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ABSTRACT

Flexure mechanisms are used in many fields such as precision positioning, micro/nanoscale fabrication, force/
torque sensors, optical fibers, bio-engineering, nano-imprint technology. Recently, there have been studies conducted 
about its mechanical characteristics so far and applications. However, most of these studies have just only focused on 
the static analysis or the inadequately dynamic analysis without considering the damping characteristics of flexure 
joints. This paper presents the fully dynamic analysis of a flexure mechanism with a combination of damping factors 
in particular. The mechanism provides small linear motion. The dynamic characteristics including the response of 
output link and the natural frequency of the flexure mechanism are determined based on a dynamic analysis on the 
pseudo-rigid- body diagram and based on the finite element model.
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INTRODUCTION

If something bends to do what it is meant to do and also to 
accomplish something useful, then it is a compliant mechanism or 
flexure mechanism [1]. In recent decades, compliant mechanism 
has been a hot topic in precision engineering because it has many 
outstanding advantages that outweigh the rigid-body mechanisms 
for precision engineering applications including non-friction 
movements, no stick-slip behavior, no backlash, and smooth and 
highly repeatable motions, etc. As this sort of mechanism does not 
need to be lubricated periodically, it will be a very good choice for 
mechanical components operating in small and enclosed space or 
vacuum of conditions [2]. However, it still has several disadvantages 
due to its monolithic design such as limited displacement, so 
complex mechanical properties that need more studies to reduce 
the deviations between the analytical method and finite element 
method. Hence, there were many mathematical methods proposed 
to solve these “tough characteristics” of the compliant mechanism. 
When conducting any research related to a compliant mechanism, 
which is made up of flexure hinges, the first and most important 
thing to take into consideration is the relation between the stiffness 
and the displacement matrix of a flexure hinge. However, that 
connection almost depends on the type of material and geometry 
especially applied for a flexure. As a consequence, there were many 
mathematical models proposed to guide how to determine the 
deformation of compliant under external force and moment with 
reliable results, for instance: the model of Lobontiu et al. [3], for 
thin hinges. However, most recent studies have just only focused 
on investigating the state of deformation of compliant mechanism 
under static conditions whereas its applications may vary from 
static to dynamic conditions, therefore, this paper will illustrate 

the dynamic response of a compliant mechanism which is partially 
based on one of those stiffness matrices models.

There are two main categories of methods to approach a flexure 
system that are the distributed parameter and the finite element. 
For distributed parameter methods, it will be described by a system 
of partial differential equations [4]. Nevertheless, for complex 
systems, it is usually hard to find an equation describing the 
dynamic behavior of entire systems, so in these circumstances, 
approximate methods are further employed in order to simplify the 
problem. This article presents an approximate model called Pseudo-
Rigid- Body (PRB Model) which was proposed in Dynamic Studies 
of Larry and Howell [5] to aid engineers in oscillation calculation. 
After the equivalent dynamic conversion, proceeding to build 
the second-order differential equation of motion for a compliant 
mechanism by using Lagrange’s Equation (1) which was clearly and 
fully presented in Flexures of Stuart T. Smith [6].
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Where:

•	 T is the kinetic energy;

•	 R is the energy dissipated due to the damping characteristic;

•	 V is the potential energy;

•	 Q
s
 is the generalized force acting to produce a change  in 

coordinate q
s
.
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STATIC ANALYSIS OF FLEXURE MECHANISM

Design of flexure mechanism

As the research of Linß [4], there are approximate 12 types of 
different flexure. And its deformation may vary depending on 
the contour. However, this article only focuses on analyzing the 
performance of the circular hinges, one of the most popular type 
of flexure hinge. The static and dynamic response of a compliant 
mechanism which is made up of many flexure hinges will be 
analyzed and experimented to determine its response. The 3D 
and 2D design of the compliant mechanism will be presented in 
Figures 1 and 2.

Designing parameters will be chosen in the Table 1. 

In which:

•	 h=H−2R (mm)

•	 Applied material for entire mechanism: AISI 1045 Carbon 
Steel. Material properties:

–	 Young Modulus: E=205 (GPa)

–	 Poisson’s ratio: ν=0.29

•	 The width of mechanism: b=10 mm

There are many researches showing the way to determine the 
bending stiffness of the circular flexure hinges. One of those is 
the model of Lobontiu  which will be applied to calculate the 
bending stiffness of the circular hinges in this paper. That model is 
expressed as followed function [3].

13 3
2 2 2(2 )(4 ) 4(4 )(6 4 ) 6 (2R h) (4 ) tan 1
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Based on the above function, I have the table of the bending 
stiffness value for each flexure as below in Table 2:

Using the Pseudo Rigid Body (PRB) theory of Larry L. Howell [5] 
to convert the compliant mechanism into a rigid body mechanism 
by replacing the flexure with a normal hinge and torsional spring, 
as shown in following Figure 3.

Under an arbitrary external force, the compliant mechanism will 
deform as Figure 4.

where:

•	 θ
3
; θ

1
: deflection angle.

•	 Y
3
; Y

1
: displacement in y direction.

Due to the minor deflection, the relation between Y and θ 
could be accepted approximately by the following equation: Y3= 
Lθ3; Y1 = Lθ1; θ3 3θ1. So, the displacement will could be accepted 
approximately by the following equation: be fully determined if we 
can define the response of the deflection angle, θ

Z
. However, the 

deflection angle depends on the external force (or moment) and 
the bending stiffness of the flexure hinge (Figures 3-6).

Determining the bending stiffness parameter by analytical 
method

Diagram of force and moment distribution and Geometric 
parameters described in Figures 7 and 8 below.
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Based on the Figure 8 to determine geometry parameters as below:

Figure 1: Design on solidworks.

Figure 2: 2D design on Autocad.

Table 1: Designing parameters of the flexure mechanism.

No. Parameters Value Unit Note

 
1
 
 

H1 10  
mm

 
 

 
Flexure 1

 
 

h1 0.6

R1 4.7

H2 10

 
2
 
 

h2-1 0.6  
mm

 
 

Flexure 2-1
 R2-1 4.7

h2-2 0.6 Flexure 2-2
 R2-2 4.7

 
3
 

H3 10  
mm

 

 
Flexure 3

 
h3 0.6

R3 4.7
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Figure 3: The compliant mechanism after converting by PRB model.

Figure 4: The PRB model deforms under an external force.

 Figure 5: PRB model is divided into three parts.

 Figure 6: Diagram of force and moment distribution on part 1.

 Figure 7: Diagram of force and moment distribution on part 2 and 3.

 
 Figure 8: The geometry parameters when the mechanism deform.
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with: Bx
21

||A
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A and x

22’ 
x

22
 ||Dx

3
 Substituting Eq. 5 with θ

21
; θ

22
; 

Ψ
3
 from the Eq. 6; 7; 8 to get these equation:

Table 2: The bending stiffness value for each flexure.

Description Parameters Value Unit

Equivalent Momentum Jeq= 1, 83.10−3 kg.m2

K
1

18961

Bending stiffness

K2−1=K2 18961
18961
18961

N m m 
rad

K2−2=K2

K
3

Equivalent bending 
stiffness

K
eq
 =9K

3
+12K

2
+K

1
18961
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We knew the link between the deflection angle and the torque is:  
M=Kθ

Z
. Therefore, the equivalent bending stiffness of the entire 

mechanism is defined from Eq. 10:

K
eq
=9K

3
+12K

2
+K

1                                                                                                                           
(10)

DYNAMICS ANALYSIS OF FLEXURE

Mechanism

Setup of experiments: The experiment was set up; see in Figure 
9, by utilizing a piezoelectric actuator, PAS015 of THORLABS, to 
excite the compliant mechanism to vibrate by applying a square 
pulse of voltage very quickly. It would lead to a result that the flexure 
mechanism will free vibrate. This paper mostly concentrates on 
evaluating the state of free vibration, without maintaining external 
force. Using the accelerometer and its display unit to measure the 
decrease of amplitude of the oscillation to determine the damping 
ratio in two different states, before and after the flexure hinges are 
covered with the damping material, which is represented in Figures 
10 and 11. 

Determining natural frequency: In order to obtain the natural 
frequency and natural modes of a system, un-damped free vibration 
equation is used because the damping has very little influence on 
the natural frequencies of a system [6,7]. Calculating the natural 
frequency then utilizing the module Modal in ANSYS software 
to verify the result.

Based on Figure 4, having the table of the parameters of flexure 
mechanism as below in Table 3.

The value of Momentum is given by Solidworks 2017. And the 
Natural frequency can be calculated as below:

1 ~ 76
2 2

eqn
n AM

eq

K
f Hz

J
ω
π π− = = ≈                                                   (11)

ω
n−AM

 = 2πf
n−AM

 = 247, 17(rad/s)	                                          (12)

And the result of ANSYS expressed in Figure 12 is approximately 
equal to the result calculating by Analytical Method (AM).

Dynamics of flexure with and without damping material

Damping measurement: There are various parameters to represent 
the damping characteristic such as specific damp- ing capacity, loss 
factor, Q-factor, and damping ratio, and models such as viscous, 
hysteretic, structural, and fluid. Before proceeding to measure 
damping in the compliant mechanism.Figure 9: Setup for dynamic response measurement of damping ratio.

Figure 10: Flexure hinges before added with damping material.

Figure 11: Flexure hinges after added with damping material.

 Figure 12: The natural frequency determined by ANSYS is fn-AS =76; 6Hz.

Table 3: Dynamic parameters of the PRB model from Figure 4.

Description Parameters Value Unit

Equivalent Momentum Jeq= 1, 83.10−3 kg.m2

K
1

18961

Bending stiffness

K2−1=K2 18961
18961
18961

Nmm 
rad

K2−2=K2

K
3

Equivalent bending 
stiffness

K
eq
 =9K

3
+12K

2
+K

1
18961
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Researchers should take into consideration about what sort of 
models that could be applied properly to investigate the mechanical-
energy dissipation properties in the compliant sys- tem. There are 
two common ways to measure the damping: time-response methods 
and frequency-response methods. It is basically different between 
these two methods that the first type uses a time-response record 
of the system to estimate damping while the second one uses 
a frequency-response record [8]. And, this paper will represent 
the model of viscous damping to estimate the damping ratio 
from the experiment. The Damping ratio is a parameter, usually 
denoted by ζ (zeta) provides a mathematical means of expressing 
the level of damping in a system relative to critical damping [8]. 
With the viscous damping model would lead to a concept which is 
logarithmic decrement, and denoted by δ, and ζ is a function of δ, 
which are given as [9]:

2 24
δς

π δ
=

+
                                                                                   (13)

( )ln
( )
x t

x t T
δ =

+
                                                                               (14)

In this paper, the denotation: ζ1 and ζ2 are the Damping Ratio which 
indicate the state before and after supplementing the damping 
material (DM) respectively. Conducting experiments to determine 
Damping Ratio and the results are expressed in the Figures 13 and 
14. Based on the data from experiments to determine the average 
value of Damping Ratio at two states.

1 1

22

0,0088
0,0142

ς ς
ςς

 = =
 = =

Dynamics equations: The Eq. 1 is the general dynamic equation 
of a motion system. Based on the Eq. 1 to derive the dynamic 
equation for the rotational coordinate system in this paper. And 
the displacement, velocity, and acceleration in direction Y will be 
given as: Displacement equation:

y(t) = Y
0
e−ζωnt cos(ω

d
t − φ

0
)                                                  (15) 

Velocity equation: 

( ) 2
0 0 0( ) cos 2 1 sin( )nt

n d dv t Y e t tςωω ς ω φ ς ς ω φ−  = − − + − −                (16)

Acceleration equation:

( ) ( )2 2 2
0 0 0a( ) 2 1 cos 2 1 sin( )nt

n d dt Y e t tςωω ς ω φ ς ς ω φ−  = − − + − − 
                       (17)

in which: 

: .eq
n

eq

K
natural angular frequency

J
ω =

21 : .d n damped angular frequencyω ω ς= −

Evaluating the dynamics equations results by ANSYS: Converting 
the physical model of the flexure mechanism into the rigid body 
model in ANSYS to analyze the dynamics characteristic of the 
flexure system (Figure 15).

With this module, it is required to provide the data input 
including the torsional stiffness and the damping coefficient, and 
it is important to ensure the equivalent momentum of  the entire 
mechanism. With the damping coefficient, it could be derived 

from the damping ratio and the critical damping coefficient by the 
formula as below:

c

c
c

ς =

In which 2 2c eq eq eq nc K J K ω= =                                                    (18)

RESULTS AND DISCUSSION

In this paper, I will only plot the velocity graph because the 
displacement and acceleration equation can be preceded in a similar 
way. These figures below show the results of the dynamics equation 
in terms of velocity in y direction. Also, the results comparison 
between the analytical and ANSYS analysis method. In Figure 
15, it is easy to observe that there is a minor error between two 

Figure 12: The natural frequency determined by ANSYS is fn-AS 
=76; 6Hz.

Figure 13: Obtained vibration graph from the accelerometer.

Figure 14: Equivalent convert to module rigid dynamics in ANSYS.
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 Figure 15: % error between analytical and ANSYS method at ϛ
1
 case.

 
 Figure 16: Free vibration response of entire mechanism at two state, ϛ

1
 

and ϛ
2
.

methods in the time domain of 0.4 second. However, it exists an 
accumulative time error, and author proceeded to expand the time 
domain to more than 1 second to estimate the accumulative time 
error, and it will be reconsidered at 2 condition, ζ

1
 and ζ

2
 , in the 

Tables 4 and 5  this error would be an acceptable result. In Figure 
16, it is very optimistic to observe the result that the supplementary 
material reduced the time of free vibration and the amplitude 
of vibration at the same time comparing to the condition of no 
damping material. From the collected data in the Tables 4 and 5, it 
is observed that % velocity error between analytical and ANSYS is 
minor. And, the accumulative timer error is a big gap in the 32nd 
period of vibration, that error has a tendency to keep increasing 
if damped frequency of this mechanism is f

d
=39Hz (this the time 

domain is expanded. However, considering that the frequency was 
recalculated due the effect of accelerometer mass), so if collecting 
the data in 2 seconds, it means that the total accumulative time error 
may be over 100% - over a period of vibration. And in 2 seconds 
the mechanism vibrated nearly 78 periods, therefore, the actual error 
will be 1/78=1,28%, this error would be an acceptable result.

Table 5: Received data at ζ
2
, with damping material.

Period of Vibration 1 10 32

Time (s)
ANSYS 0, 00635 0, 2351 0, 9724

AM 0, 0064 0, 2384 0, 9862

Velocity 
(mm/s)

ANSYS 45, 37 27, 49 5, 474

AM 44, 79 27, 33 5, 567

% Time error vs. period of 
vibration, T

d
 = 0, 0254  (s)

0, 34% 12, 99% 53, 54%

% Velocity error 1, 29% 0, 59% 1, 67%

CONCLUSION

This paper established a method to reduce the time of free vibration 
by adding a damping material. It showed a positive tendency to 
enhance a higher accuracy in dynamic control for other compliant 
mechanism systems. Establishing a method to determine the 
dynamic equation by applying the damping ratio in the equation 
to predict its transformation under a certain condition. The data 
analysis between analytical and ANSYS method bring a positive 
signal about the reliability  of the measurement and theory. Module 
Rigid Dynamics demonstrates its advantages in solving the dynamic 
problems of flexure mechanism which are usually required a huge 
resource from the computer.
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