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INTRODUCTION

Epigenetics is defined as the control of gene expression through 
mechanisms that do not modify the DNA sequence [1]. One of 
the main epigenetic modifications is methylation, which consists 
of the addition of a methyl group to the carbon five of a cytosine, a 
process that affects the regulation of gene expression [2,3]. For this 
process to take place, DNA MethylTransferase (DNMT) enzymes 
are required, which establish the genome methylation pattern in 
de novo methylation and are also in charge of maintaining this 
pattern during semiconservative DNA replication [4,5]. The reverse 
process, demethylation, is carried out by ten-eleven Translocation 
Enzymes (TET) [6]. Therefore, even though DNA methylation 
is considered a relatively stable modification, can be reversed by 
being influenced by environmental factors such as nutrition and 
chemical and industrial pollutants in addition to aging, being 
able to lead to the development of diseases such as cancer, obesity, 

diabetes, Cardiovascular Diseases (CVD), and respiratory diseases, 
among others [1,7,8].

Among the remodeling that the DNA methylation pattern undergoes 
in these situations, a loss of the methylated sites is included, causing 
hypomethylation of DNA, affecting numerous genomic regions, 
and representing a common feature of many tumors [8-10]. In the 
same context, since DNA methylation is susceptible to external 
stimuli, long-term changes in gene expression can be generated, 
which could lead to the development of pathologies contributing 
to the onset of Chronic Non-Communicable Diseases (CNCD) 
[11]. Approximately 22% of the world’s population (from subjects 
under 20 years of age to those aged 70 years or older) suffer from 
at least one chronic disease [12]. CNCDs caused approximately 
35 million deaths, representing 60% of all deaths, and NCDs 
constituted 80% of the global disease by 2020 [13]. The incidence 
of CNCDs has been increasing due to modifiable factors such as 
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exercise, diet, and smoking (factors that in turn impact genomic 
methylation patterns) [14,15]. However, only 1% of the world’s 
resources are destined to prevent the CNCDs. Because of the great 
impact that triggers of these diseases have on genome methylation 
levels it is relevant to review CNCDs from the perspective of DNA 
hypomethylation, as this epigenetic phenomenon could be used 
as a biomarker to prevent, diagnose, or evaluate the prognosis of 
these pathologies [11,16]. This review details the processes of DNA 
methylation and demethylation as well as the hypomethylation 
present in the most prevalent chronic non-communicable diseases.

GENOME METHYLATION

In 1975, it was proposed that DNA methylation play a fundamental 
role in gene transcription, indicating that it constitutes the event 
responsible for the maintenance of a particular gene expression 
pattern through cell division [17,18]. Currently, DNA methylation 
is known as an important biological process characterized by 
being inheritable, stable, and reversibly essential for embryonic 
development and other phenomena, such as regulation of 
transcription, genomic imprinting, genome stability, X chromosome 
inactivation, and transcriptional repression [19-21] among other 
events.

In this process, a methyl group derived from S-Adenosyl-L-Methionine 
(SAM) covalently adheres to carbon 5 of a DNA base, specifically 
to the cytosine of Cytosine phosphate-Guanosine dinucleotides 
(CpG), thus transforming cytosine into 5-methylcytosine (5mC) 
[22]. Studies in mouse Embryonic Stem Cells (mESC) have shown 
that DNMTs are responsible for this process, and enzymes have 
been identified as DNMT3a and DNMT3b. Towards the end of the 
90s, these enzymes were genetically inactivated in murine models, 
resulting in non-methylated DNA, causing lethality and multiple 
defects in the development of early embryos, indicating the role of 
these enzymes in de novo methylation of the genome during early 
embryogenesis. Later, in methylated genomic sequences from germ 
cells of murine and human models, it was observed that DNMT3a 
and DNMT3b interact directly with another DNMT, DNMT3L, 
which stimulates the activity of these enzymes and, therefore, DNA 
methylation [23,24].

On the other hand, Baubec et al. determined the genomic binding of 
DNMT3a and DNMT3b in mESC, showing that de novo DNMTs 
preferentially bind to regions of DNA rich in CpG sequences thus, 
approximately 80% of these dinucleotides are methylated in the 
genome, while the rest of the unmethylated CpG dinucleotides 
are mainly near promoter regions in dense clusters known as CpG 
islands, where the methylation percentage is less than 10% [25,26].

In mammals, three active DNMTs can be found in charge of 
regulating the methylation pattern: DNMT3a and DNMT3b, and 
the maintenance methyltransferase DNMT1, whose function is 
to maintain DNA methylation, copying the pattern in the strand 
of DNA synthesized during semi-conservative replication to 
maintain the cellular phenotype [27,28]. In Embryonic Stem Cells 
(ESC) as been shown, DNMT1 enzyme forms complexes with the 
UHRF1 protein and Proliferating Cell Nuclear Antigen (PCNA) in 
hemimethylated regions of DNA during replication [29]. However, 
in similar studies with ESC cell knock-out for the UHRF1 gene, 
the location of hemimethylated sites by DNMT1 has not been 
established, which shows the importance of UHRF1 in maintaining 
DNA methylation owing to its ability to bind to methylated CpGs 
[29,30].

Additionally, mass spectrometry revealed that UHRF1 and 
topoisomerase IIα (TopIIα) are co-expressed in hemimethylated 
zones [30]. Since the function of TopIIα in DNA copying is to 
decrease the tension on the replication fork, it was verified in mice 
with and without mutations in UHRF1 that the interaction between 
these proteins is important in the recognition of the methylated 
DNA chain, giving DNMT1 access to the complementary strand 
unmethylated cytosines [30,31].

Since DNA methylation is essential for the activation or repression 
of certain pathways and, therefore, for transcriptional regulation, 
this mark constitutes one of the main epigenetic modifications, 
together with the modification of histones and microRNAs 
(miRNAs) [32]. Pioneering studies on DNA methylation have 
considered this process irreversible; however, it is known that DNA 
demethylation is associated with the transcriptional repression 
of promoter regions and is a crucial step in determining cell fate 
in embryos and cell reprogramming. While DNA methylation 
is related to the suppression of gene expression, demethylation 
induces the reactivation and expression of genes [33,34].

Different studies postulate that enzymes of the TET family, TET-
1 and TET-2, produce demethylation of the genome because its 
expression is correlated with a decrease in 5mC levels and an 
increase in its oxidized form, 5-hydroxymethylcytosine (5 hmC) 
[35-38]. This has been confirmed in HEK293 cells, which present 
an increase in 5hmC, 5-formylcytosine and 5-caboxylcytosine when 
overexpress TET-2 was overexpressed [39]. Furthermore, using 
murine transgenic lines, we studied the changes in level RNA 
messenger expression levels of TET and DNMT during global DNA 
demethylation and observed a gradual increase in the expression of 
TET1 and TET2 RNA messengers as DNA demethylates, while the 
genes encoding DNMT1 and the associated protein UHRF1 are 
constitutively expressed [40].

GENOME HYPOMETHYLATION

As mentioned above, because methylation is a reversible process, 
changes in the expression levels or mutations of the enzymatic 
machinery involved in genome methylation can lead to genomic 
hypomethylation, a phenomenon that can be reflected in the 
alteration of physiological processes, and therefore, in the 
development of diseases [41, 42].

Jia et al. described that the UHRF2 protein causes DNA 
hypomethylation by suppressing DNMT3a because an increase 
in methylation is observed in different knockdown cell lines for 
UHRF2. In general, the investigators observed that in mESC knock-
out for DNMT3a/b or DNMT1, the reduced expression of UHRF2 
significantly increased methylation (p<0.05), demonstrating 
that knockdown of UHRF2 or UHRF1 resulted in an increase 
in the protein of DNMT3a and not in DNMT3b, both without 
variation at the mRNA level, concluding that UHRF1/2 inhibits 
the methylation of de novo downregulating DNMT3a protein [43].

DNA hypomethylation involves the loss of the methyl group in 
genomic regions where it is normally present and is associated 
with aging, the development of non-communicable diseases, and 
tumor progression. It is frequently detected in human cancers due 
the loss of methylation would have a direct impact on the integrity 
of the chromatin, thus increasing genomic instability [44-47]. To 
investigate this phenomenon, Gaudet et al. (2003) generated mice 
carrying a hypomorphic allele of DNMT1, which reduced the 
expression of this enzyme by 10%, causing hypomethylation in all 
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tissues [48]. When comparing hypomethylated tumors and thymic 
murine leukemia virus (MMLV) tumors induced in transgenic mice, 
it was observed that 10 of the 12 hypomethylated tumors exhibited 
a gain in chromosome 15, while only two of the 12 induced MMLV 
tumors presented this trisomy, suggesting that hypomethylation 
plays a role in genomic instability during tumorigenesis. On the 
other hand, a case-control study carried out in 2017 by Shen et al. 
with 390 patients with glioma and 390 healthy patients evaluated 
the levels of methylation in leukocyte DNA using 5mC levels as a 
marker, showing that their levels were significantly lower in glioma 
cases than in healthy controls (3.45 vs. 3.82, p=0.001) [48,49]. 
In summary, it is possible to point out that the dysregulation 
of this epigenetic mark can initiate the development of various 
pathologies. Similarly, it has been observed that improvements 
in the quality of life have a positive impact on infectious diseases 
because their incidence decreases; however, CNCDs have had 
a contrary behaviour, shedding light on a permanent change in 
the expression of certain genes [50]. Today, CNCDs present a 
high prevalence worldwide, being responsible for around 80% 
of the deaths in America according to the Pan American Health 
Organization (PAHO), where the highest mortality rates are 
associated with cardiovascular diseases (150.7/100,000) and cancer 
(105.7/100,000), followed by other CNCDs such as diabetes and 
chronic respiratory diseases with an index higher than 30/100,000 
[51].

GENOME HYPOMETHYLATION AND CANCER

Cancer is one of the main causes of morbidity and mortality from 
non-communicable diseases in the 21st century. In 2018, 9.6 million 
people worldwide perished from this pathology [52]. According to 
the World Health Organization (WHO), the three most common 
types of cancer are lung, breast and colorectal [53]. The disease 
is initiated by genetic and epigenetic alterations that lead to 
uncontrolled cell division, invasion, and metastasis [54]. Genomic 
hypomethylation was first described in 1983 when a decrease in 
5mC was observed in human tumor tissues compared to normal 
tissues [55]. Subsequent studies have shown that hypomethylation 
is common in cancer and influences tumorigenesis in different 
types of cancer [56,57]. The tumorigenic capacity of the cells was 
evidenced by a plasmid pUP with regions of DNMT1 capable of 
binding to PCNA and UHRF1, which prevented the formation of the 
DNMT1/UHRF1 complex, which is necessary for the maintenance 
of methylation, and a decrease in 5mC levels was observed in the 
treated cells (p<0.05). Furthermore, the cells showed a decrease in 
their doubling times, and the apoptosis induced by irradiation and 
tumor formation was evidenced; therefore, the interruption of this 
complex and the consequent global hypomethylation is one of the 
main routes that contribute to the oncogenic phenotype favoring 
genomic instability and increased aneuploidy, classic hallmarks of 
cancer [57,58].

Furthermore, the large epigenetic changes observed in cancer may 
be the result of mutations in chromatin remodeling complexes 
that affect the homeostasis of DNA methylation, thus promoting 
the active or passive elimination of the methyl groups of cytosines, 
which could be a consequence of the dysregulated activation of 
members of the TET family or partial loss of function of DNMT 
proteins [59]. Thus, in cancer cell lines, an increase in UHRF1/2 
expression was observed, leading to global hypomethylation as a 
result of passive demethylation [43].

Similarly, overexpression of protein arginine methyltransferase 6 
(PRMT6) was observed in bladder cancer samples compared to 
normal samples (p<0.0001). Veland et al. verified this increased 
expression in different human cancer cell lines and demonstrated 
in mESC clones with an overexpression of human PRMT6 that 
PRMT6 and its methyltransferase activity negatively regulate 
global DNA methylation, due PRMT6 is the enzyme responsible 
for asymmetric H3R2 dimethylation (H3R2me2a) and when 
evaluating the mESC, an increase in H3R2me2a is observed 
together with lower 5mC levels in relation to the control (p<0.01) 
[60,61]. Furthermore, ChIP experiments confirmed that the 
increase in H3R2me2a induced by the overexpression of PRMT6 
deteriorates the association of UHRF1 with chromatin, resulting in 
failure to maintain DNA methylation [61].

GENOME HYPOMETHYLATION IN OBESITY 
AND DIABETES

Obesity is currently considered a pandemic, the WHO notes 
that more than 1.9 billion adults are overweight and more than 
650 million are obese, constituting a great burden on the global 
health system [62,63]. This disease is characterized by being highly 
heritable; however, through Genome-Wide Association Studies 
(GWAS), it has been shown that the genetic variants related to 
obesity have limited predictive power, in addition to the genetic 
component, it is influenced by epigenetic changes conditioned 
mainly by diet, particularly during pregnancy and childhood 
[64,65]. These trigger reprogramming of the germline epigenome, 
which increases the transmission of disease susceptibility to future 
generations through transgenerational epigenetic inheritance 
[63,64]. Using microarrays, Rhee et al. examined the levels of DNA 
methylation in peripheral leukocytes of 12 young, six obese, and 
six normal weight children, identifying 95.7% of differentially 
methylated CpG sites in transcriptional regions, highlighting low 
levels of DNA methylation in obese children compared to the 
control group [66].

Obesity can lead to serious conditions such as cardiovascular 
disease, osteoarthritis, non-alcoholic fatty liver disease, kidney 
disease, musculoskeletal disorders, some cancers, and Type 2 
Diabetes Mellitus (T2DM) [64,67-69]. This last pathology is a disease 
of multifactorial origin, influenced by genetic predisposition and 
environmental factors such as diet and exercise [70-72]. In 2017, 
Thongsroy et al., using samples of patients classified as healthy 
patients, patients with T2DM, and patients with pre-DM, showed a 
decrease in methylation in Alu sites in samples from patients with 
DM compared to normal samples (p<0.001) [73].

In contrast, hepatic Insulin Resistance (IR) is a hallmark of T2DM. 
Nilsson et al. studied IR through the DNA methylation pattern of 
all liver genomes in people with T2DM and identified 251 CpG 
sites with differential DNA methylation in the liver of patients with 
T2DM, compared to non-diabetic subjects (p<0.5). These included 
CpG sites recorded in genes that are biologically relevant to the 
development of T2DM, such as GRB10, ABCC3, MOGAT1, and 
PRDM16 [74].

Additionally, Kirchner et al. carried out an analysis of the methyloma 
and transcriptome of the whole genome of the liver of people of 
the same age, classifying them as metabolically healthy non-obese, 
nondiabetic obese, and obese with T2DM, and discovered that the 
key genes involved in hepatic glycolysis and de novo lipogenesis 
were hypomethylated and activated in obese nondiabetic and obese 
patients with T2DM, compared to non-obese control subjects [71].
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lung adenocarcinoma cells exposed to cigarette smoke extracts and 
lipopolysaccharide showed significant global hypomethylation of 
DNA in relation to the control (p 0.0001 ), and blocking of the 
TET enzyme by antibodies showed that this enzyme is fundamental 
for the methylation changes that occur when exposed to cigarette 
smoke [85].

In conclusion, the presence of DNA hypomethylation in NCD 
(global or specific genes) leads to alterations in gene expression 
that may be related to the predisposition or development of these 
diseases.

DISCUSSION 

Evidence indicates the presence of hypomethylated genes in different 
diseases which supports the idea that DNA hypomethylation 
induces changes in gene expression, representing one of the 
main components in the initiation and development of CNCD 
[42,45,70,73,75,88-90]. A crucial factor is nutrition, both in 
intrauterine life and in the first years of life, which is studied by the 
area “Origins of Health and Disease Development” (DOHaD) [91]. 
Various authors support the idea that early nutrition is one of the 
main causes of increased susceptibility to various pathologies, since 
it induces expression changes in key genes involved in different 
metabolic pathways during development [92-98]. Nutrients that 
affect SAM or SAH, inhibitors of methyltransferases, have the 
potential to modify methylation and, therefore, gene expression 
[98]. Among the first studies to initiate this idea is that conducted 
in 1998 in Dutch men and women born before, during and after 
the 1944-1945 Nazi famine, where it was shown that adults exposed 
to famine in half or late gestation had less glucose tolerance 
compared to those who were never exposed or were exposed in early 
gestation. Years later, Finer and his group evidenced alterations in 
the methylation of offspring exposed to gestational diabetes, which 
has a functional impact on placental endocytic processes and other 
extra and intracellular signalling pathways involved in growth and 
metabolism, while Ayonrinde et al., conversely, the duration of 
breastfeeding and the age of onset of supplemental formula milk 
consumption with the subsequent diagnosis of non-alcoholic fatty 
liver in adolescence [92,99,100]. In contrast, a study in murine 
models observed that a low-protein maternal diet during pregnancy 
and lactation promoted early onset glucose intolerance in offspring 
mice [101]. In this way, the environment influences epigenetics 
from intrauterine life, as the diet, both maternal and individual, 
is one of the reasons for the increase in the prevalence of these 
pathologies, for which nutri-epigenomics and nutri-epigenetics play 
a relevant role in the control of CNCDs [102].

The main objective of these disciplines is the effective design of 
personalized nutritional strategies that not only result in weight 
loss, but also contribute to preventing metabolic disorders such 
as T2DM, hypertension, dyslipidemia, and cardiovascular diseases 
[93]. Nutri-epigenetics is the study of how nutrition regulates 
the activation or deactivation of a specific gene, whereas nutri-
epigenomics analyzes the interaction between various genes and 
nutrition, establishing those nutritional interventions can modify 
the epigenome and susceptibility to the development of diseases 
[103,104]. Considering this, it has been observed that dietary fatty 
acids can cause changes in methylation levels in gene promoters, 
such as vascular endothelial growth factor receptor 2β (VEGFβ) and 
Tumor Necrosis Factor α (TNFα), whose expression varies according 
to the type of fatty acid present in the diet, and can influence 
resistance to insulin, inflammatory processes, cardiovascular risk, 

VanderJagt et al. conducted a longitudinal evaluation of the 
transition to 11 patients diagnosed with pre-DM to T2DM and 
observed a decrease in DNA methylated sites during progression 
to T2DM. They identified six genes (SLC22A12, TRPM6, AQP9, 
HP, AGXT, and HYAL2) hypomethylated in all patients, which are 
related to the development of diabetic nephropathy [75].

GENOME HYPOMETHYLATION AND 
CARDIOVASCULAR DISEASES

DNA methylation is involved in the processes underlying CVD, 
including atherosclerosis, inflammation, high blood pressure, and 
coronary heart disease [76-78]. Various studies have investigated the 
role of hypomethylation in CVD, and it has been observed that 
the key genes involved in the development of these pathologies are 
hypomethylated. Thus, Miao et al. showed that the CXCL12 gene is 
hypomethylated in samples with coronary heart disease, increasing 
the expression of the gene, which is elevated in the inflammatory 
response, promoting the differentiation of endothelial cells to 
foam cells, causing vascular endothelial damage and, eventually, 
atherosclerosis, in this same line, Janssens et al., through association 
analysis of the epigenome of Large Arteries from Atherosclerotic 
stroke (LAA), identified 12 cases and 12 controls, a total of 1012 
methylated CpG loci corresponding to 672 genes that presented 
a differential methylation pattern between LAA stroke cases and 
controls (p<0.01); of these, 438 CpG sites showed hypomethylation 
[79,80].

Hypomethylated genes are involved in both immune and metabolic 
functions. In parallel, it has been shown that MTRNR2L8 is 
hypomethylated in Ischemic Stroke (IS), obtaining a predictive 
value for the prognosis of this pathology [81]. Gallego et al. also 
studied differential methylation of CpG sites in patients treated 
with clopidogrel (an antiplatelet agent), 21 patients with recurrent 
vascular events, and 21 patients without vascular recurrence. During 
the first year of follow in patients with obtain vascular recurrence 
during treatment with Clopidogrel, was observed of lower levels 
in DNA methylation in TRAF3 genes, which could indicate that 
hypomethylation of TRAF3 gene may be directly related to vascular 
recurrence, independent of treatment with Clopidogrel [82].

GENOME HYPOMETHYLATION AND 
CHRONIC RESPIRATORY DISEASES

Chronic Obstructive Pulmonary Disease (COPD), bronchitis, 
allergic rhinitis, lung cancer. These pathologies have been 
related to changes in DNA methylation, with hypomethylation 
observed both in the global genome and in specific genes that 
give rise to and promote the progression of these pathologies [83-
85]. Hypomethylation at CpG sites corresponding to IL-13 has 
been shown in patients with allergic rhinitis sensitized to house 
dust mites, a phenomenon associated with an increased risk of 
susceptibility to allergic rhinitis (r=1.22; p=0.018). In contrast, 
hypomethylation of the Aryl Hydrocarbon Receptor Repressor 
gene (AHRR) has been reported to be associated with respiratory 
diseases, being hypomethylated in smoking patients and in those 
with subsequent exacerbation of COPD and lung cancer. In 
addition, spirometry has studied the forced expiratory volume in 
1 s and the forced vital capacity to assess lung function, observing 
that AHRR gene hypomethylation is associated with a decrease in 
the AHRR receptor in patients with respiratory symptoms [86,87].

As has been extensively studied, CS exposure to cigarette smoke is 
associated with respiratory pathologies. A study in A549 human 
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generated or analysed during the current study.
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and DMT2 [104,105]. In addition, nutri-epigenomics is related to 
cancer, as low-folate diets have been associated with hypomethylation 
and an increased risk of pancreatic and colorectal cancer [1]. The 
study of nutri-epigenetics and nutri-epigenomics is fundamental, 
because personalized nutrition can prevent the development of 
CNCD.

DNA methylation is also indirectly affected by other environmental 
factors such as the economy, country of residence and education [91]. 
Taking relevance in addition to biological factors, socioeconomics, 
the current lifestyle in most of the world’s population is characterized 
by a high consumption of fast food and ultra-processed foods, few 
hours of sleep, high levels of stress, and a sedentary lifestyle, which 
are responsible for the epidemic that today make up the ECNT.

In summary, global or specific gene hypomethylation constitutes 
an epigenetic marker highly prevalent in NCD, which is triggered 
by modifications in the DNA methylation pattern caused by 
genetic, environmental, and socioeconomic influences. Therefore, 
to overcome this burden on the health system, it is necessary to 
conduct multidisciplinary work, which includes political, medical, 
and scientific measures. The discovery of epigenetic markers allows 
considerable improvement in the approach to these pathologies, 
not only allowing a timely diagnosis, but also facilitating monitoring 
and providing new therapeutic options.

As it has been exposed in this review, DNA hypomethylation is one 
of the main epigenetic alterations responsible for the development 
of CNCDs, there being a vast group of hypomethylated genes 
present in various pathologies, which present functions that are 
altered and contribute to the onset and development of diseases. 
The current challenge, as new hypomethylated sites are identified, 
is to discriminate between hypomethylation marks, which influence 
pathophysiology and could constitute new epigenetic biomarkers 
useful for their early appearance in diseases and the association 
between molecular markers and lifestyle [16,38,90,106,107].

CONCLUSION

In addition, owing to its stability, frequency, reversibility, 
and accessibility in body fluids, it has great potential for the 
development of clinical trials to support the management of 
patients with CNCD, whether as an epigenetic biomarker for 
diagnosis, prognosis, resistance to treatment, or even because 
of its reversibility, can be established as a therapeutic objective. 
The development and application of epigenetic biomarkers are 
projected to be a promising line within the health system; however, 
it should be borne in mind that the priority of health services 
should focus on preventive measures for CNCDs, mainly through 
the empowerment of lifestyle changes.
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