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Neurotoxicity of zinc ions is currently the issue of numerous 
research programmes and publications. 

Intracellular zinc content is genetically conditioned. It shows 
a relatively low intrasubject variability compared to intersubject 
variability and it varies depending on the organ [1-5]. There are two 
pools of intracellular zinc: slow pool, which is related among other 
things to protein synthesis or cell membranes (structural zinc), and fast 
pool (catalytic centre, signal transmitter, so called ‘free zinc’) [6,7]. 

Concentration of free zinc (Zn+2) inside the cell is lower than 
outside the cell, e.g. in serum [4,5], which produces electrochemical 
gradient conditioned by the presence of transmembrane transport 
forms that require energy expenditure. Thus, each change leading to 
a decrease in ATP production will cause an increase in intracellular  
zinc level.

In physiological conditions, an increased zinc influx to the cell 
results in an increase in zinc membrane transporter synthesis, both 
in the cell membrane (ZnT-1) causing zinc efflux from the cell and 
in lysosomal membranes (ZnT-4, ZnT-6) increasing intracellular 
sequestration, thus keeping the intracellular cytoplasmic free zinc 
content on the optimal level.

Neurons are cells that are especially sensitive to hypoxia. Zinc 
plays an important role in the activity of all cells, including neurons. 
Both the neurotoxic and neuroprotective effects of zinc have been well 
established, but the exact mechanism of its dual abilities still remains 
unclear. The same effect may also be found in other cells, but it should 
be remembered that lower sensitivity to hypoxia prolongs in time the 
cytotoxic effect of excessive amount of Zn+2.

It seems that the apparent dualism depends primarily on the 
energetic condition of the cell, and also on the efficacy of ion pumps, 
genetically conditioned mechanisms regulating Zn cell efflux and Zn 
sequestration inside the cell and on the concentration of extracellular 
free Zn. 

If mechanisms regulating energy production, which are subject of 
negative feedback, and mechanisms regulating cytosolic zinc level work 
properly, zinc fulfils its important metabolic tasks and cytoprotective 
functions. In the event of cell energetic dysfunction, zinc influx and 

accumulation in cytosol intensifies this dysfunction by means of 
positive feedback, thus leading to cell death. Zinc has been proposed to 
disrupt calcium homeostasis, inhibit mitochondrial electron transport, 
disrupt tubulin assembly, and overactivate calcium-mediated enzymes. 
Furthermore, zinc reacts with the thiol and imidazole moieties of many 
proteins, and, thus, can disrupt their structure and function [8].

The above considerations may be confirmed by the fact that 
physiological ZnT-1 distribution within the central nervous system 
lines up with areas of high intraneuronal zinc content [9]. It has also 
been found out that transient experimental brain ischemia increases 
ZnT-1 gene expression [10], which in view of the above considerations 
may correspond with the pre-conditioning phenomenon.

It seems that all phenomena leading to disorders in the neural 
energetic condition (oxygen deficit, glucose deficit) due to changes 
in inflowing blood composition, decreased blood inflow, blood stasis, 
prolonged route of diffusion and damage to cell membrane–shall 
lead to changes in neural function, including neural death, at a rate 
depending on the intensity and progression of processes that result in 
impairment of intracellular production of energy.

No matter what pathological process or clinical condition within 
the central nervous system is being considered – microembolism 
(e.g. with cholesterol crystals), macroembolism, small vessels disease, 
leukoaraiosis, vascular changes in diabetes or arterial hypertension 
(microvascular changes), Alzheimer’s disease – the target mechanism 
on the cell level is the same, both for small and large areas–zinc excess 
causes loosening of the mitochondrial respiratory chain [11].

Regulation of changes in zinc metabolism–lowering the level of 
dyshomeostasis will be possible to achieve, depending on the primary 
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cause, by administration of medicines directly or indirectly influencing 
zinc metabolism. Taking into account the toxic effect of excessive 
intracellular Zn2+, an essential condition will be to improve cell 
membrane function and effectiveness of zinc efflux into the extracellular 
space. Since excessive intracellular Zn2+ loosens the mechanisms of 
oxygen metabolism, it at the same time diminishes zinc efflux from 
the cell. The mechanism initiates a vicious circle. Experimental use of 
agents affecting intracellular oxygen metabolism, such as pyruvates, 
decreases zinc accumulation and improves cell survival [12].

A similar mechanism may relate to the neuroprotective effect 
of agents lowering the activity of carbonic anhydrase [13], a zinc-
dependent enzyme. Cytosol acidification, unmanageable by negative 
feedback, is a factor impairing intracellular production of energy, 
which also increases intracellular zinc accumulation. Moreover, Zn2+ 
ions affect regulation of H+ ion influx into the cell [14,15]. It may be 
assumed that a higher level of Zn2+ ions in the extracellular environment 
reduces the influx of H+ ions into the cell, i.e. it prevents excessive 
acidification, whereas a lower level of Zn2+ ions in the extracellular 
environment increases the influx of H+ ions into the cell, i.e. it increases 
cytosol acidification [16].

Reception of antiplatelet drugs may also be treated as an important 
issue in the context of zinc neuroprotective effect – in the process of 
aggregation, platelets release large amounts of zinc increasing its local 
concentration 30–40-fold, which is an independent cytotoxic effect 
accompanying changes caused by hypoxia [17].

A similar situation occurs with drugs affecting RAAS or blocking 
calcium channel, since the RAAS is involved in zinc metabolism [18] 
and calcium channels are functionally related to ZnT-1 [19].

Neuroprotective effect in relation to zinc toxicity may also be 
revealed by estrogens [20]. Such effect has also been revealed for 
carnosine, a substance occurring in the CNS and meeting the criteria 
for a neurotransmitter [8].

It seems that the discovery of substances blocking zinc channels 
directly influencing membrane proteins transporting zinc will be 
essential for the aspect of zinc neuroprotection, due to the influence 
on zinc flow through cell membranes and zinc content in cytosol. 
Substances inhibiting zinc influx to the cell (blocking influx complying 
with the electrochemical gradient– “zinc entry/channels blockers”) 
seem to be more promising than substances enhancing its efflux (against 
the electrochemical gradient), since this form of neuroprotection 
requires a relatively efficient energetic condition of the cell. In theory, 
an expedient and short-term neuroprotective effect could be achieved 
by zinc-chelating substances (reduction of extracellular free zinc level 
leading to a decrease in its influx to energetically insufficient cells). 
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