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Abstract

In silico sequence diversities of four orthologous plant gsh1 genes and their anino acid translates of GSH1
proteins (Glutathione Synthase) were compared to the non-orthologous prokaryotic gshI/GSHI gene/protein of E. coli
(NCBI # X03954). Primer pair was designed and transgene detection was carried out in two types of gshI-transgenic
poplar clones (Populus x canescens) of ggs11 (cyt-ECS) and lgl6 (chl-ECS). Usefulness of genetic modification
technologies (GMO) is indicated.
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Introduction
Transgenes represent genetic markers artificially introduced in

laboratory motivated to improve crops. Detection of marker in the
Genetically Modified Organism (GMO), and its vegetative or sexual
progenies; and monitoring it in test and cultivated populations as well
as in exposed non-target cross-pollinated populations is of
fundamental and practical importance. The genetically modified state
of an organism, i.e. the presence of the transgene, is verified essentially
by DNA profiling. Selecting the DNA sequence for DNA profile is
straightforward because a known sequence is introduced. Introduction
of genes, self or foreign, into plants had prerequisites. The ability to
select and identify desired genotypes in cells, tissues or intact plants
laid the fundamentals for application of genetic transformation of
plants and animals by tools of biotechnology.

The Biological Research Centre (Szeged, Hungary) can be
considered as the Genius Loci [1] of the current plant biotechnology
since methodologies of plant cell line selections for chloroplast
mutants [2,3], cell fusion [4], genetic transformation [5,6] bacterial
nitrogen fixation [7] and artificial chromosomes [8] were either
fundamentally developed or highly improved there.

The first stable higher plant mutant, the antibiotic (i.e. streptomycin,
SR) resistant (i.e. mutant) tobacco (SR1) was selected [2] in vitro,
followed by the selection [9] and identification of SR1A15 [10] the first
double mutant of higher plants, the albino (chloroplast) tobacco [9,11].

Later, as the early forms of gene transfer, protoplast cell fusion
plants (i.e. cybrids) were developed in several laboratories [12-16].

Alternatives to the conventional haploid genome transfer (i.e,
pollination), the technologies of single and pyramided gene transfer
resulting in stable transgenic crops (i.e. GM - genetically modified, or
GMO - genetically modified organism), were developed in four labs at
the same time in 1983: GM Nicotiana plumbaginifolia (resistant to the
antibiotic kanamycin) [17], other tobacco lines resistant to kanamycin
and methotrexate (a drug used to treat cancer and rheumatoid

arthritis) [18], GM petunia resistant to kanamycin [19] and GM
sunflower transformed by phaseolin gene isolated from bean [20].

The first field trial of GM cotton was carried out in 1990, followed
by the first FDA-approved (Unites States Food and Drug
Administration) transgenic food of Flavr-Savr tomato in 1994 [21]. A
series of further GM crops were released in 1995, such as the canola oil
seed rape (Brassica napus) with modified oil composition (Calgene), Bt
(Bacillus thuringiensis) corn (Ciba-Geigy) resistant to the herbicide
bromoxynil (Calgene), Bt cotton (Monsanto), GM soybeans resistant
to herbicide glyphosate (Monsanto); virus-resistant squash (Asgrow),
and a delayed ripening tomatoes (DNAP, Zeneca/Peto and Monsanto)
[22,23]. Later, a series of woody plants were also bred by genetic
transformation [24-29].

Here we present a case study of barcoding (i.e. detecting and
monitoring GM plants) the CaMV-35S-gshI poplar (Populus x
canescens) with techniques useful for both developing GM plants and
for anti-GM purposes.

Materials and Methods

DNA extraction
Total DNA samples of 0.1 g leaf tissue in each case were extracted in

CTAB, cethyltrimethylammonium bromide, buffer followed by RNase-
A (from bovine pancreas, Sigma, R-4875, treatment) for 30 min at 37C.
DNA samples of ten individuals of each line were pooled in one bulk
and subjected to PCR analysis.

Multiple sequence alignments for primer design
Nucleotide sequences of genes gsh1 were downloaded from the

National Center for Biotechnology Information (NCBI) databases [30].
Multiple sequence alignments were applied in silico with the software
programs BioEdit Sequence Alignment Editor (North Carolina State
University, USA) [31], Multalin [32], Clustal W [33], FastPCR [34] and
computer program MEGA4 [35].
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Barcoding of the transgene
The gshI-transgene (E. coli, NCBI #X03954) in the transformed

poplar clones was amplified by the gshI specific primer 5’-
atcccggacgtatcacagg- (position bp. 341-359 in gshI) and its reverse 3’-
gatgcaccaaacagataagg-5’ (position bp 939-920 in gshI) according to
Koprivova et al. [36,37].

Hot Start PCR
Was combined with Touchdown PCR by using AmpliTaq GoldTM

Polymerase. Reactions were carried out in a total volume of 10 µl, and
25 µl (transgene detection) respectively, containing 50 ng of genomic
DNA. For transgene analysis 1xPCR buffer (2.5 mM MgCl2), dNTPs
(200 µM each), 20 pmol of each primer and 0.5 U of Taq polymerase
were used.

Touchdown PCR
Was performed by decreasing the annealing temperature from 66˚C

to 56˚C by 0.7˚C /30s increments per cycle in each of the initial 12
cycles (PE 9700, Applied Biosystems), followed by a ‘touchdown’
annealing temperature for the remaining 25 cycles at 56˚C for 30s with
a final cycle of 60˚C for 45 min or 72˚C for 10 min (transgene
detection) and hold at 4˚C. A minimum of three independent DNA
preparations of each sample were used. Amplifications were assayed by
agarose (1.8?, SeaKem LE, FMC) gel electrophoresis (Owl system),
stained with ethidium bromide (0.5 ng/µl) after running at 80V in 1 X
TAE buffer [37]. Each successful reaction with scorable bands was
repeated at least twice. Transilluminated gels were analyzed by the
ChemilImager v 5.5 computer program (Alpha Innotech). A negative
control which contained all the necessary PCR components except
template DNA was included in the PCR runs.

Results and Discussion
DNA profiling of CaMV-35S-gshI transgene in GM poplar (P. x

canescens).

The phytoextraction and remediative capacity of poplars was
improved significantly by genetic transformation of Populus x
canescens (P. tremula x P. alba) to overexpress the bacterial gene
coding for γ-glutamylcysteine synthetase (γ-ECS, EC 3.2.3.3), which is
the rate-limiting regulatory enzyme in the biosynthesis of the
ubiquitous tripeptide thiol compound glutathione (GSH, γ-L-
glutamyl-L-cysteinyl-glycine) [24,25]. Here we show how gshI
transgene is detected by using gshI-specific PCR primers [36,37]. The
sequence differences between the eukaryotic plant gsh1 gene and the
prokaryotic gshI transgene of E. coli (Figure 1) made it feasible to
design transgene specific PCR primers.

Figure 1:Sequence diversities of four orthologous plant gsh1 genes
(samples of 30 nt) and their anino acid translates (10 aa) of GSH1
proteins (Glutathione Synthase), and compared to the non-
orthologous prokaryotic gshI/GSHI of E. coli. Synonymous and
non-synonymous nucleotide substitutions (first rows of plant
species), and the translated (by BioEdit [31]) aa changes are
indicated in different color boxes. The gsh1 of poplar (NCBI #
EF148665) was downloaded, BLASTed and aligned by NCBI server.

Double strand breaks (DSBs) of DNA as the initial events of
recombination occur not only in the meiotic but also in the somatic
cells [38], which can cause transgene (Figure 2) elimination. In our
study, the gshI transgene was found to be stably incorporated [24, 25]
in the tested poplar lines (ggs11 and lgl6), and no transgene
elimination or segregation was detected, which could occur during
several cycles of micropropagation in vitro [39, 40] (Figure 3).

Figure 2: Binary vector construct used for Agrobacterium
tumefaciens - mediated transformation of poplar tree (Populus x
canescens) to overexpress bacterial gshI transgene (EC 3.2.3.3)
either in the cytosol (ggs11) (A) or in the chloroplast (lgl6) (B).
LB/RB – left/right border of Agrobacterium T-DNA; P-p70 - 35S
promoter of CaMV (CAuliflower Mosaic Virus) with double-
enhancers; gshI - γ-glutamylcysteine synthetase gene; T-35S -
terminator sequence; nptII - neomycin phosphotransferase gene; P-
nos - 5' promoter of nopaline synthase gene, T-nos - 3' terminal
signal of nopaline synthase gene; rbcS – RUBISCO transit peptide
gene of pea.

The RT-qPCR analysis confirmed that the transgene was not lost by
revealing the high expression levels of the transgene CaMV-35S-gshI
in poplar exposed to herbicides (Figure 3).
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Figure 3: PCR detection of a partial sequence (598 bp indicated by
arrows) of the gshI-transgene cloned from E. coli (NCBI # X03954)
and transformed to 35S-gshI-poplar (Populus x canescens) clones
ggs11 (cyt-ECS) and lgl6 (chl-ECS), and compared to the non-
transformed (wild type, WT) clones (0.8% agarose gel). Primer pair
was as 5’-atc ccg gac gta tca cag g-3’ (position bp 341-359 nt of gshI)
and 3’-gat gca cca aac aga taa gg-5’ (position bp 939-920 nt of gshI).
MW - Molecular weight markes are indicated.

Conclusions
By means of DNA profiling the transgenes, either coding or reporter

genes, can be detected in the genetically transformed GMO plants for
both GMO and anti-GMO purposes. The sequence differences
between the foreign gene and the resident genes make it feasible to
design GMO-specific barcodes. We should also emphasize that as
opposed to more involved southern blotting and mapping of
transgenes DNA barcoding is simple, cost effective and possibly
accessible to the public and organizations through
specialized commercial labs.
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