by atmospheric 
scattering of sun light which tends to smooth the angular dependence 
of non-Lambertian surface reflectances, an effect that is not present 
in the case of Lambertain surfaces. Regardless, this illuminary effect 
may be tabulated to evaluate the validity of a Lambertain assumption 
for robustly explanatorily regressing, reflectance unmixed, covariate 
, parameter estimator coefficient values as rendered from an 
geospectral unmixing algorithm for optimally decomposing an eco-
epidemiological, geo-spatiotemporal, geosampled, prolific, shade 
canopied, S. damnosum s.l., riverine, larval habitat, capture point, 
ArcGIS polygon.

 Within the backscattering region, however, the use of the non-
Lambertian assumption can result in a considerable error in geo-
spatiotemporally derived surface reflectance of a geosampled, S. 
damnosum s.l., riverine, larval habitat. Accuracy of satellite data 
deteriorates with increasing solar zenith angle [2]. The angular 
distribution of the canopy surface reflectance derived from 5m 
Rapid EyeTM remote measurements may be smoother than that at 
the surface. The effect of surface non-Lambertianity on RedEdge, 
NDVI, decomposed, biosignature-oriented, photosynthetic, covariate, 
parameter estimator, reflectance, emissivity transmittance, coefficient 
values is presently unknown. Since the effect would be similar in the 
geosampled, S. damnosum s.l., riverine, larval habitat, visible and 
NIR part of the solar spectrum for remotely, robustly, regressively, 
qualitatively, quantitating canopy, vegetation-related, LULC reflux 
treated in the decomposition algorithms, the procedure may be 
canceled in deriving the vegetation index. The effect of the diffuse 
skylight on canopy surface reflectance measurements at ground 
level for the riverine geosampled riverine larval habitat may be then 
discussed.

In general, single view shape from shading problem is ill-
conditioned, more so for non-Lambertian objects with unknown 
reflectance. Lambertian reflectance is the property that defines an 
ideal "matter" or diffusely reflecting surface [4]. In computer graphics, 
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Lambertian reflection is often used as a model for diffuse reflection. 
This technique causes all closed polygons (such as a triangle within a 
3D mesh) to reflect light equally in all directions when rendered. In 
effect, a point rotated around its normal vector will not change the 
way it reflects light. However, the point will change the way it reflects 
light if it is tilted away from its initial normal vector since the area is 
illuminated by a smaller fraction of the incident canopy radiation. The 
reflection is calculated by taking the dot product of the surface's normal 
vector, N, and a normalized light-direction vector, L pointing from the 
surface to the light source.

The dot product can be defined for two vectors X and Y by 
.X Y X Y Cosθ=

 
where θ  is the angle between the vectors and 

X
 
is the norm [27]. It follows immediately that X.Y = 0 if  X is 

perpendicular to Y. The dot product therefore has the geometric 
interpretation as the length of the projection of X onto the unit 
vectorY


when the two vectors are placed so that their tails coincide. 

By writing 
 cosx A x BA ACos B Bθ θ= =   y A y BA ASin B BSinθ θ= =

it follows that a geo-spatitemporally, geosampled, canopy 
endmember decomposed S. damnosum s.l. larval habitat yields 

( ) ( ) B  B 

 B  B 

. cos θ θ θ θ θ θ
θ θ θ θ

= − = +

= + = +
A B A A

A A x x y y

A B AB AB Cos Cos Sin Sin
ACos BCos ASin BSin A B A B

So, in general, 1 1
1

. ...
n

i i n n
i

X Y x y x y x y
=

= = + +∑  This may be written 

very succinctly using Einstein summation notation as . i iX Y x y= The 
dot product is implemented in the Wolfram Language as Dot [a, b], or 
simply by using a period, a. b.(http://www.wolfram.com/programming-

cloud). The dot product is commutative . . ,X Y Y X=  and distributive
( ). . .X Y Z Y X X Z+ = +  [130]. The associative property is meaningless for 

the dot product in a riverine habitat eco-epidemiological, forecasting, 
risk model because (a.b).c is may not be defined since a.b is a scalar 
and therefore cannot itself be dotted. However, the forecasts would not 
satisfy the property ( ) ( ). .rX Y r X Y= for r a scalar. The derivative of a 

dot product of vectors is 1 2
12

1 2[ ( ) ( )] ( ) (· . )dr drd r t r t r t r t
dt dt dt

= +  [13]. The 

dot product may be found to be spectrally invariant under rotations
'. ' ' ' ( ) .i i ij j ik K ij ik j K jk j K j jA B A B a A a B a a A B A B A B A Bδ= = = = = = , in 

a riverine habitat model where Einstein summation has been used [1]. The 
dot product is also called the scalar product and inner product. In the latter 
context, it is usually written ,a b . The dot product is also defined for tensors 
A and B by .A B A Bα

α=  So for four riverine larval habitat vectors a
µ
and b

µ

, it is defined by 1 1 2 2 3 3. .a b a b a b a b a b a b a b a bµ

µ µµ
° °= = ° − − − = °−  

where a.b is the usual 3-D dot product.

A normalized light-direction vector number may then be 
multiplied by the color of the surface and the intensity of the light 
hitting the canopied riverine S. damnosum s.l. larval habitat shaded 
surface: .D LI L NCI= , where ID 

would be the intensity of the diffusely 

reflected light (surface brightness), C is the color and IL .L N N L=  is 

the intensity of the incoming light. Because .L N N L Cos Cosα α= = , 
where a is the angle between the direction of the two vectors, the intensity 
in the riverine habitat, eco-epidemiological, reflectance, emissivity 
transmittance, risk model maybe the highest if the normal vector 
points in the same direction as the light vector ( ( )0 1Cos = ), where 
the habitat canopied surface would be perpendicular to the direction 
of the light, and the lowest if the normal vector is perpendicular to the 

.

light vector [i.e., 0
2

Cos π  = 
 

]. Lambertian reflection from polished 

surfaces are typically accompanied by specular reflection (gloss), where 
the surface luminance is highest when the observer is situated at the 
perfect reflection direction (i.e. where the direction of the reflected 
light is a reflection of the direction of the incident light in the surface), 
and falls off sharply [27]. This may be simulated in computer graphics 
with various specular reflection, geosampled, S. damnsoum s.l., larval 
habitat, canopy, endmember models.

The Phong reflection model may be also constructed, to 
remotely qualitativley regressively quantitate the intensity of the 
specular highlight in a geo-spatiotemporally, geosampled, riverine, 
S. damnosum s.l., georefernced, larval habitat which may be 

calculated as: ( )ˆ ˆ.
nn

Speck R V Cos RVβ= =  where R is the mirror 

reflection of ethe light vector larval habitat canopy surface and V is 
the viewpoint vector. In the Blinn-Phong model the intensity of a 
specular, riverine, larval, habitat canopy highlight may be calculated as: 

( )ˆ ˆ.
nn

Speck N H Cos N Hβ= = where N is the smooth surface normal 

and H is the half-angle direction (i.e., the direction vector midway 
between L, the vector to the light, and V, the viewpoint vector). The 
number n is called the Phong exponent, and is a user-chosen value that 
controls the apparent smoothness of the surface [4]. These equations 
may regressively quantiate the distribution of microfacet normals 
which may find that a Rapid Eye TM geospectrally decomposed, 
RedEdge, NDVI, interpolated biosignature of a riverine larval habitat 
is approximately Gaussian distribution (for large η), or approximately 
Pearson type II distribution, for qualiatively quantizing corresponding 
illumination angles in a geosampled, S. damnsoum s.l., larval habitat, 
canopy geolocation.

Another similar formula, but calculated differently for remotely 
explanatorily qualitatively quantiating geo-spectrally decomposable, 
S. damnsoum s.l., larval habitat, stochastic/deterministic, explanatorily 
interpolatable, (i.e., ( · ) [ ·( 2 ( · ))] ,n nk L R L E N N E= = −

      
) biosignatures 

is where R is an eye reflection vector, E is an eye vector (view vector), 
N is surface normal vector and L is a light vector. All vectors may 
then be normalized ( )1E N= =

 
. For example, suppose a 

georeferencable, seasonal prolific canopied, S. damnosum s.l., 
riverine, larval habitat, reflectance, model, regressive equation 

is 3 1{0;1; 0}; { ; ; 0}; { 06; 0.8; 0}; 3
2 2

N E L n= = = − =
  

 then: 

33[ ·( 2 ( · ))] [ ·( 2 (0· 1·0.5 0·0))]
2

nk L E N N E L E N= − = − + + =
       

 This 

model forecasts may determine geolocations of interpolated 
unsampled, unknown, prolific, habitats by employing 

( ) ( )

( )

3 3
3

3 3

3 1 3. . 0; 1;0 0 0.6. 0.8. 0.5 0.0
2 2 2

0.5196 0.4 0.9196 0.777

       = − = − − − = − + − + =                 

− − = =

   
L E N L

The approximate formula in the quantization decomposition procedure 
then would then be 

3

3 3 3 3

3( · ) ( ·(( ) / 2)) ( ·(({ 06 ; 08 05; 0 0}) / 2))
2

( ·(({0266;1.3; 0}) / 2)) ( ·({0.133; 0.65; 0})) (0·0.133 1·065 0) 065 0274625.

= = + = − + + +

= = = + + = =

     

 

n nk N H N L E N

N N

If vector H is then normalized in the S. damnosums.l., .
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larval habitat, eco-epidemiological, geospectral, risk model 

then 
2 2

{0133; 0.65; 0} {0133; 0.65; 0}
0133 065

{0133; 0.65; 0} {020048;0.979701;0},
0.668

= =
+

=

 





H H
H

H

＼ ＼
 and then

3 3( · ) (0·0.2 1·0.9797 0·0) 0979701 0940332.nk N H= = + + = =
 

Soils composed of low-absorption particles, such as quartz sand, 
can scatter light strongly in the forward scatter direction (direction 
away from light source in the principal plane) with a maximum BRDF 
value occurring at a view zenith angle (0v) greater than the illumination 
zenith angle [154]. Therefore, geosampled, riverine, S. damnosum s.l., 
larval habitat, Rapid Eye™, 5 m, vegetative, canopy reflectance may 
be more pronounced in ArcGIS, in the backscatter direction (e.g., 
direction back toward the light source in the principal plane) than in 
the forward scatter direction from soils of highly absorbing particles, 
such as clay soils, since shadows will dominate in the forward scatter 
direction. The proportion of shadows increases as the sensor moves 
away from nadir to oblique views in the forward scatter position [4]. 
In contrast, few shadows would be present in low-absorption sand 
particles of a geosampled, prolific, shaded, georeferenced, riverine, 
S. damnosum s.l., larval habitat, since 5m canopy radiation would be 
multiply scattered or transmitted. 

Spectral properties of the soil, depends on soil constituents such as 
soil organic matter, iron oxides and soil water, and soil roughness such 
as particle and aggregate size [155]. High soil water and high organic 
matter contents show lower reflectance while soils with low water 
content and smooth surface tend to be brighter [156]. In the presence 
of iron oxides soil reflectance is higher in the red portion of medium 
resolution endmember spectrum [152]. Crop residues on soil surface 
also causes variation in reflectance compared to bare soil and partial 
canopy cover [157-159]. Spectral reflectance emittance properties of 
georefernced, geosampled, S. damnosum s.l., riverive, habitat canopy 
covered soils may be thus employed to extensively predict, time series 
dependent, ecohydrological explanatory variables, such as percent 
vegetation cover, plant biomass, green leaf area index and other  LULC, 
biophysical characteristics. 

The soil-adjusted vegetation index (SAVI) was developed to 
minimize soil influences on canopy spectra by incorporating a soil 
adjustment factor L into the denominator of the NDVI equation. 
L varies with the reflectance characteristics of soil (i.e. color and 
brightness) [151]. The L factor chosen depends on the density of 
the vegetation. For very low vegetation L factor can be taken as 1.0 
while for intermediate; it can be taken as 0.5 and for high density 
0.25 [2]. The best L value is to select where the difference between 
SAVI values for dark and light soil is minimal. For L=0, SAVI equals 
NDVI [4]. Mathematically SAVI is defined as, SAVI = {(NIR - RED) 
/ (NIR+RED+ L)} * (1+L) [152]. For optimal adjustment of the soil 
effect, the L factor should vary inversely with the amount of the 
shaded, canopy vegetation-related LULC and soil moisture present at a 
georeferenced, geosampled, riverine, S. damnosum s.l., shade canopied, 
geo-spatiotemporal, larval habitat, eco-epidemiological study site. 
Further, a modified SAVI (MSAVI) that replaces the constant L in the 
SAVI equation with a variable L function may also be constructed for 
predicting, seasonally prolific, vegetated, shade, canopied, unknown, 
unsampled, S. damnosum s.l., riverine larval habitats. The L function 
may be derived by induction or by employing the product of the 
NDVI and weighted difference vegetation index (WDVI).The WDVI 

is ascertained as a weighted difference between the measured NIR and 
red reflectance’s assuming that the ratio of NIR and red reflectance’s is 
constant (i.e., the weighting factor) [153].

Results based on canopy, SAVI, endmember, shade, vegetated, 
canopied, S. damnosum s.l., larval habitat may thus be explanatorily 
decomposed and geospectrally robustly interpolated. The VI 
endmember biosignature may be shown to increase the dynamic range 
of the 5m resolution Rapid EyeTMvegetation signal while minimizing 
the soil background LULC influences, resulting in greater canopy 
vegetation sensitivity for robustly, remotely, regressively targeting 
prolific, S. damnosum s.l., seasonal, georeferenced, shade, canopied, 
larval habitats. To understand how VIs are designed, it is essential 
to know some concepts related to influence of soil use of the soil line 
and vegetation isoline [40,160, 161]. Since soil-line vegetation indices, 
use the information of soil line in NIR-Red reflectance to reduce the 
effect of the soil on canopy habitat LULC, wavelenght of other indices 
such as reflectance other Optimized Soil Adjusted Vegetative Index 
(OSAVI) and Transformed Soil Adjusted Vegetative Index (TSAVI)) 
generated from RapidEyeTM data may be useful also for quantitatively, 
remotely, regressively, targeting, geospectrally interpolatable, seasonal, 
vegetated, shade, canopied, S. damnsoum s.l., larval habitats, geo-
spatiotemporally-geosampled, in African riverine environments. 

Soil vegetation indexes are relatively insensitive to ecosystems 
with the low biomass characteristic of semi-arid systems (between 
0 and 60 megagrams carbon per hectare [ha]), because of systems' 
low leaf biomass and discontinuous canopies [162]. Estimates of 
dry plant residues using the RedEdge Rapid EyeTM 5m spectrum 
may help surmount these difficulties. Although arid and semi-arid 
African riverine ecosystems do not sequester large masses of carbon, 
and have low fluxes on a per-area basis, these ecosystems are the 
most abundant terrestrial landscapes, which are also highly sensitive 
to climate perturbations [163].Thus, an explanatorily interpolatable, 
decomposed, RedEdge, NDVI Rapid EyeTM canopied biosignature 
focusing on carbon fluctuations may regressively target seasonally 
productive, shade, vegetated, S. damnosum s.l. riverine larval habitats 
and their photosynthetic and NPV seasonal, georeferencable covariate 
parameter estimator, reflectance, emissivity transmittance coefficients 
with higher efficiency than a non-carbon oriented biosignature.

Intrinsic covariance matrix estimation may provide a sample of 
n independent explanatorial, S. damnosums.l. riverine, larval habitat 
endmember covariance observations x1,.., xn of a p-dimensional, zero-
mean, Gaussian, explanatorial, random variable X with covariance 

R, where the MLE of R may be given by T

1

1ˆ .
n

i i
i

R x x
n =

= ∑
 

The 

parameter R belongs to the set of positive-definite matrices, which is 
a Riemannian manifold, not a vector space, hence, the usual vector-
space notions of expectation, (i.e. "E[R^]"), where the estimator bias 
must be generalized to manifolds to make sense of the problem of 
covariance matrix estimation [130]. This can be robustly conducted 
by defining the expectation of an manifold-valued, S. damnosums.l., 
riverine, larval habitat, georeferenced, canopied, endmember, 
covariance estimator R^ with respect to the manifold-valued point R 

as
def

1ˆ ˆE [ ] exp E expR R− =  R R R
where

1 1 1 1
2 2 2 2ˆ ˆexp ( ) expR R

− − 
=  

 
R R R R R

 

and
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1 1 1 1
1 2 2 2 2ˆ ˆexp ( ) logR R

− −−  
=  

 
R R R R R  are the exponential, explanatorial, 

riverine, larval habitat, canopy endmember map and inverse 
exponential map, respectively. The "exp" and "log" in these maps may 
denote the ordinary matrix exponential and matrix logarithm, thereby 
allowing E[·] to be the ordinary expectation operator defined on a 
vector space (i.e., the tangent space of the manifold).

Bias of the sample explanatorial, S. damnosums.l. riverine, 
larval habitat, canopy endmember, covariance matrix can 
thereafter be based on the intrinsic bias vector field of the 
endmember time series estimator R^ which could be defined to be

1 1ˆ ˆ ˆ( ) exp E E expR R R− −   = =  R R RB . The intrinsic estimator bias may 

then be given by ˆexp ( )RR B  
in the estimation model. For complex 

Gaussian endmember, sub-mixel, explanatorial, random variables 

this bias vector field can be shown to equal ˆ( ) ( , )R p nβ= −B R  where

( )1( , ) log ( 1) ( 1) ( 2) ( 1) ( 1) ( 2)p n p n p n p n p n p n n n
p

β ψ ψ ψ ψ= + − − + + − + − + + + − + +

and ψ(·) are the digamma function. In mathematics, the digamma 
function is defined as the logarithmic derivative of the gamma function 
(Figure 21). In mathematics, the digamma function is defined as the 
logarithmic derivative of the gamma function.

The digamma function, often denoted also as ψ0(x), ψ0(x) 

or   (after the shape of the archaic Greek letter Ϝ digamma), is 
related to the harmonic numbers in that 1( ) nn Hψ γ−= −

 
where 

Hn is the n-th harmonic number, and γ is the Euler-Mascheroni 
constant [130]. For half-integer values, it may be expressed 

as 
1

1 22ln 2
2 2 1

n

k
n

k
ψ γ

=

 + = − − +  − 
∑ . The Euler–Mascheroni 

constant (also called Euler's constant) is a mathematical constant 

recurring in analysis and number theory, usually denoted by 

the lowercase Greek letter gamma(γ) [25]. It is defined as the 

limiting difference between the harmonic series and the natural 

logarithm: 
1

1

1 1 1lim ln( ) .γ
∞

→∞
=

   = − = −   
  

∑ ∫
n

n k
n dx

k x x  
By so doing, 

the intrinsic bias of the sample covariance matrix may be equatable 

to ( , )ˆexp ( ) p nR e β−=R B R  
and the SCM would be asymptotically 

unbiased as n → ∞. Similarly, the intrinsic inefficiency of the sample 

covariance matrix depends upon the Riemannian curvature of the 

space of positive-define matrices [164].

The curvature of a Riemannian prolific, georefernced, shade 
canopied, S. damsnoum s.l., larval habitat manifold can be 
described in various ways; the most standard one is the curvature 
tensor, given in terms of a Levi-Civita connection (or covariant 
differentiation) ∇ and Lie bracket[·,·] by the following formula: 

[ , ]( , ) .u v v u u vR u v w w w w= ∇ ∇ −∇ ∇ −∇  Here ( , )R u v  would be a 
linear transformation of the tangent space of the manifold in the larval 
habitat model; it would be linear in each argument. In Riemannian 
geometry, the Levi-Civita connection is a specific connection on the 
tangent bundle of a manifold. More specifically, it is the torsion-free 
metric connection, (i.e., the torsion-free connection on the tangent 
bundle) is an affine connection preserving a given pseudo-Riemannian 

metric. If / iu x= ∂ ∂
 
and / jv x= ∂ ∂

 
are coordinate vector, shaded, 

prolific, S. damnosum s.l., larval habitat, vegetated, riverine canopied fields 

then [ , ] 0u v =  could be simplified to ( , ) u v v uR u v w w w= ∇ ∇ −∇ ∇ . 

The linear transformation ( , )w R u v w is also called the curvature 
transformation or endomorp. The the curvature tensor measures 
noncommutativity of the covariant derivative [131].

The ability to remotely predict the geolocations of seasonally 
productive, shade, canopied, S. damnosum s.l. georeferenced, breeding 
sitesemploying an empirical dataset of geospectrally interpolatable, 5 
m, Rapid Eye™, proxy, explanatorial, geo-spatiotemporal, biophysical 
variables such as those of a decomposed, dataset of NDVI, biosignature, 
sub-mixel, reflectance, emissivity transmittance predictor variables 
is extremely useful in mapping onchocerciasis transmission foci as 
the current African onchocerciasis control programs move into the 
era of cost effective elimination. For example, some of the countries 
endemic for onchocerciasis currently suffer from various levels of 
political and economic instability, making ground-based geolocation 
and verification of prolific aquatic sites difficult or impossible due to 
the high cost of the sub-meter resolution data. As such, employing cost 
effective RapidEye™ 5 m data (e.g., explanatorily interpolatable, eco-
epidemiological, empirically decomposed dataset of RedEdge, NDVI, 
biosignature endmembers) can provide robust mapping of prolific S. 
damnosum s.l. habitat sites in eastern Democratic Republic of Congo 
and Southern Sudan, for example, both of which currently suffer from 
political instability and a lack of infrastructure. As such, the ability 
to predict and precisely, geolocate, prolific, riverine sites employing 
5 m, RapidEye™, remote sensing, satellite data will provide specific 
geolocation-based data for explanatorial, forecast, eco-epidemiological, 
risk mapping the extent of transmission zones (e.g., hyperendemic, 
meosendemic) especially in areas around international borders where 
it may be difficult to establish cross border collaborations to conduct 
ground based studies and coordinated control initiatives.

 

Figure 21: Digamma function ψ(s) in the complex plane where color of a 
sub-mixel decomposed prolific, georferenced S. damnosum s.l. riverine larval 
habitat point s encodes the value of ψ(s).

http://en.wikipedia.org/wiki/Complex_plane
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Better discrimination of vegetation explanatorial, time series 
dependent, Rapid EyeTM LULC classes may help further identify and 
predict shade canopied, geo-spatiotemporally, geosampled, prolific, 
S. damnosum s.l., riverine, larval habitats. By remotely measuring 
the many absorption features of the decomposed, Red Edge, NDVI, 
biosignature, geo-spectrometric, time series , empirical information 
may be associated to leaf pigments (e.g., canopy chorophyll) which then 
may be subsequently associated with seasonal, immature productivity. 
Because of its greater spectral dimensionality, decomposed and 
geospectrally interpolated, 5m, RapidEyeTM,spectroscopic data can 
discriminate among shaded,prolific, geospectrally explanatorily 
interpolatable, S. damnosum s.l., larval habitat, canopy plant species 
more effectively than standard indices of vegetation and therefore 
has the potential to provide superior seasonal mapping capability in 
riverine –related, African ecosystems.

In conclusion, RedEdge, NDVI, decomposition, endmember, 
spectral analysis in ENVI revealed the resampling induced periodicity 
in a shaded, canopied, S. damnosum s.l., riverine, larval habitat 
in aRapidEyeTM scene. Remotely quantizable, probabilistically 
regressable changes in geo-spatiotemporally dependent, explanatorial, 
ecobiological data feature attributes of a geosampled, vegetative, 
riverine, S. damnosum s.l., larval habitat, surface canopy altered 
radiative interactions and therefore the amount of radiation reflected 
from the habitat surface received by the 5m remote sensing detector. 
For example, the reflectance spectra of the main plant functional types 
(i.e., hanging, and immersed vegetation), in our geosampled, riverine, 
larval habitat, RedEdge, NDVI endmember, reflectance model, revealed 
extensive, discontinous, reflectance and absorption features along the 
canopy gradient. Based on the canopy, 5m, Red Edge, biosignature, 
the leaf reflectance was greatest in the 5m spectral bands centered at 
between 1940nm, and 2500 nm, with indirect or secondary effects at 
between 400 nm and 700 nm. Unmixed, LULC topographic effects on 
bidirectional and hemispherical reflectance rendered from the riverine, 
larval, canopy, habitat surface were calculated with a SPA algorithm, 
3-D radiative transfer equation and a geometric-optical model in 
ArcGIS. The final model employed a hemispherical integration of 
a BRDF which also provided an albedo estimate of the geosampled, 
riverine, larval habitat and its geospectrally associated, canopied, 
reflectance values. We were able to encompass the effects of the shaded 
habitat, LULC topography employing the BRDF and the surface albedo 
generated from the larval habitat canopy cover and its decomposed 
endmember, sub-mixel, reflectance, emissivity transmittance data 
feature attributes. The model output identified the fractional presence 
of each decomposed endmember of the S. damnosum s.l. habitat and 
its associated emissivity attributes based on proportions of sunlit 
canopy, sunlit background and shadow fraction. This data was then 
interpolated. The residuals revealed that 72% of the forecasted prolific 
habitat were found to contain S. damnosum s.l. larvae when field 
verified. The sensitivity of the test was 78.26 while the specifity was 100.
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