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ABSTRACT

Therapeutic drugs exert their effect by binding to a specific target protein (receptor) and altering its activity. However, 
all drugs have undesirable side effects, which likely result from the drug binding to other protein targets. Drug 
promiscuity refers to the ability of small molecule compounds to bind with high affinity to multiple proteins. This 
drug property is responsible for the problems caused by their side effects. But drug promiscuity also presents a 
promise: If a drug targets numerous proteins, each interaction may contribute to its therapeutic efficacy. The ability 
to target multiple genes is especially promising for medicines that treat systemic diseases, including neurological 
disorders and cancers, which result from gene network problems. Here, I will review both aspects of drug promiscuity 
and illustrate a potential strategy to move this forward using a computer modeling approach. By computationally 
analyzing drug-protein interactions, there is potential to uncover previously unknown drug targets, understand the 
mechanisms of side effects, and perhaps even predict and mitigate these effects before clinical trials.
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Abbreviations: VEGFR: Vascular Endothelial Growth Factor; DDR1: Discoidin Domain Receptor 1; PPAR-
Peroxisome Proliferator Activated Receptor; GKRP: GlucoKinase Regulatory Protein.

INTRODUCTION

Therapeutic drugs are designed to achieve their medicinal effects 
primarily through specific binding to target proteins. This drug-
receptor interaction is critical in modulating the target’s function 
and forms the basis of drug efficacy in treating a myriad of diseases. 
However, a common and often problematic aspect of drugs is 
their unintended side effects. These adverse effects are frequently 
attributed to the drug's interaction with proteins other than the 
intended target.

Drug promiscuity, defined as the ability of a single drug molecule 
to interact with multiple protein targets, presents a paradox in 
pharmacology. It is a source of therapeutic potential and unwanted 
side effects, making its study challenging and essential. While it 
often leads to undesirable side effects, this property also holds 
potential for therapeutic innovation. Many drugs, being small 
molecule compounds, have the capacity to bind with high affinity 
to several different proteins. While this can cause unwanted 
reactions, it also means that a single drug can have a multi-targeted 
approach, potentially increasing its therapeutic value.

Unfortunately, the specific targets of many approved drugs remain 
unidentified, and the molecular mechanisms underlying their side 
effects are even less understood. This knowledge gap represents 

a significant challenge in drug development and safety. However, 
drug promiscuity also presents a unique opportunity. Suppose 
we can unravel the complex gene networks involved in systemic 
diseases, such as neurological disorders and cancers. In that case, 
we may be able to identify drugs that selectively target a subset of 
proteins within these networks. This approach could enhance drug 
efficacy while minimizing side effects.

In this context, I aim to review both the challenges and 
opportunities presented by drug promiscuity. I will explore how 
an in-silico approach using computer simulations and models-
could be a valuable strategy for understanding and harnessing this 
phenomenon. We can devise more effective and safer therapeutic 
strategies by computationally analyzing the interactions between 
drugs and protein networks. This in-silico methodology represents a 
promising frontier in drug discovery and development, offering a 
path to understand better and exploit the complex nature of drug-
protein interactions.

Drug-receptor interactions

Drug-receptor interactions form the foundational principle of 
pharmacology and drug design. Drugs exert their medicinal effect 
by binding to a 'receptor' and modulating its function. These 
receptors are typically cellular proteins that play a critical role in a 
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disease process. Examples include neurotransmitter receptors, ion 
channels, and enzymes. Drugs physically interact with a receptor by 
closely associating with a binding site, a part of the receptor protein 
that is compatible with both the 3-dimensional structure of the 
drug and its physicochemical properties. This interaction affects 
the protein's function in the cell: Occupancy of the binding site by 
the drug may prevent an endogenous compound from binding, or 
it can induce (or prevent) a conformational change in the protein. 
While the receptor is the intended therapeutic target for the drug, it 
may also bind to other proteins with functions unrelated to the disease 
process. This kind of promiscuity may cause unwanted side effects. In 
this manuscript, we will refer to the ability of drugs to bind to multiple 
proteins as 'promiscuity.' It is the opposite of drug ‘specificity’.

Affinity and efficacy

Two essential properties characterize drug-receptor interactions: 
Affinity and efficacy. Affinity specifies how 'tight' a drug binds to 
its receptor. Efficacy refers to the ability of a drug to 'activate' its 
receptor. High affinity is a desirable property of a drug, allowing it 
to have therapeutic effects at a relatively low concentration. Such 
a strong interaction then helps to minimize unwanted side effects. 
Drug binding is a dynamic, reversible process in which the drug 
associates with the receptor, occupies its binding site for some 
time, and disassociates again. The longer the drug is associated, the 
higher its affinity. Drugs don't have to have efficacy to be effective. 
They can occupy their binding site without activating the receptor, 
thereby preventing a natural compound (e.g., a neurotransmitter) 
or a protein segment (e.g., enzyme-substrate) from binding. This 
type of interference is the basis for competitive antagonism. 
Alternatively, a drug could bind at a site away from the natural 
ligand binding site and allosterically modulate receptor function by 
inducing or preventing conformational changes.

Drug promiscuity

I have performed a relatively small-scale study of drug promiscuity 
using a computational approach by inverting the process of in silico 
drug discovery, in which an extensive library of small molecules 
is "docked" into a binding site of a protein of interest. Docking 
involves finding the optimal pose (three-dimensional fit) of each 
drug in the binding site and estimating its affinity using a force field 
model that parameterizes all the chemical and physical interactions 
between the drug and the binding site. The top-ranking drugs 
with the highest estimated affinity can be further characterized by 
appropriate assays to evaluate their efficacy.

Here, we would like to do the opposite: Dock each drug of interest 
into a library of protein binding sites. Then, rank the proteins by the 
estimated affinities of the drug for each binding site. Promiscuous 
drugs will rank high for many proteins, while an ideal specific drug 
will only bind with high affinity to a single target. Commercial 
docking software is not designed to work this way. But that is not 
a problem: Once we have identified the library of proteins and a 
list of drugs, we dock all drugs into each target binding site, using 
the standard approach. When we have an estimated affinity and 
relative rank order for each drug-target combination, we reorganize 
the data to get the statistics we seek.

MATERIALS AND METHODS 

As of the current analysis, the US Food and Drug Administration 
(FDA) have approved 2,761 small-molecule drugs. This figure 
contrasts the estimated 25,000 proteins the human genome can 
express, highlighting a vast landscape of potential drug-protein 

interactions. To do this analysis exhaustively, one must perform 
70 million dockings. Before embarking on such a significant 
undertaking, I performed a much smaller-scale analysis to discover 
what could be learned from such an approach. The protein library 
was limited to proteins co-crystallized with an FDA-approved drug 
or with a natural hormone or neurotransmitter. This has two 
advantages: The structures already have a known binding site, 
and the protein targets (receptors) most likely are therapeutically 
relevant. I identified 622 receptors in the protein structure database 
at www.rcsb.org and downloaded their structure data files containing 
atomic coordinates. Table 1 shows 20 entries, listing the drug name, 
PDB identifier, protein/gene name, and therapeutic class/use [1].

Table 1: Examples of PDB entries selected for this study.

Drug PDB Gene/Protein Therapeutic class/use

Acetazolamide 5jn8
Carbonic 
anhydrase

Diuretic

Alclofenac 1ht8 Cox-1
Non-steroidal 

anti-inflammatory 
(NSAID)

Acyclovir 1pwy
Purine Nucleoside 

Phosphorylase
Anti-viral

Alendronate 2f92
Farnesyl 

PyroPhosphate 
Synthase

Treats osteoporosis

Alprazolam 3u5j
BRD4 

bromodomain
Psychotropic, 

anxiolytic

amiodarone 5h4d Sirtuin 3 (SIRT3) Antiarrhythmic

Amlexanox 4wbo GPCR kinase 1
Treats canker sores 

(discontinued)

Amodiaquine 2aou
Histamine 

methyltransferase
Antimalarial

Aspirin 1f9g Hyaluronate lyase Salicylate, painkiller

Aspirin 1oxr Phospholipase A2 Salicylate, painkiller

Aspirin 2×08
Cytochrome c 

peroxidase
Salicylate, painkiller

Aspirin 3tgy Lactoperoxidase Salicylate, painkiller

Aspirin 3vln
Glutathione 
transferase

Salicylate, painkiller

Atenolol 2nuv Lactoferrin Beta blocker

Atorvastatin 1hwk
HMG-CoA 
reductase

Statin

Atovaquone 1uum
Dihydroorotate 
dehydrogenase

Antiprotozoal agent

Atropin 3osh Phospholipase A2 Muscarinic antagonist

Azathioprine 4acs
Glutathione 
transferase

Immunosuppressant

Aztreonam 3pbs
Penicillin-binding 

protein 3
Monobactam 

antibiotic

Some drugs, like aspirin in Table 1, have been co-crystalized 
with several distinct proteins, illustrating drug promiscuity. 
Some proteins, like phospholipase A2 in Table 1, have been co-
crystalized with multiple drugs, illustrative of protein promiscuity. 
This aspect will not be developed in depth in this paper. A total of 
1531 small molecules approved as therapeutic drugs by the FDA 
were downloaded from the ZINC database (www.zinc20.org) as 
3D structures in SDF format [2,3]. The 1531 FDA-approved drugs 
were docked in each of the 622 protein-drug complex structures, 
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and their affinities were estimated [4]. Docked drugs were ranked 
by their affinity for each target, and their rank orders were stored 
together with the protein target's PDB identifier and estimated 
affinity. The eHiTS software was used for docking and affinity 
estimation [5,6]. A total of 780,000 docks were performed for this 
small-scale analysis. Because of the large number of docks required, 
the High Throughput Screening option was used in eHiTS [7,8].

RESULTS

The traditional approach of docking a library of small molecules 
(FDA drugs) into a target, which was employed here, also generates 
potentially interesting data unrelated to drug promiscuity. 
Top-ranking drugs could be studied to see whether their high 
predicted  affinity for a  target  indicates that they are suitable 
for  drug repurposing. Figure 1 shows as an example. One of the 
targets analyzed here is carbonic anhydrase II (1a42.pdb), which 
was crystallized in a complex with brinzolamide, a drug used to 
treat glaucoma. The top-ranking drug from the docking screen was 
celecoxib (Celebrex), a COX-2 inhibitor and Nonsteroidal Anti-
Inflammatory Drug (NSAID). Its eHiTS score was very high (-12.4), 
corresponding to an estimated affinity of 1 pM. Figure 1 shows the 
optimal poses for the two drugs.

Interestingly, celecoxib has already been  shown to be a  potent 
inhibitor of carbonic anhydrase II [1]. However, it may  not be 
an excellent drug  to  repurpose for  glaucoma  treatment  because 

several  of   its  side  effects  involve  problems  in  the  eyes. Side 
effects are important considerations that often limit the successful 
repurposing of drugs.

There are probably additional novel drug-receptor matches in this 
data set, some of which may be useful for drug repurposing. Still, 
a complete analysis of this topic is outside the scope of this paper. 
A comprehensive version of the analysis performed here, including 
all known protein structures and all FDA-approved drugs, could 
yield a wealth of new receptor-drug interactions.

Now that the rank orders are available for all drug-receptor 
combinations that were docked, it is possible to organize the data 
focusing on individual drugs and their rank orders with all receptors.

lists how the drug  ranked  relative to  all  other drugs for a given 
receptor,  sorted  from low to  high ranks. The  highest  that  aspirin 
ranked in any of the 622 receptors was 6 and its next beast rank was 22. 
Rank scores below15 (top 1%) are highlighted in yellow. Doxylamine
scored 11times below 15.

For each drug, the rank orders for the 622 receptors were sorted 
by their estimated affinity, from high to low (Table 2). To identify 
promiscuous drugs, we need to come up with a criterion. I identified 
the top 1% ranks: Because 1531 drugs were competing for each 
binding site, the top 1% would rank below 15. In Table 2, they are 

Figure 1: Celecoxib vs Brinzolamide. The binding site for brinzolamide in carbonic anhydrase II is shown in an electrostatic surface representation. (A) 
Brinzolamide (sticks) as it was seen in the X-ray structure (1a42.pdb). (B) The optimal pose for celecoxib in the same binding site, as identified by eHiTS 
docking. (C) Comparison of the poses for Brinzolamide (purple) and Celecoxib (green).

Figure 2: Structures of the ten most promiscuous drugs.

Table 2 shows the sorted rank  orders for 16 drugs. Each  column
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The highly specific drug rifaximin, an antibiotic, rises steeply from 
its rank of 1 for its optimal target. The profiles for two drugs with 
less extreme properties are shown as well. Lumacaftor, a cystic 
fibrosis drug, rises quickly initially, but then the curve becomes 
shallower. The rank order of nelarabine, a chemotherapy drug, is 
almost linearly dependent on the ranked target number. These 
rank profiles will be helpful in characterizing drug promiscuity.

Except for a few particular drugs, most small molecules bind with 
reasonable affinity to several target proteins. How does that affect 
their therapeutic performance? It depends on (i) what effect drug 
binding has on the function of the target protein and (ii) whether 
the target protein plays a role in the disease. If a target protein is not 
involved in the disease process, and the drug inhibits its function, 
it could cause unwanted side effects. Identifying the proteins to 
which a drug binds with high affinity by in silico docking, as shown 
in this paper, may shed some light on this matter. The subset of 
proteins analyzed here was small: Only 622 receptors were analyzed. 
However, the promiscuous drugs shown in Table 3 still had enough 
targets to allow further study. Table 5 illustrates the properties of 
the top 20 targets for the antifungal butoconazole. For each target, 
a literature search was performed to see whether they could play a 
role in fungal infection. Interestingly, 4 of the top 5 and 7 of the top 20 
proteins have been published as appropriate targets for antifungal 
therapy. These seven proteins have widely different functions, so 
the ability of butoconazole to bind to them with high affinity helps 
to explain its therapeutic efficacy in treating fungal infections.

highlighted in yellow. Aspirin, baclofen, carteolol, and doxylamine 
have 1, 2, 2, and 11 better than 1% rankings, respectively. To 
identify the most promiscuous drugs, I counted the number of 
ranks below 15 and sorted drugs by counts (Table 3).

The most promiscuous drug, butoconazole, ranked in the top 
1% for 105 of the 1531 targets, while sitagliptin ranked #1 for 24 
targets (Table 3). The chemical structures for the top 10 drugs are 
illustrated in Figure 2. Seven out of the ten drugs display many 
rotatable bonds, which allow them to take on a large number of 
3-dimensional poses. This may help explain their promiscuity.

On the other end of the promiscuity spectrum are the drugs with 
very high specificity. An 'ideal' drug would bind to its intended 
target and have low or no affinity for other receptors. Table 
4 illustrates the eight most specific drugs, and their chemical 
structures are shown in Figure 3.

The best rank for these highly specific drugs is between 1 and 
4, while their second-best rank is much higher 41-97 (Table 4), 
indicating a steep loss of affinity. The structures of some of these 
drugs help explain their high specificity: they are unusual (e.g., 
circular) and/or of high molecular weight.

Figure 4 illustrates the promiscuity "rank profiles" for several drugs. 
It graphs the sorted rank for a drug as a function of its ranked "target 
number." The profiles differ dramatically between promiscuous 
and specific drugs. The profile of the antifungal butoconazole is 
very flat as its rank remains small for a large number of receptors. 

Drug name Aspirin Baclofen Bethanechol Carbinoxamine Carteolol Cyclopentolate Diethylpropion Doxylamine Esmolol Ethotoine

1 6 6 143 73 7 42 64 2 38 15

2 22 13 181 146 12 74 91 2 42 45

3 23 13 185 155 21 78 141 2 47 47

4 26 18 223 159 21 92 163 3 53 61

5 29 19 228 166 22 96 165 7 57 66

6 30 21 263 167 24 104 183 9 64 70

7 35 22 264 177 30 112 192 9 68 74

8 36 26 267 197 30 118 203 12 73 74

9 43 27 268 219 35 123 217 12 75 82

10 43 30 269 221 35 124 243 13 80 85

11 47 34 283 223 43 130 245 13 84 87

12 48 36 287 229 46 135 251 15 89 95

13 51 37 289 237 48 138 264 18 98 100

14 67 39 303 237 49 139 267 19 102 102

15 70 41 318 238 50 144 276 19 105 105

16 72 45 321 255 52 147 281 22 105 110

Table 2: Sorted rank orders. Each column lists how the drug ranked relative to all other drugs for a given receptor, sorted from low to high ranks. 
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Drug 
name

Butuconazole Lanszoprazole Sitagliptin Famotidine Trifluoperazine Cesamet Eprolin Oxymetholone Androxy Midazolam

Total # 
docks

573 579 491 609 505 537 464 549 546 538

Rank #<15 105 96 91 83 80 79 71 59 59 58

Mean 15.1 14.6 13.2 16.1 14.9 13.4 13.7 17.0 17.4 17.9

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1

5 1 2 1 1 1 1 1 1 2 2

6 1 2 1 1 1 1 1 1 2 2

7 1 2 1 1 1 1 1 1 2 2

8 1 2 1 1 1 1 1 1 2 2

9 1 2 1 1 2 1 1 1 3 3

10 2 2 1 2 2 1 1 1 3 3

11 2 2 1 2 2 1 1 2 3 3

12 2 2 1 2 2 2 1 3 3 3

13 2 3 1 2 2 2 1 3 3 3

14 2 3 1 2 2 2 1 3 3 4

15 2 3 1 2 3 2 1 3 4 4

16 2 3 1 2 3 2 1 3 4 4

17 2 3 1 2 3 2 1 3 4 4

18 2 3 1 2 3 2 1 4 4 4

19 2 3 1 2 3 2 1 4 4 4

20 2 3 1 2 3 2 1 4 4 5

21 2 4 1 3 4 2 1 5 4 5

22 2 4 1 3 4 2 2 5 4 5

23 3 4 1 3 4 3 2 5 5 5

24 3 4 1 3 4 3 2 5 5 5

25 3 4 2 3 4 3 2 5 5 5

Table 3: Top ten most promiscuous drugs. Yellow highlights indicate that the drug ranked #1 for a receptor.

Table 4: Rankings of the eight most specific drugs.

Drug  Calteridol Rifaximin  Methohexital Mycelex Nicardipine  Naldemedine Fomoterol Mydriacyl

Rank 1 1 1 2 3 3 3 4 4

Rank 2 97 74 52 61 54 85 41 57

Rank 3 116 125 79 61 96 92 67 72
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Figure 3: Structures of the eight most specific drugs.

Rank K_D Receptor Ligand Reference

1 74 nM Cholesterol oxidase Beta-hydroxy-5-androsten-17-one http://tiny.cc/bp9lvz

1 93 nM Dihydrofolate reductase 7,8-dihydroxybiopterin http://tiny.cc/qp9lvz

1 100 nM Syk tyrosine kinase Gleevec

1 190 nM VEGFR2 Pazopanib http://tinyurl.com/3eypka9x

1 26 uM Pantothenate kinase 1 alpha Acetyl Co-A http://tinyurl.com/5axk66yw

1 55 nM DDR1 kinase Ponatinib

1 1.6 uM Dopamine transporter Dopamine

1 19 nM DEAH-box RNA helicase DHX15 ADP

1 263 nM HBO1 histone acetyltransferase BRPF2

Table 5: Top-ranking targets for butoconazole. List of the top 20 receptors targeted by the promiscuous antifungal butoconazole, which ranked at 
position 1 and 2 for 9 and 11 receptors, respectively.

Figure 4: Promiscuity profiles. Note: ( ): Butoconazole, ( ): Nelarabine, ( ): Lumacaftor, ( ): Rifaximin.
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the therapeutic efficacy of a drug, and which targets are responsible 
for unwanted side effects. Consider the targets for one of the most 
promiscuous drugs, butoconazole, an antifungal compound (Table 
5). Four of the five top receptor proteins are antifungal targets. 
These will likely contribute to the therapeutic efficacy. Their 
functions are distinct: An oxidase, a reductase, two kinases, and a 
hormone receptor. Identifying such diverse therapeutic targets may 
help identify the mechanism of action for a drug. The fact that the 
top twenty receptors for butoconazole contained seven antifungal 
targets also validates the docking procedure.

The number of proteins expressed in the human body is 
approximately 40 times higher than the number of receptors 
evaluated here. So it is likely that for each therapeutic drug there 
will be many targets with an affinity high enough to make them 
relevant for the drug’s mechanism of action. Given the results from 
this small-scale experiment, it seems likely that most FDA-approved 
drugs will prove to be promiscious and rely on altering the function 
of a wide range of proteins to achieve their therapeutic efficacy.

Another challenge that lies ahead is increasing the number of proteins 
to more closely resemble the repertoire expressed in the human body. 
Not all proteins have been crystallized. However, single-particle cryo-
EM methods have reached atomic resolution [4]. This approach has 
rapidly increased the number of available protein structures, including 
many membrane proteins inaccessible to X-ray crystallization. Another 
recent development is AlphaFold, an AI system developed by Deep 
Mind that predicts a protein's 3D structure from its amino acid 
sequence (https://alphafold.ebi.ac.uk/). These structures may turn 
out to be useful for drug discovery.

The majority of protein structures are not co-crystallized with a 
ligand, so a suitable binding pocket needs to be identified. Some 
docking software packages can identify binding pockets in protein 
structures (ICM-Pro, MolSoft LLC, San Diego), but the accuracy of 
this approach remains to be seen. It also increases the computational 
workload. The challenges identified above indicate that scaling up 
the approach used here to characterize drug promiscuity will require 
a significant investment in time and resources. However, the results 
obtained in this small-scale study suggest it will be worthwhile. The 
intersection of pharmacology, computational biology, and systems 
biology in this area is a fertile ground for innovative strategies 
in drug discovery and development. Such strategies could lead 
to more effective and safer therapeutic options, vastly improving 
patient care and outcomes in various diseases.

DISCUSSION

In this paper, I analyzed the interaction between 1531 FDA-
approved drugs and 622 proteins co-crystalized with a drug or 
neurotransmitter, using in silico docking of the drugs into the 
binding site of the co-crystalized ligand. For the 952,282 possible 
combinations, 624,498 were successfully docked, indicating that 
327,784 drugs were incompatible with the targeted binding sites. 
Either because they were too large or because of a steric hindrance 
problem. For each dockable drug, the binding affinity of the 
optimal pose was estimated by the eHiTS software and used to rank 
the target proteins (receptors). Each drug now has a ranking for 
each compatible receptor. Note that this ranking is relative to all 
other drugs binding to the same protein. The relative rankings for 
a drug were sorted, and the top 1% of the receptors with rankings 
below 15 was identified. Table 3 lists twenty highly promiscuous 
drugs that ranked better than 1% for 58-105 receptors.

Table 5  shows a list of  the top 20  receptors targeted by the 
promiscuous antifungal butoconazole, which ranked at position 
1 and 2 for 9 and 11 receptors, respectively.The binding affinity for a 
a receptor was estimated by the eHiTS score,which was converted 
to a dissociation constant KD. Both the receptor name and co- 
crystalized ligand are  listed. Highlighted in  yellow  are seven anti 
fungal targets. Links to the relevant papers are provided.

This analysis also allowed the identification of highly specific drugs 
that bound to only one receptor with high affinity (Table 4). There 
were 278 drugs (18%) with this extreme specificity. Their chemical 
structures (Figure 3) provide some clues that can help explain the 
unusual specificity. A sizeable molecular weight may exclude them 
from all but the largest binding sites. Ring shapes and other steric 
confinements may limit binding to unique compatible pockets. 
Most drugs do not belong to either of these two extreme classes. 
However, 82% of the drugs are binding with high affinity to at least 
two receptors. But only 622 receptors were analyzed here. If we 
extrapolate this finding to the ~25,000 proteins expressed in the 
human body, most drugs will target at least 100 receptors. Therefore, 
drug promiscuity is a universal problem. Promiscuity profiles 
(Figure 3) may be helpful in designing a suitable classification 
system. This idea needs to be further developed.

The most significant challenge going forward will be to interpret the 
promiscuity data. Which of the identified receptor targets enhance 

2 148 nM 17-beta hydroxysteroid dehydrogenase 5-alpha-dihydrotestosterone http://tinyurl.com/2sraf7eu

2 96 nM Vitamin D receptor Gemini

2 19 nM Beta1 adrenergic receptor Dobutamine

2 240 nM
AGP; Alpha1-acid

glycoprotein
Amitriptyline

2 316 nM Tankyrase 2 Rucaparib

2 60 nM PPAR gamma Rosiglitazone http://tinyurl.com/bddazjp3

2 41 nM Epoxide hydrolase Fulvestrant http://tinyurl.com/yrjpj4vf

2 331 nM GKRP Sorbitol-6-phosphate

2 10 uM Lactoperoxidase Propylthiouracil

2 0.8 nM Abl1 tyrosine kinase Axitinib

2 10 uM Mu opioid receptor BU72
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CONCLUSION

This study underscores the dual nature of drug promiscuity, where 
drugs interact with multiple protein targets, posing challenges due 
to side effects but also offering therapeutic potential, especially 
for complex diseases. A computational analysis of FDA-approved 
drugs and protein targets highlighted the ubiquitous nature of 
drug promiscuity, with drugs often binding to multiple receptors. 
This is exemplified by butoconazole, an antifungal drug that 
binds to several proteins, aligning with its therapeutic action. 
The research points to the necessity of advanced computational 
methods and broader protein analysis to unravel the intricate 
drug-protein networks. It advocates integrating pharmacology with 
computational and systems biology to enhance drug discovery 
and development, aiming for effective and safe treatments. This 
approach will enhance our understanding of drug promiscuity and 
allow optimization of therapeutic strategies.
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