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Introduction 
Many studies have pointed out the importance of soil moisture in 

controlling the partitioning of rainfall into runoff and percolation as 
well as the separation of incident solar energy into sensible heat and 
latent heat across the land-atmosphere interface. It is also notable for 
its influence on the evolution of weather, the rate of evaporation from 
the surface, eco-geomorphologic processes of arid hillside ecosystems, 
and vegetation photosynthetic functions [1-5]. High-resolution soil 
moisture distribution is therefore of immense value for understanding 
the complex interactions between meteorological, biological, and 
hydrological regimes occurring in river basins and can be used as initial 
states to advance a variety of forecasting models. For example, it can 
be utilized for deciding the probability of a flash flood occurrence in 
the event of a storm. High accurate high resolution soil moisture data 
can even be used to improve weather forecasting accuracy through 
data assimilation systems. To enhance the comprehension of land-
atmosphere interactions, researchers have coupled land surface models 
(LSMs) and numerical weather prediction models [6] over the past few 
years. Yet a lack of accurate information about spatial and temporal 
variation of soil properties, vegetation characteristics, moisture states, 
and many atmospheric forcing fields at high resolutions often hinders 
executing objective diagnoses on the accuracy of these coupling efforts 
and even results in employing erroneous initial states for simulations. 
Though LSMs can generate high resolution soil moisture at various 
depths, the simulated soil moisture at relatively high spatial resolutions 

are often biased due to the uncertainties of their parameterization, 
numerical integration, and various physical processes represented 
[7,8]. To resolve these problems, many researches have turned to new 
strategies, such as the development of simplified soil-moisture models 
[9-11], the application of data assimilation techniques [12,13], and 
the involvement of remote sensing data [14]. The importance of these 
strategies is that they offset mathematical simplicity and an authentic 
representation of the nonlinearity of land, atmospheric, hydrologic, 
and ecologic dynamics at the watershed scale. 

There have been several downscaling techniques developed based 
on the spirit of these new strategies. For example, Sahoo et al. [15] 
employed a three dimensional Ensemble Kalman Filter to assimilate 
AMSR-E soil moisture to the NOAH LSM in order to estimate 1 km 
surface soil moisture. Their sensitivity tests demonstrated that data 
assimilation not only improves soil moisture estimation at both the 
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Abstract
Hydrologic response at all resolutions is controlled by physical processes. Accurately capturing the physical process 

at a high-resolution is essential for down scaling many satellite observations at coarse resolutions. In this paper, a 
four-dimensional process representative soil moisture downscaling model is developed to downscale the Advanced 
Microwave Scanning Radiometer-EOS (AMSR-E) 25 km resolution soil moisture product. The model is composed of 
the calculation of an antecedent precipitation accumulation (APA) index to capture soil moisture spatial and temporal 
variations at the 500 m resolution, and the application of a Geographic Information System (GIS) to simulate physical 
processes which can regulate soil moisture changes throughout the watersheds. APA index, as a representation of 
the provisional value of soil moisture, is calculated by adopting an exponential formulation to synthesize the effects of 
infiltration, soil evaporative efficiency, and vegetation resistance on soil water content following precipitation. Five days 
of AMSR-E soil moisture derivatives spanning the start of the monsoon and the duration of the storm are selected for 
downscaling. The results show that soil moisture spatial variation is primarily controlled by the distribution of precipitation 
and soil properties. Subsequently relative soil moisture, radiation, and vegetation become significant in controlling land-
surface fluxes and thus influence soil moisture variation as time progresses. The downscaled soil moisture data (500 
m resolution) are assessed using in-situ soil moisture measurements from the National Oceanic and Atmospheric 
Administration (NOAA) Hydrometeorology Testbed (HMT) and the U.S. Department of Agriculture (USDA) Southwest 
Watershed Research Center (SWRC) Walnut Gulch Experimental Watershed (WGEW) observing networks. The root 
mean square error (RMSE) between the disaggregated and in-situ soil moisture is 0.034 vol./vol. with percent bias 
(PBIAS) 0.85%. The overall R2 value is 0.788.
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system. The resolution of AMSR-E is as coarse as 25 km, but improved 
features at its lower frequency channels (6.9, 10.7, and 18.7 GHz) 
allow it to enable better inspection of the Earth’s surface and retrieve 
several geophysical parameters [29]. The terrain signal collected by the 
AMSR-E radiometer shows several strengths: the signal can penetrate 
cloud, noise caused by land surface roughness and vegetation cover 
can be kept to minimum, and the signal better capture soil moisture 
variations through the soil dielectric constant [30]. Distinguished 
from the previous research in the various aspects, our study makes the 
following contributions: 1) a matched vertical scale between the in-situ 
observations and downscaled soil moisture is achieved by extrapolating 
AMSR-E soil moisture to the 5 cm depth; 2) insertion of physically-
based parameters (versus data assimilation or statistical approaches) 
into the exponential formulation can imitate the exponential soil 
moisture dry down mechanism and trace various factors’ behaviors in 
the dry-down process; 3) the contrasting effect of vegetation increasing 
the retention time of soil water while decreasing soil moisture through 
evaporation is first explored in this downscaling method; 4) this is a 
four-dimensional (including time span to the previous 11 days) model 
using a Geographic Information System (GIS) platform. With this 
method, the physical processes occurring across watersheds, such 
as infiltration, evapotranspiration, runoff, flow accumulation, and 
saturation, are represented.

Study Site and Data Development
The study site

The study site covers the Babocomari River watershed, Walnut 
Gulch Experimental Watershed, and their adjacencies extending to the 
southern boundary of the United States. The site is a portion of the San 
Pedro River basin in southeastern Arizona (Figure 1). The San Pedro 
River is a very important riparian area for hundreds of species of plants, 
mammals, reptiles, and insects. Soil moisture and groundwater effects 
on vegetation dynamics are apparent in this semi-arid environment. 
Stromberg et al. [31] pointed out that species distribution in this area is 
strongly related to depth to water table. Around 60%-80% of the annual 
precipitation on the study site occurs during the North American 

surface and at deeper layers, but that it also can be used as a tool to 
provide balanced initial states for hydrologic modeling without relying 
on long initiation times. Based on developed topographical index and 
soil depth information, Pellenq et al. [16] downscaled the averaged 
value of near-surface and deep soil water content in a sub-watershed 
to a higher resolution. This method successfully represents the lateral 
flow mechanism in the downscaling process for the wet days. Merlin 
et al. [17,18], on the other hand, developed a sequential method based 
on the thermal sensors and the soil evaporative efficiency model to 
downscale the airborne Polarimetric L-band Multi-beam Radiometer 
(PLMR) and space-borne Soil Moisture and Ocean Salinity (SMOS) 
derived soil moisture to hundred-meter resolutions. Other strategies 
adopted include the involvement of radar or visible/infrared data 
[19,20] or the application of statistical techniques [22] in downscaling 
operations. Through the execution of new strategies, the roles of the 
related hydrologic, land, and surface atmospheric parameters in soil 
moisture formation at different resolutions have been better perceived. 
However, there are still several issues with these improvements: 1) a 
vertical scale mismatch between passive microwave remotely sensed 
surface soil moisture (i.e. less than 1 cm depth without the presence 
of L-band radar and passive microwave antenna technology [23]) and 
in-situ soil moisture measurement (5 cm depth); 2) a parameter deficit 
in depicting the contrasting effects of vegetation that increase soil 
moisture retention time [24-27] while decreasing soil water content 
through transpiration; 3) complexity in characterizing all related 
vertical and lateral land surface processes occurring in the watersheds 
at high resolution; 4) lack of proper expressions in the downscaling 
schemes to represent the observed phenomenon such as soil moisture 
rises very quickly (e.g. in hours) following random precipitation events 
and decreases exponentially (e.g. in days) in between precipitation 
events [28].

With the aim of addressing the aforementioned issues by balancing 
simplicity and utilizing the abilities of remote sensing observations, we 
developed a technique to downscale coarse-resolution AMSR-E surface 
soil moisture data. This technique emphasizes the replication of the soil 
water retention process through an exponential rainfall adjustment 

 
Figure 1: The study site is located in southeastern Arizona. The San Pedro River passes through the site with the Babocomari River watershed on the left and the 
Walnut Gulch River watershed on the right.
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monsoon as high intensity, convective thunderstorms of limited 
areal extent [32,33]. The moisture source for these thunderstorms is 
primarily the Gulf of California [34,35].

AMSR-E soil moisture data
AMSR-E soil moisture data provides global coverage with a nominal 

spatial resolution of 25 km and a temporal resolution of two days or 
less. Two sources of soil moisture data are used in the preliminary 
comparison to understand their quality: 1) NASA’s data generated 
using the Njoku et al. [36]. Algorithm (referred as NASA-NSIDC 
product hereinafter) and 2) data developed by the Vrije Universiteit 
Amsterdam in collaboration with NASA (VUA-NASA) based on the 
Owe et al. algorithm [37]. The NASA-NSIDC soil moisture data used 
is retrieved based on the X-band (10.65 GHz) brightness temperature. 
NASA-NSIDC soil moisture retrievals have been found to suffer 
extremely low temporal variability, especially during the growing 
season from May to October [21]. VUA-NASA provides two kinds of 
soil moisture products, which are retrieved from two different channels: 
the C-band (6.96 GHZ) and the X-band. As for the VUA-NASA data, 
given the widespread occurrence of radio frequency interference (RFI) 
in much of North America, Europe, and East Asia [38], we choose to 
use the data derived from the X-band for this study. 

The selected soil moisture stations and the corresponding 25 km 
pixels used for validating both sources of AMSR-E soil moisture are 
shown in Figure 2. The validation process was executed from July 1, 
2008 to August 20, 2008 by comparing the observation averages of the 
red spots (5 cm depth) with the AMSR-E retrievals. When the study 
site is not covered by the AMSR-E navigation swath for a specific day, 
which occurred a few times in this study period, AMSR-E of the prior 
and subsequent days are averaged to represent soil moisture of that 
individual day. The gap-filling data was integrated into the 51 day 
time series for the purpose of comparing the two different AMSR-E 
products. Based on the data we collected in 2009, the VUA-NASA 
product shows a better agreement to the in-situ observations than 
the NASA-NSIDC product during the wet period (Figure 3). This 
verification result confirms the results of previous studies performed 
by Draper et al. and Wagner et al. [30,39]. Contrastingly, for the dry 

period, soil moisture from the VUA-NASA product shows larger bias. 
However, after checking the rainfall distribution in the same period, 
we found that this bias was mainly caused by the variation of the soil 
water content observed at the different depths. From July 1 to July 19, 
2008, rain fell here and there but not intensively enough to wet the 5 cm 
depth layer. The easily wetted surface layer (< 1 cm) thus shows more 
moisture than the deeper layer. Based on the verification result, we use 
the VUA-NASA data alone for downscaling. An evaluation of AMSR-E 
derived soil moisture over Australia indicates that the bias between the 
remotely sensed and ground-based soil moisture ranges from −0.01 to 
0.19 vol./vol. [30].

Precipitation and temperature
The precipitation dataset was collected from the database of the 

precipitation gauge network established by the USDA Agricultural 
Research Service (ARS) SWRC and the NOAA HMT soil moisture 
observation networks. Data from 147 rain gauge stations were used 
in this study. The daily rain values from June 16, 2008 to August 20, 
2008 were used for interpolation. The Inverse Distance Weight (IDW) 
algorithm was employed to interpolate the point data to raster format at 
a 500 m resolution. Figure 4 illustrates the interpolation results for July 
21-24, 2008. The rain gauge stations in WGEW are installed with great 
density – the average distance between the stations is around 1.2 km, 
while stations in the other areas are installed sparsely. Therefore, except 
for in WGEW, the uncertainty of the 500 m resolution interpolation 
becomes fairly noticeable at around 6 mm of RMSE in wet periods 
and around 13 mm of RMSE for pre-monsoon periods. Basically, the 
impact of this rainfall uncertainty on soil moisture downscaling can be 
neglected because soil moisture stations are co-located with rain gauge 
stations and IDW interpolation produces minimal error at the stations. 

Similar to the precipitation raster data, the daily temperature 
raster data was derived using the IDW algorithm and data from 18 
stations. But given diurnal temperature variation and its relationship 
to the daily cycle of surface evapotranspiration, we averaged the 
observed temperature in the 12 hour period (6:30 AM to 6:30 PM Local 
Time) as the daily average at each station. The PRISM (Parameter-
elevation Regressions on Independent Slopes Model) monthly average 
maximum temperature product is also involved in the interpolation 
process. First, the ratio of the temperature station daily average against 
the PRISM temperature monthly climatology is calculated. Second, this 
ratio is interpolated using the IDW algorithm. Third, the interpolated 
daily ratio is multiplied to the PRISM monthly average maximum 
temperature to get the temperature daily average grid. In this study, 
the daily air temperature grid is used to calculate air temperature 
effects on the vegetation canopy resistance factor and subsequently on 
evapotranspiration. The logic is that the higher the air temperature effect 
(ranging from 0 to 1), the higher the possibility of evapotranspiration 
loss and therefore the lower the soil water content. 

In-situ soil moisture data
There are a total of 31 stations (Table 1) involved in validation. 

The soil moisture measured at a 5 cm depth represents the data used 
for validation. Geographic agreement between the 25 km grids of 
the Antecedent Precipitation Accumulation (APA) mean and the 
AMSR-E grids is critical for ensuring correct downscaling calculation. 
Therefore, the selection of the validation stations is based on the 
criteria that the stations need to be located in areas where AMSR-E 
grids and the domain of the Soil Survey Geographic (SSURGO) data 
base of the Cochise and Santa Cruz Counties overlap more than 90%. 
The NOAA-HMT Arizona soil moisture observational stations are 

 
Figure 2: Nineteen soil moisture stations (red circles) out of the 31 stations 
(tabulated in Table 1) are selected for validating an AMSR-E soil moisture 
grid. The underlain grids represent the AMSR-E soil moisture data at a 25-km 
resolution. Because the stations (red circles) within the grid are not evenly 
distributed, weights are assigned to the points to obtain the soil moisture 
average.
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Figure 3: The plot of the soil moisture products of NASA-NSIDC, VUA-NASA, and the in-situ soil moisture observation illustrates the quality of the different products. 
The NASA-NSIDC’s product shows poor quality in recoding the soil moisture fluctuation, whereas VUA-NASA’s product has better quality. Notice that the 2008 
Monsoon season started after July 10, 2008. That the in-situ soil moisture observations (5-cm depth) were consistently ~5% drier than the VUA-NASA soil moisture 
product (~1-cm depth) in the period from July 1 to July 19 indicates that soil moisture at the shallow layer (5-cm depth) is usually drier than surface soil moisture (~1 
cm depth) during the dry period.

 
Figure 4: Rain interpolation at a 500-m resolution on (a) July 21, 2008, (b) July 22, 2008, (c) July 23, 2008, and (d) July 24, 2008 using an Inverse Distance Weight 
algorithm. The unit used is mm. This plot shows that a storm event occurred on July 22 and 23, 2008.
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located mainly in the headwaters of the Babocomari River with one 
station (Whetstone) located near the junction of the Babocomari River 
and the San Pedro River. Meanwhile, since 1990, the USDA SWRC 
has established a network of automated weather stations (AWSs), soil 
profile trenches and near-surface soil hydrology sites, co-located with 
rain gauges on the Walnut Gulch Experimental Watershed (WGEW) 
to measure soil moisture and soil temperature [40]. The soils of the 
study site are dominated by alluvial fan material, volcanic debris, and 
extensive layers of limestone conglomerate known as caliche [41]. At 
locations where caliche is present, soil moisture appears wetter.

SSURGO data
The attributes extracted from SSURGO for this research include 

surface texture, available water capacity, and bulk density, depth to 
any soil restrictive layer, percent clay, percent sand, water content, 
surface texture, saturated hydraulic conductivity, and hydro group. 
These properties are used to estimate the coefficients and the inputs for 
the downscaling model, such as k (soil water retention efficacy), Field 
Capacity (FC), relative infiltration rate, and characteristic evaporation 
resistance (m s-1). The soil water retention efficacy (k), for instance, is 
determined based on the SSURGO attributes of “Percentage of Clay 
Average at a 5 cm Depth” (ψ), “Surface Texture” (φ), and “Depth to any 
Restrictive Layer” (δ). The coefficient estimation was first executed on 
SSURGO map unit polygons and then transformed to a raster format 

at a 50 m resolution. The 50 m resolution coefficient was then averaged 
to 500 m grids. SSURGO is generated based on the limited number of 
soil profiles and an understanding of the soil-landscape association by 
soil scientists. Still, there are several map units whose attributes need 
to be revised based on the knowledge obtained in the field campaign. 
Wherever a large discrepancy exists between in-situ measurements and 
the SSURGO data, the attributes of ψ, φ, and δ must be modified. For 
these locations, we used the bulk density data from the Soil Moisture 
Experiment 2004 (SMEX04) project [42] and in-situ sampling carried 
out by the NOAA-HMT staffs to infer more accurate attributes. For 
most of the map units, when there were no significant discrepancies 
between the in-situ observations and SSURGO found the three 
attributes of SSURGO were used directly to derive k. The k coefficient 
was calculated with ranges from 0.2 to 1.15 by assuming a negative 
correlation to ψ and a positive correlation to δ. The attribute of φ was 
employed in this k estimation process for executing minor adjustments. 
FC, on the other hand, is estimated based on the 1/3 bar Water Content 
(WC) attribute and by cross-referencing to the numbers published in 
the book [43] and to the observations at the soil moisture stations.

Moderate resolution imaging spectroradiometer (MODIS) 
data

The MODIS data used in this study is MODIS/Terra MOD-13 250 
m resolution 16 day Enhanced Vegetation Index (EVI). We choose 

Station Agency East 
(UTM 12N)

North
(UTM 12N) Land Cover Bulk Density @ 5 cm 

Depth (g/cm3)
RG3_WGEW USDA SWRC 581203.5260 3509763.9530 Shrub 1.34

RG14_WGEW USDA SWRC 585442.0000 3507187.0000 Shrub 1.3
RG18_WGEW USDA SWRC 586710.0000 3508098.0000 Shrub 1.53
RG20_WGEW USDA SWRC 587481.7170 3504934.0150 Shrub 1.42
RG34_WGEW USDA SWRC 590946.0000 3507458.0000 Shrub 1.46
RG37_WGEW USDA SWRC 593303.0000 3506068.0000 Shrub 1.31
RG40_WGEW USDA SWRC 593360.0000 3510286.0000 Shrub 1.58
RG46_WGEW USDA SWRC 595287.7480 3508647.0740 Grass 1.4
RG57_WGEW USDA SWRC 596089.0000 3510781.0000 Grass 1.43
RG76_WGEW USDA SWRC 582624.0000 3509679.0000 Shrub 1.36
RG82_WGEW USDA SWRC 600154.0000 3511680.0000 Grass 1.31

RG100_WGEW USDA SWRC 593266.0000 3504720.0000 Shrub 1.46
RG401 USDA SWRC 568321.0000 3486006.0000 developed 1.38
RG402 USDA SWRC 568412.0000 3485884.0000 Shrub 1.38
RG403 USDA SWRC 568806.0000 3485822.0000 Shrub 1.38
RG404 USDA SWRC 568636.0000 3485822.0000 Shrub 1.38
RG405 USDA SWRC 571258.0000 3506843.0000 Shrub 1.33
RG415 USDA SWRC 556530.0000 3489184.0000 evergreen forest 1.43
RG420 USDA SWRC 567959.0000 3485736.0000 Shrub 1.38
RG422 USDA SWRC 544831.0000 3494627.0000 Shrub 1.35
RG423 USDA SWRC 547920.0000 3496185.0000 Shrub 1.35
RG424 USDA SWRC 558346.0000 3485444.0000 evergreen forest 1.37
RG426 USDA SWRC 567342.0000 3487870.0000 Shrub 1.43

Freeman.Spring NOAA HMT 543053.8167 3492371.0658 Shrub 1.58
Whetstone NOAA HMT 568097.7261 3505744.3389 Shrub 1.32
Black.Oak NOAA HMT 543395.3493 3491397.9963 Shrub 1.65

Kendall.SoilHydro. USDA SWRC 599893.9150 3511857.3400 Shrub 1.35
LuckyHill.TDR.L1 USDA SWRC 589567.4520 3512295.9430 Shrub 1.48
LuckyHill.TDR.L2 USDA SWRC 589792.9490 3512420.2640 Shrub 1.48

LuckyHill.SoilHydro. USDA SWRC 589799.1730 3512411.8050 Shrub 1.48
SCAN USDA NRCS 589995.1053 3511264.0385 Shrub 1.48

Table 1: The validation stations, locations, land cover, and bulk density at a 5 cm depth.
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to use EVI instead of the more widely used NDVI because of EVI’s 
capability of eliminating background and atmospheric noises as well 
as its high quality of non-saturation. EVI uses the blue band to remove 
influences of residual atmosphere contamination caused by smoke and 
sub-pixel thin clouds on the red band. Thus, EVI is more responsive to 
canopy structural variations, including leaf area index (LAI), canopy 
architecture, canopy type, and plant physiognomy [44].  As for the 
surface energy and water flux concern, an accurate vegetation index 
will greatly reduce the uncertainty induced from ecological factors. The 
EVI data is then used to compute fractional vegetation cover and later 
used to model interactive effects with solar radiation on soil moisture 
variation. Our field observations confirm that the fractional vegetation 
cover data generated using EVI is more accurate than that generated 
by NDVI.

NED
The National Elevation Dataset (NED) was employed in this 

study to derive flow accumulation and solar radiation. A pixel (500 
m resolution) with a larger flow accumulation means that there is a 
greater surface runoff from the pixels upstream flowing to that specific 
pixel and thus the soil of that pixel should be wetter, and vice versa. 
The natural logarithm of the flow accumulation value for each pixel 
is computed to represent the lateral flow processes occurring in the 
watersheds. The flow accumulation is calculated using the D8 algorithm 
in ArcGIS based on 100 m resolution NED and later aggregated to 
500 m resolution. Based on investigation of satellite imagery and soil 
moisture stations records, high flow accumulation pixels (e.g. ln(Flow 
Accumulation) > ~51) always show much wetter surroundings. A 
threshold of the natural logarithm of flow accumulation (i.e. number 
of pixels) is therefore set at 52.55 to determine whether to add extra soil 
water content (%) to the pixels. On the other hand, the solar radiation 
(WH/m2) estimation is to find the areas with much less or extraordinary 
incoming solar insolation. Normally the areas with much less solar 
insolation receive fewer hours of sunshine and therefore hold higher 
soil water contents. Figure 5 shows that low solar radiation received 
in the area surrounding the RG76 station is caused by mountain range 
blockage. Low solar radiation results in higher soil moisture states 
at the RG76 station. The total amount of radiation calculated for a 
specific area is the sum of direct and diffuse radiation of all sun map 
and sky map sectors, respectively. The equations for calculating direct 

insolation from the sun map sector and for computing the diffuse 
radiation for each sky sector can be seen in the method developed by 
Rich et al. [45] and enhanced by Fu and Rich [46].

Methodology
The methodology for retrieving high-resolution soil moisture is 

composed of two tasks: 1) developing a multiple time-scale exponential 
model to be used for calculating APA index and 2) creating a GIS model 
for downscaling AMSR-E soil moisture based on the APA index. After 
generating the downscaled soil moisture, validation and sensitivity 
analysis is executed. Validation and sensitivity testing explore the 
impact of the pattern of the land and atmospheric characteristics on soil 
moisture distribution through visualization, comparison, coefficient 
alternation, and statistical calculation. Five dates (Jul. 4, 5, 15, 24, 
and 25, 2008) were selected for testing the downscaling method. The 
selected days comprise all possible weather prototypes for southern 
Arizona: pre-monsoon, beginning of monsoon (but not on the days of 
major events), mid-storm, and post-storm. 

APA index calculation
Based on a stochastic differential equation [10,47,48], described the 

rate of change in soil moisture at the daily time scale as the sum of 
inputs and losses associated with the active soil layer. At the daily time 
scale, Instantaneous rainfall events can create an instantaneous jump in 
soil moisture through infiltration. Instantaneous jump in soil moisture 
state for a specific rainfall event is actually governed by the saturation 
deficit and the rainfall depth [11]. By overlooking surface-controlled 
runoff and assuming evapotranspiration and percolation are the only 
sources of losses between storms, they modeled soil moisture on a daily 
time-scale and expressed it as

1 ( )s Ne γλ
ηγ

−= − ,                    (1)

where s is the vertically-averaged daily relative soil water content 
of soil rooting depth;

η is the normalized evapotranspiration loss under well water 
conditions, which can be expressed as ETmax/w0, where w0 represents the 
maximum soil water capacity available to plants and can be expressed 
as the product of rooting depth times the difference of relative soil 

 
Figure 5: The comparison of the topography settings (a) and the generated solar radiation between Jul. 22, 2008 to Jul. 28, 2008 (b) shows that less solar radiation, 
which is caused by mountain blocking, is received at the RG76 pixel (dark blue). The decreased radiation insolation makes the RG76 station appear much wetter than 
at the surrounding pixels.
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moisture between well watered conditions and the wilting point and 
ETmax represents potential evapotranspiration;

γ=w0/α, where α is mean of the exponential rainfall distribution;

λ denotes the rainfall frequency (day-1);

and N is the Normalization constant for gamma function.

Equation (1) explains a soil moisture turnover process by first 
adjusting the impact of rainfall frequency on soil moisture variation 
with a normalized exponent of the relative available soil water capacity 
(w0/α). Secondly, the adjusted rainfall field is then further attuned using 
potential evapotranspiration (ETmax). This conversion of the rainfall 
field to the soil moisture formulation is a stochastic operation requiring 
analyses of the rainfall field in multiple day ranges. It demonstrates the 
application of an exponential function and the partitioning of rainfall 
into infiltration and evapotranspiration at the daily time scale by 
parameterizing soil, vegetation, and climate.

Based on the philosophy of Equation (1), we develop an exponential 
model for calculating the APA index. The APA index represents the 
spatial distribution pattern of soil moisture at a 500 m resolution on 
a daily time-scale and becomes the basis for downscaling AMSR-E 
soil moisture. The APA index calculates the relative amount of the 
antecedent precipitation accumulation which can be retained in soil, 
by addressing effects of infiltration, evapotranspiration, temperature, 
vegetation cover, solar radiation, and soil moisture for 12 days. It can 
be expressed as

0 0 0

11

0
1

APA i ii
i

i

R TI T Rikf f ff kf f f
P e Pe θθ

−

=−

= + ∑
.
             (2)

The variables in Equation (2) are as follows: 1) P0 and Pi, 
respectively, represent rainfall on the target day of downscaling and 
rainfall on the preceding i day. 2) The i variable represents the number 
of the preceding days to the target day of downscaling, ranging from -1 
to -11 with “-1” denoting one day before and “-11” eleven days before. 
3) fI is the relative infiltration capability, derived from the SSURGO 
“Hydrologic Soil Group” attribute by assigning -0.08, -0.36, -0.64, and 
-0.92 for Group A, B, C, and D, respectively. 4) The k value ranges 
from 0.2 to 1.15 and is initially assumed to be negatively correlated to 
“Percentage of Clay Averaged at 5 cm Depth”. It slightly adjusted later 
along with the “Depth to Any Restrictive Layer” and “Surface Texture” 
attributes. 5) fR0 and fRi denote integrated effects of solar radiation and 
vegetation on soil water retention for the target day and the preceding 
days, respectively. Considering that places with permanent shadow 
or that receive fewer hours of sunshine will have a higher soil-water 
content, we first scale the calculated solar radiation and assign a value 
of 1.07 to the 500 m resolution pixels whose scaled solar radiation 
is greater than 2.5, a value of 0.48 to the pixels whose scaled solar 
radiation is less than -1.62, and a value of 0.92 to 1 to the rest of the 
pixels, assuming they negatively correlate to the scaled solar radiation. 
This derived solar effect index is then multiplied by the vegetation-
induced wet index, which ranges from 0.7 to 1. The vegetation-induced 
wet index generated from EVI by assuming vegetation effect index is 
negatively correlated to EVI. 6) fT0 and fTi, respectively, denotes the 
effect of air temperature on soil moisture formation for the particular 
day and for the preceding downscaling days . It is derived from a Jarvis-
type [49] stomatal resistance parameterization scheme. Based on the 
Jarvis-type scheme [51,52], the temperature effect factor is negatively 
associated to the total canopy resistance and positively influences 

evapotranspiration loss and thus has effects on soil moisture. The effect 
of the air temperature effect is formulated below:

21 ( )T t areff C T T= − − ,                     (3)

Where,  Ct=0.0016; 

Tref=24.85˚C;

Ta, for air temperature. 

Similar to the air temperature effect on evapotranspiration loss, 
fθ0 and fθi, respectively, represent the effect of soil moisture on 
evapotranspiration and thus on soil moisture variation for the targeted 
downscaling day and for its preceding days. The formulation used to 
model the soil evaporative efficiency is

0.35

0.5 0.5cos
c

fθ
πθ
θ

  
= −  
   

,                     (4)

where θ denotes absolute soil moisture state; and θc is the soil 
moisture at field capacity.

Downscaling algorithm development
The APA model described in the previous section addresses 

the possible retention of antecedent precipitation accumulation 
for soil of 5 cm depth. But, to attain strict correspondence (spatially 
and progressively) between AMSR-E soil moisture and APA output 
average (25 km), several adjustments are required. The adjustment 
mechanism incorporates steps such as allocating moisture runoff or 
leakage once super-saturation occurs, removing rainfall excess from 
super-saturation pixels, and extrapolating the near surface (<1 cm 
depth ) AMSR-E product to APA calculating depth (5 cm). In fact, 
soil moisture in its approach to saturation can be characterized by a 
gradual asymptotic increase with surface runoff. Figure 6 illustrates the 
downscaling algorithm. 

The downscaling process is composed of the following steps and 
encoded in a GIS platform: 

1) APA index (500 m) is compared to the scaled FC layer (500 m) 
to decide if removal of saturation excess on certain pixels is necessary 
or not. For pixels whose APA index is greater than the scaled FC, the 
APA index at those pixels was immediately replaced by the scaled FC. 
The FC layer is obtained based on the numbers tabulated in Table 2 and 
SSUGO soil data. 

2) The adjusted APA layer (500 m resolution) is aggregated 
(average) to a 25 km resolution and normalized. 

3) The relative hydraulic conductivity (Kr) is calculated from 
the averaged APA (25 km) using a Mualem-theory based equation 
developed by Brooks and Corey [53].

(2 2.5 )/( )rK s s λ λ+= ,                   (5)

Where s represents relative soil water content (effective saturation) 
and is defined by S=(θ – θr)/(θs – θr). θs is the field capacity and θr is the 
residual water content; λ=-0.9615.

4) AMSR-E soil moisture is re-sampled and aggregated to have its 
grid’s (25 km) configuration and domain be exactly the same as that 
of the normalized APA (25 km). The re-sampled AMSR-E is then 
normalized. 

5) Because the interaction between soil moisture near the surface 
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and in the deeper layers is not clear [54], the normalized AMSR-E soil 
moisture is compared with the normalized APA index to determine how 
AMSR-E surface soil moisture can be extrapolated to 5 cm depth. If the 
normalized APA index is greater than the normalized AMSR-E index, 
the resampled AMSR-E soil moisture needs to be adjusted by adding 
a certain amount of soil moisture, and vice versa. We use unsaturated 
hydraulic conductivity (Kr) derived from step 3) for calculating this 

adjustment amount. Since the gradient of the soil water content profile 
(analogous to γ in Eq. (1)) should be very different in wet and dry 
periods and at each different AMSR-E grid, we assigned two sets of 
adjustment amounts for the two periods. For the subtraction case in the 
dry period, an adjustment amount ranging from -0.0036 to -0.148 with 
a positive correlation to the gradient of Kr was assigned to each AMSR-E 
pixel. For the addition case in the dry period, the adjustment amount 

 
Figure 6: The AMSR-E soil moisture downscaling GIS model comprises normalization, saturation excess removal, adjustment (i.e. adjusting AMSR-E to a 5-cm depth 
soil moisture and adding soil moisture to the high flow accumulated pixels), and recursive downscaling.
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is small, ranging from 0.0007 and 0.01 with a negative correlation to 
Kr. For the subtraction case in the wet period, the adjustment should 
become smaller and the range from -0.0052 to -0.037, which is assigned 
to each pixel based on assumption of a positive correlation to Kr. For the 
addition case in the wet period, an adjustment amount ranging from 
0.0052 to 0.044 with a negative correlation to Kr was assigned to each 
AMSR-E pixel. These adjustment ranges were determined based on the 
detected soil moisture deviations between the AMSR-E soil moisture 
derivatives and the 5 cm depth observations as shown in Figure 3 as 
well as several preliminary adjustment experiments executed for the 
different AMSR-E grids covering the study sites. The subtraction and 
addition layer was then added to the respective subtraction or addition-
required grids of the resampled AMSR-E layer obtained from step 4). 

6) The adjusted APA index (500 m) from step 1) is divided by the 
average APA index (25 km) from step 2) and multiplied to the adjusted 
AMSR-E index from step 5) to obtain the preliminary downscaled soil 
moisture index (500 m). 

7) 3.2% of soil moisture is added to pixels whose natural logarithm 
of flow accumulation is greater than 52.55. The purpose of this 
process is to account for the influence of surface/subsurface flow on 
downstream pixels. 

8) The raster layer generated at step 7) is checked to see if there 
are still supersaturated pixels. A minor adjustment is executed on 
the pixels if their soil water content is found to be greater than the 
saturation level. This final adjustment thus produces the downscaled 
500 m resolution soil moisture product.

9) To account for the soil moisture effect on the soil evaporative 
efficiency, a loop run was created. The downscaled soil moisture from 
step 8) was entered into the APA model for calculating fθ (Eq. (4)). The 
new generated APA index was then inserted into step 1) again to repeat 
the whole downscaling steps. This iterative mode of downscaling allows 
the soil moisture effect on soil evapotranspiration to be addressed. 

Validation and sensitivity analysis
In this study, we use the coefficient of determination (R2), root 

mean square error (RMSE), and percent bias (PBIAS) to evaluate the 
downscale results. The definition and the strength of these three model 
evaluation techniques are explicitly addressed in the paper by Moriasi 
et al. [55]. Three factors may impede the reliability of verification. 
First, the representativeness of in-situ soil moisture measurement at 
one point for describing soil moisture on a 500 m grid is not great. 
Soil exhibits great spatial variability even within relatively small 
areas, such as a 500 m square field [43]. Numerically equivalent soil 
moisture observations collected from two different stations can have 

very different interpretations if soil moisture is interpreted based on 
differing soil properties at the two stations [56]. Second, accurate 
estimation of some soil attributes, such as field capacity, is very 
difficult when based on SSURGO data only. Third, in the process of 
transferring vector data (e.g. SSURGO map units) to raster (500 m 
resolution), soil properties of very narrow zones are likely to disappear 
or be displaced onto an adjacent pixels that they do not belong to. 
All of these can cause the retrieved soil moisture data to deviate from 
ground-truth data. However, the NOAA-HMT and USDA SWRC soil 
moisture observational networks still furnish very reliable soil moisture 
information. To comprehend the relationship between the observations 
and the distribution pattern of the downscaled soil moisture grids 
surrounding the observation points, we carefully checked the locations 
of the stations by displaying the observational points against the 
SSURGO polygons. By doing this, the deviation between observed 
and downscaled soil moisture can be understood. A few stations were 
discarded as validation stations because uncertainty caused by the 
aforementioned complication was found or because the observation 
station was not well-calibrated. For example, based on SSURGO, the 
RG421 station is situated within a very narrow zone characterized by a 
high percentage of clay, but the converted 500 m grid does not sustain 
this soil attribute after transformation. RG421 is therefore abandoned 
as a validation station. 

The sensitivity test is focused on the soil moisture effect, fθ, of Eq. 
(2). The exponent in Eq. (4) is tested alternatively with values of 2, 1, 
and 0.35 to find the optimal coefficient for calculating the soil moisture 
effect on evapotranspiration and for relating soil moisture effect onto 
the APA index formulation (Eq. (2)). The exponent value 1 and 2 for 
Eq. (4) constitutes the soil evaporative efficiency model developed by 
Noilhan and Planton [57] and by Lee and Pielke [58], respectively. 
Figure 7 plots the soil evaporative efficiency simulated using Eq. 
(4) with exponents of 2, 1, and 0.35. Both forms of the model with 
exponents of 1 and 2 inflect around the middle of the soil moisture 
range [59] whereas the model with the exponent of 0.35 has a convex 
form. Some experiments have asserted that soil evaporative efficiency 
has more of a concave form at low soil moisture values [58,60]. In 
this paper however, fθ represents the soil moisture effect at a 500 m 
resolution. It also conveys the impact of the diminishing infiltration 
rate as soil moisture increases. Therefore, the behavioral pattern of soil 
evaporative efficiency as a function of soil moisture is hypothesized to 
be somewhat different from previous research.

Results and Discussion
The multiple time-scale rainfall adjustment model illustrates 

positive downscaling performance, with an overall R2 value of 0.788, a 
RMSE value of 0.034 vol./vol., and a PBIAS value of 0.85% (Figure 8). 
The performance measures of individual days are listed in Table 3. The 
R2 statistics indicate that the multiple time-scale exponential model 
functions very well for days before July 25, 2008. Both July 24 and 25, 
2008 show an overestimation bias (PBIAS). In fact, RMSE gradually 
increases after the monsoon season started on July 10, 2008. These 
results are anticipated due to the fact that the soil was already fairly wet, 
thus, major storm events occurring after July 22, 2008 could quickly 
cause the soil to reach its field capacity. Thus, uncertainty in estimating 
the soil field capacity propagates into the downscaling model. On 
July 25, 2008, for instance, heavy rainfall passing through the central 
portion of WGEW (Figure 9) saturates soil in many places and thus 
erroneously estimation of field capacity degrades downscaling results 
for that day. On the other hand, for the dry period, due to considerable 
uncertainties occurring in the process of extrapolating AMSR-E 

Texture Field Capacity (V%)
Sand 10

Loamy sand 12
Sandy loam 18

Sandy clay loam 27
Loam 28

Sandy clay 36
Silt loam 32

Silt 30
Clay loam 36

Silty clay loam 40
Silty clay 45

Clay 51

Table 2: The field capacity of various soil types.
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Figure 7: Simulations of soil evaporative efficiency using the expression, ( )(0.5 0.5cos / ) p
cβ πθ θ= − , for a range of soil moisture values. In this paper, p is 

set at 2, 1, and 0.35 respectively.

 

Figure 8: The relationship between soil moisture observation and downscaled soil moisture at a 500-m resolution for the selected 5 days of study is significant. One 
of the most noticeable outliers occurs at station RG46 for the July 25, 2008 downscaling – the downscaled value is evidently under estimated. Based on the surface 
texture attribute of RG46 listed in Keefer et al. [40], the soil texture in the SSURGO database seems to be inaccurately recorded. This could cause the erroneous 
estimation of the k-exponent and the subsequently underestimation of soil moisture at a 500-m resolution in the downscaling operation.
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to a 5 cm depth, downscaling results often show a tendency toward 
underestimation bias for this period (e.g. downscaling on 7/4/2008). 

The downscaled soil moisture layers at 500 m resolution for July 5 
and July 24 are shown in Figure 10. July 5 and July 24 are prototypical 
examples of the dry and wet (after the major event) periods, respectively. 
When compared to the “Ksat” or “k exponent” distribution displayed 
in Figure 11, the downscaled soil moisture pattern in Fig. 10 exhibits 
correspondence to the distribution pattern of these two soil property 
indices. This correspondence indicates the governance of soil-physical 
properties, in addition to the power of precipitation distribution, 
in controlling soil moisture distribution patterns. In this research, 
the involvement of the soil property related exponent (i.e. k) in the 
APA index calculation has been proven effective in the downscaling 
operation. Also, in Figure 10, there are some perceptible “break-lines” 
in the downscaled soil moisture grids following the 25 km grid edges 
of the original AMSR-E images. The soil moisture value distinctions 
at each of the 25 km grids make these “break-lines” inevitable because 
the calculation of the 500 m resolution APA variability is executed 

within each of the 25 km grids. Figure 9 displays a homogeneously wet 
area in the northern central part of WGEW on July 25, 2008, further 
confirming the influential effect of soil properties on soil moisture 
distribution. Based on the SSURGO data set, the northern central 
area of WGEW has a medium rate of infiltration, but the soil became 
saturated quickly during the event because the precipitation rate 
exceeded the infiltration rate, causing the appearance of a consistently 
wet area. Atchley and Maxwell [27] pointed out that the land surface 
becomes more uniformly wet as long as the rate of precipitation is 
greater than the rate of infiltration.

The sensitivity test of the soil evaporative efficiency behaving 
pattern as a function of soil moisture, concave or convex, results in 
the finding that the application of 0.35 as the exponent of Eq. (4) 
generates the best downscaling accuracy (Table 4). In other words, the 
relationship between soil moisture and soil evaporative efficiency has 
more of a convex shape (Figure 7). The convex relationship indicates 
that soil water loss rate increases quickly as soil begins to saturate in 
the early wetting stages but gradually slows its rate of increase in the 
later wetting stages. In the formulation of Eq. (2), the variables fI and 
fθ act like interactive exponents and should be considered together. 
When soil moisture approaches its field capacity, evaporation 
efficiency approaches a maximum and infiltration rate simultaneously 
decreases to its minimum rate. Conversely, when soil moisture is at 
a low level, infiltration rate is high and the soil becomes wet quickly. 
Thus, soil evaporation loss increases quickly. This combined effect of 
infiltration and soil moisture on soil water loss pattern explains why the 
relationship between soil evaporative efficiency and soil moisture has a 

Date of 
Downscaling

R square (Based on 31 
points statistics) RMSE PBIAS (%)

7/4/2008 0.6267 0.026 7.38
7/5/2008 0.6169 0.026 1.56

7/15/2008 0.6711 0.045 1.34
7/24/2008 0.6287 0.033 -0.72
7/25/2008 0.5299 0.036 -1.57

Table 3: Comparison of the validation statistics for the downscaling results on the 
individual date of simulation.

Figure 9: The northern central part of the Walnut Gulch Experimental Watershed – plot (a) is “evenly wet,” compared with the other portions of the model domain. Plot 
(b) shows heavy rain on July 25, 2008, passing through the central portion of the WGEW. The homogeneously wet area at the northern-central part of the WGEW 
imples that the infiltration rate for this area has become relatively small, as the infiltrated precipitation has accumulated since the monsoon season started.
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Figure 10: Plots (a) and (b) show examples of the downscaled soil moisture for July 5, 2008 and July 24, 2008, respectively, at a 500-m resolution. Notice that the 
value range of the legend is very distinctive for the two different days. Without further smoothing the grids, the 25-km grid blocks for the original AMSR-E images are 
still perceptible. The July 5, 2008 date occurs before the monsoon and the July 24, 2008 date occurs after the monsoon. Regardless of precipitation inducing soil 
moisture fluctuation, the soil moisture distribution pattern on the both days is quite similar to each other. This phenomenon underscores the dominance of the soil-
physical properties on soil moisture evolution.

 

Figure 11: The saturated hydraulic conductivity (Ksat) distribution pattern (Panel a) is similar to the spatial distribution pattern of the downscaled soil moisture (e.g. 
Figure 10). Ksat is used to calculate Kr in Step 3 in the AMSR-E soil moisture downscaling GIS model (Figure 6). Furthermore, Panel (b) illustrates that the same 
distribution similarity can be found from the attribute “Percentage of Clay Averaged at a 5-cm Depth”, which is used to generate the k exponent in Eq. (2).
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convex shape in this study. The convex shape relationship implies that 
Nature’s “configuration” always promotes a certain kind of water cycle 
path to ease water transferring across phases and interfaces. 

Conclusions
This study presents the application of a GIS-based multiple time-

scale exponential rainfall adjustment model to downscale the AMSR-E 
10.65 GHz brightness temperature soil moisture retrievals from 25 
km to 500 m. The created model represents an applicable method 
for retrieving 500 m resolution soil moisture at watershed scales. The 
methodology of retrieving high-resolution soil moisture is composed 
of two processes: 1) calculation of the APA index at each of the 500 
m pixels using an exponential model framework and 2) downscaling 
of AMSR-E soil moisture based on the calculated APA index. The 
breakthrough of our work is the imitation of major processes occurring 
in the watershed scale using a GIS model. The developed GIS model 
can execute functions such as automatically deciding if soil moisture at 
a 5 cm depth of the 25 km resolution is drier or wetter than AMSR-E 
surface soil moisture, and extrapolating it to the 5 cm depth accordingly, 
removing saturation excesses, and adding flow accumulation-incurred 
spare water to downstream channel pixels if a storm occurs. The APA 
index is calculated for 12 days consecutively, allowing the effects of 

precipitation frequency and intensity (i.e. Eq. (1)) to be analyzed in the 
downscaling algorithm. 

This paper unveils a physical process-based downscaling system 
highlighting several capabilities that are difficult for remote sensing-
based systems. For example:

1) Soil moisture at the RG424 station consistently remains at a 
relatively high level. Theoretically, the setting of this station, such as 
a low “percentage of clay” (high conductivity), medium field capacity, 
and high evapotranspiration loss due to the soil moisture effect (Figure 
7) as well as the temperature effect (i.e. temperature fairly close to 
~25ºC in the summer periods), promotes drier soil. However, in 
mountainous areas, there are many exceptions contrary to the assumed 
dry soil situation. At the RG424 station exclusively, the opposite occurs 
because there are longer hours of shade casting caused by mountain 
morphology. The water stagnation effect occurring in the thick litter 
layer in vegetated areas also enhances higher soil water content (Figure 
12). Moreover, a weakened wind effect caused by increased surface 
roughness in forest areas induces mild to high soil moisture states. 
The high soil moisture profile at RG424 is effectively simulated by our 
study.

2) Of all the parameters used in the downscaling process, the 
soil properties (from which we select “Percentage of Clay”, “Surface 
Texture”, and “Depth to Any Restrictive Layer” to calculate the k-value 
for use in the APA index calculation) are the most dominant factors 
influencing surface soil moisture distribution pattern given the same 
precipitation intensity. For example, low “Percentage of Clay” areas 
quickly dry since water infiltrates to deeper layers, and vice versa. But 
areas with caliche or other restrictive materials laid at shallow layers 
will retain water longer and appear wetter, even if their “Percentage 
of Clay” attributes are low. Generally, with the exception of those 

Exponent (p) of the Soil 
Evaporative Equation (Eq. 8) R² RMSE (vol./

vol.) PBIAS (%)

0.35 0.7877 0.034 0.85
1 0.7384 0.038 -1.46
2 0.7108 0.040 -2.27

Table 4: The change of the soil moisture downscaling accuracy with the alteration 

of the exponent (p) for the Eq. (4), 0.5 0.5cos
c

p
fθ

πθ
θ

  
= −  
   

.

Figure 12: The consistently high soil moisture level at the RG424 station is effectively simulated by the GIS-based multiple-time scale exponential model. The RG424 
is located in a trench in the mountains, receiving far less solar radiation due to shadows casted by mountain morphology (plot (a)). The station is also located in an 
area covered by an evergreen forest (plot (b)), so the infiltration rate for this area is high. When there is a storm, water flows from upstream areas and much of the 
water infiltrates the soil. Water loss due to evapotranspiration then becomes high. However, because of decreased radiation in this area, evapotranspiration loss is 
still confined and soil water content remains at a relatively high level. Plot (c) is the vegetation fraction calculated based on EVI data and has been integrated into the 
fR calculation.

 



Citation: Hsu C, Johnson LE, Zamora RJ, Schneider T, Cifelli R (2015) Downscaling Advanced Microwave Scanning Radiometer (AMSR-E) Soil 
Moisture Retrievals Using a Multiple Time-Scale Exponential Rainfall Adjustment Technique. J Geophys Remote Sensing 4: 139. doi: 
10.4172/2169-0049.1000139

Page 14 of 15

Volume 4 • Issue 1 • 1000139
J Geophys  Remote Sensing
ISSN: 2169-0049 JGRS, an open access journal 

areas with extraordinary soil profiles (e.g. caliche) or solar radiation 
insolation (e.g. permanent shadow), the link between soil properties 
and soil moisture pattern is strong. 

3) The integrated effect of vegetation and solar radiation, fR, is 
another important factor in controlling soil moisture distribution and 
evolution in time. Basically, areas with higher EVI or longer hours of 
shadow caused by terrain constitution feature wetter soil moisture. It 
also implies these areas have higher infiltration rates. The vegetation 
effect can either reduce or increase soil water content. During the 
drying period, vegetation can often help to retain more water in the 
soil instead of releasing water flux into the atmosphere through 
transpiration because of shade on the ground and stomatal resistance 
effects. On the other hand, during the wet period, high soil moisture 
content will promote evapotranspiration, thus drying down soil water 
content. 

4) The downscaling model is designed as an iterative system, which 
allows soil moisture effects (fθ) to be realistically simulated.

5) The technique exploited to extrapolate the AMSR-E surface 
soil moisture to a 5 cm depth based on relative hydraulic conductivity 
and normalization of AMSR-E and APA index has proved to be 
appropriate. The effectiveness of this extrapolation method implies that 
soil moisture profile is related to relative hydraulic conductivity (Kr) 
and to the wet/dry situation of soil.

Future Efforts
More work is needed in four areas to continue advancing this 

model. First, the downscaling model needs to be extended to a longer 
period to understand the seasonal and annual dynamics of the model 
parameters and to quantify model uncertainty. Second, to integrate 
more scientific detecting abilities into the exponential adjustment 
model, especially for downscaling work for large domains, MODIS 
MOD 16 products should be considered to replace a portion of the 
current exponents (i.e. fR, fT, fθ). The MOD 16 evapotranspiration 
products are generated based on the Penman-Monteith equation and 
thoroughly encompass the related parameters that may influence soil 
moisture fluctuation. Third, the system of simulating precipitation 
occurrence, ponding, excess saturation removal, and soil moisture 
addition at pixels downstream should be further explored using a 
kinetic wave model. Finally, future efforts should consider the effect of 
dynamic vegetation cover on soil moisture variation. In this paper, we 
investigate the vegetation effect with an emphasis on spatial variation 
of plants. In the future, soil moisture variation, as evapotranspiration 
rates and soil infiltration change throughout the seasons and during 
different storm intensities [61], should be explored. Scientific questions 
regarding vegetation effects are:

1) What proportion of the effects is for infiltration enhanced by 
vegetation canopy [62] against the incurred evapotranspiration loss? 

2) How do climatic and seasonal regimes affect evapotranspiration 
[63]? 

In this study, we develop an exponential downscaling framework 
emphasizing parameterizations of the governing processes in 
influencing soil moisture distribution at high resolutions. Future 
efforts in inter-season simulations and the involvement of more 
modern geospatial technology and remotely sensed data will expand 
the model’s application to a variety of eco-regions.
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